1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
|
import math
from rpython.rlib import jit, rcomplex
from rpython.rlib.rarithmetic import intmask, r_ulonglong
from rpython.rlib.rbigint import rbigint
from rpython.rlib.rfloat import (
DTSF_STR_PRECISION, formatd, string_to_float)
from rpython.rlib.rstring import ParseStringError
from rpython.tool.sourcetools import func_with_new_name
from pypy.interpreter.baseobjspace import W_Root
from pypy.interpreter.error import OperationError, oefmt
from pypy.interpreter.gateway import WrappedDefault, interp2app, unwrap_spec
from pypy.interpreter.typedef import GetSetProperty, TypeDef
from pypy.objspace.std import newformat
from pypy.objspace.std.floatobject import _hash_float
from pypy.objspace.std.unicodeobject import unicode_to_decimal_w
HASH_IMAG = 1000003
def _split_complex(s):
slen = len(s)
if slen == 0:
raise ValueError
realstart = 0
realstop = 0
imagstart = 0
imagstop = 0
imagsign = ' '
i = 0
# ignore whitespace at beginning and end
while i < slen and s[i] == ' ':
i += 1
while slen > 0 and s[slen-1] == ' ':
slen -= 1
if s[i] == '(' and s[slen-1] == ')':
i += 1
slen -= 1
# ignore whitespace after bracket
while i < slen and s[i] == ' ':
i += 1
while slen > 0 and s[slen-1] == ' ':
slen -= 1
# extract first number
realstart = i
pc = s[i]
while i < slen and s[i] != ' ':
if s[i] in ('+', '-') and pc not in ('e', 'E') and i != realstart:
break
pc = s[i]
i += 1
realstop = i
# return appropriate strings is only one number is there
if i >= slen:
newstop = realstop - 1
if newstop < 0:
raise ValueError
if s[newstop] in ('j', 'J'):
if realstart == newstop:
imagpart = '1.0'
elif realstart == newstop-1 and s[realstart] == '+':
imagpart = '1.0'
elif realstart == newstop-1 and s[realstart] == '-':
imagpart = '-1.0'
else:
imagpart = s[realstart:newstop]
return '0.0', imagpart
else:
return s[realstart:realstop], '0.0'
# find sign for imaginary part
if s[i] == '-' or s[i] == '+':
imagsign = s[i]
else:
raise ValueError
i += 1
if i >= slen:
raise ValueError
imagstart = i
pc = s[i]
while i < slen and s[i] != ' ':
if s[i] in ('+', '-') and pc not in ('e', 'E'):
break
pc = s[i]
i += 1
imagstop = i - 1
if imagstop < 0:
raise ValueError
if s[imagstop] not in ('j', 'J'):
raise ValueError
if imagstop < imagstart:
raise ValueError
if i < slen:
raise ValueError
realpart = s[realstart:realstop]
if imagstart == imagstop:
imagpart = '1.0'
else:
imagpart = s[imagstart:imagstop]
if imagsign == '-':
imagpart = imagsign + imagpart
return realpart, imagpart
def format_float(x, code, precision):
# like float2string, except that the ".0" is not necessary
if math.isinf(x):
if x > 0.0:
return "inf"
else:
return "-inf"
elif math.isnan(x):
return "nan"
else:
return formatd(x, code, precision)
def repr_format(x):
return format_float(x, 'r', 0)
def str_format(x):
return format_float(x, 'g', DTSF_STR_PRECISION)
def unpackcomplex(space, w_complex, strict_typing=True, firstarg=True):
"""
convert w_complex into a complex and return the unwrapped (real, imag)
tuple. If strict_typing==True, we also typecheck the value returned by
__complex__ to actually be a complex (and not e.g. a float).
See test___complex___returning_non_complex.
"""
if type(w_complex) is W_ComplexObject:
return (w_complex.realval, w_complex.imagval)
#
# test for a '__complex__' method, and call it if found.
w_z = None
w_method = space.lookup(w_complex, '__complex__')
if w_method is not None:
w_z = space.get_and_call_function(w_method, w_complex)
#
if w_z is not None:
# __complex__() must return a complex
# (XXX should not use isinstance here)
if isinstance(w_z, W_ComplexObject):
return (w_z.realval, w_z.imagval)
raise oefmt(space.w_TypeError,
"__complex__() must return a complex number")
#
# no '__complex__' method, so we assume it is a float,
# unless it is an instance of some subclass of complex.
if space.isinstance_w(w_complex, space.gettypefor(W_ComplexObject)):
real = space.float(space.getattr(w_complex, space.newtext("real")))
imag = space.float(space.getattr(w_complex, space.newtext("imag")))
return (space.float_w(real), space.float_w(imag))
#
# Check that it is not a string (on which space.float() would succeed).
if (space.isinstance_w(w_complex, space.w_bytes) or
space.isinstance_w(w_complex, space.w_unicode)):
raise oefmt(space.w_TypeError,
"complex number expected, got '%T'", w_complex)
#
try:
return (space.float_w(space.float(w_complex)), 0.0)
except OperationError as e:
if not e.match(space, space.w_TypeError):
raise
if firstarg:
raise oefmt(space.w_TypeError,
"complex() first argument must be a string or a number, not '%T'",
w_complex)
else:
raise oefmt(space.w_TypeError,
"complex() second argument must be a number, not '%T'",
w_complex)
class W_ComplexObject(W_Root):
_immutable_fields_ = ['realval', 'imagval']
def __init__(self, realval=0.0, imgval=0.0):
self.realval = float(realval)
self.imagval = float(imgval)
def unwrap(self, space): # for tests only
return complex(self.realval, self.imagval)
def __repr__(self):
""" representation for debugging purposes """
return "<W_ComplexObject(%f, %f)>" % (self.realval, self.imagval)
def as_tuple(self):
return (self.realval, self.imagval)
def sub(self, other):
return W_ComplexObject(self.realval - other.realval,
self.imagval - other.imagval)
def mul(self, other):
r = self.realval * other.realval - self.imagval * other.imagval
i = self.realval * other.imagval + self.imagval * other.realval
return W_ComplexObject(r, i)
def div(self, other):
rr, ir = rcomplex.c_div(self.as_tuple(), other.as_tuple())
return W_ComplexObject(rr, ir)
def pow(self, other):
rr, ir = rcomplex.c_pow(self.as_tuple(), other.as_tuple())
return W_ComplexObject(rr, ir)
def pow_small_int(self, n):
if n >= 0:
if jit.isconstant(n) and n == 2:
return self.mul(self)
return self.pow_positive_int(n)
else:
return w_one.div(self.pow_positive_int(-n))
def pow_positive_int(self, n):
mask = 1
w_result = w_one
while mask > 0 and n >= mask:
if n & mask:
w_result = w_result.mul(self)
mask <<= 1
self = self.mul(self)
return w_result
def is_w(self, space, w_other):
from rpython.rlib.longlong2float import float2longlong
if not isinstance(w_other, W_ComplexObject):
return False
if self.user_overridden_class or w_other.user_overridden_class:
return self is w_other
real1 = space.float_w(space.getattr(self, space.newtext("real")))
real2 = space.float_w(space.getattr(w_other, space.newtext("real")))
imag1 = space.float_w(space.getattr(self, space.newtext("imag")))
imag2 = space.float_w(space.getattr(w_other, space.newtext("imag")))
real1 = float2longlong(real1)
real2 = float2longlong(real2)
imag1 = float2longlong(imag1)
imag2 = float2longlong(imag2)
return real1 == real2 and imag1 == imag2
def immutable_unique_id(self, space):
if self.user_overridden_class:
return None
from rpython.rlib.longlong2float import float2longlong
from pypy.objspace.std.util import IDTAG_COMPLEX as tag
from pypy.objspace.std.util import IDTAG_SHIFT
real = space.float_w(space.getattr(self, space.newtext("real")))
imag = space.float_w(space.getattr(self, space.newtext("imag")))
real_b = rbigint.fromrarith_int(float2longlong(real))
imag_b = rbigint.fromrarith_int(r_ulonglong(float2longlong(imag)))
val = real_b.lshift(64).or_(imag_b).lshift(IDTAG_SHIFT).int_or_(tag)
return space.newlong_from_rbigint(val)
def int(self, space):
raise oefmt(space.w_TypeError, "can't convert complex to int")
def _to_complex(self, space, w_obj):
if isinstance(w_obj, W_ComplexObject):
return w_obj
if space.isinstance_w(w_obj, space.w_int):
w_float = space.float_w(w_obj)
return W_ComplexObject(w_float, 0.0)
if space.isinstance_w(w_obj, space.w_float):
return W_ComplexObject(space.float_w(w_obj), 0.0)
@staticmethod
@unwrap_spec(w_real=WrappedDefault(0.0))
def descr__new__(space, w_complextype, w_real, w_imag=None):
# if w_real is already a complex number and there is no second
# argument, return it. Note that we cannot return w_real if
# it is an instance of a *subclass* of complex, or if w_complextype
# is itself a subclass of complex.
noarg2 = w_imag is None
if (noarg2 and space.is_w(w_complextype, space.w_complex)
and space.is_w(space.type(w_real), space.w_complex)):
return w_real
if space.isinstance_w(w_real, space.w_text):
# a string argument
if not noarg2:
raise oefmt(space.w_TypeError, "complex() can't take second"
" arg if first is a string")
unistr = unicode_to_decimal_w(space, w_real)
try:
realstr, imagstr = _split_complex(unistr)
except ValueError:
raise oefmt(space.w_ValueError,
"complex() arg is a malformed string")
try:
realval = string_to_float(realstr)
imagval = string_to_float(imagstr)
except ParseStringError:
raise oefmt(space.w_ValueError,
"complex() arg is a malformed string")
else:
# non-string arguments
realval, imagval = unpackcomplex(space, w_real)
# now take w_imag into account
if not noarg2:
# complex(x, y) == x+y*j, even if 'y' is already a complex.
realval2, imagval2 = unpackcomplex(space, w_imag,
firstarg=False)
# try to preserve the signs of zeroes of realval and realval2
if imagval2 != 0.0:
realval -= imagval2
if imagval != 0.0:
imagval += realval2
else:
imagval = realval2
# done
w_obj = space.allocate_instance(W_ComplexObject, w_complextype)
W_ComplexObject.__init__(w_obj, realval, imagval)
return w_obj
def descr___getnewargs__(self, space):
return space.newtuple([space.newfloat(self.realval),
space.newfloat(self.imagval)])
def descr_repr(self, space):
if self.realval == 0 and math.copysign(1., self.realval) == 1.:
return space.newtext(repr_format(self.imagval) + 'j')
sign = (math.copysign(1., self.imagval) == 1. or
math.isnan(self.imagval)) and '+' or ''
return space.newtext('(' + repr_format(self.realval)
+ sign + repr_format(self.imagval) + 'j)')
def descr_str(self, space):
if self.realval == 0 and math.copysign(1., self.realval) == 1.:
return space.newtext(str_format(self.imagval) + 'j')
sign = (math.copysign(1., self.imagval) == 1. or
math.isnan(self.imagval)) and '+' or ''
return space.newtext('(' + str_format(self.realval)
+ sign + str_format(self.imagval) + 'j)')
def descr_hash(self, space):
hashreal = _hash_float(space, self.realval)
hashimg = _hash_float(space, self.imagval) # 0 if self.imagval == 0
h = intmask(hashreal + HASH_IMAG * hashimg)
h -= (h == -1)
return space.newint(h)
def descr_coerce(self, space, w_other):
w_other = self._to_complex(space, w_other)
if w_other is None:
return space.w_NotImplemented
return space.newtuple([self, w_other])
def descr_format(self, space, w_format_spec):
return newformat.run_formatter(space, w_format_spec, "format_complex",
self)
def descr_bool(self, space):
return space.newbool((self.realval != 0.0) or (self.imagval != 0.0))
def descr_float(self, space):
raise oefmt(space.w_TypeError, "can't convert complex to float")
def descr_neg(self, space):
return W_ComplexObject(-self.realval, -self.imagval)
def descr_pos(self, space):
return W_ComplexObject(self.realval, self.imagval)
def descr_abs(self, space):
try:
return space.newfloat(math.hypot(self.realval, self.imagval))
except OverflowError as e:
raise OperationError(space.w_OverflowError, space.newtext(str(e)))
def descr_eq(self, space, w_other):
if isinstance(w_other, W_ComplexObject):
return space.newbool((self.realval == w_other.realval) and
(self.imagval == w_other.imagval))
if (space.isinstance_w(w_other, space.w_int) or
space.isinstance_w(w_other, space.w_float)):
if self.imagval:
return space.w_False
return space.eq(space.newfloat(self.realval), w_other)
return space.w_NotImplemented
def descr_ne(self, space, w_other):
if isinstance(w_other, W_ComplexObject):
return space.newbool((self.realval != w_other.realval) or
(self.imagval != w_other.imagval))
if (space.isinstance_w(w_other, space.w_int) or
space.isinstance_w(w_other, space.w_float)):
if self.imagval:
return space.w_True
return space.ne(space.newfloat(self.realval), w_other)
return space.w_NotImplemented
def _fail_cmp(self, space, w_other):
return space.w_NotImplemented
def descr_add(self, space, w_rhs):
w_rhs = self._to_complex(space, w_rhs)
if w_rhs is None:
return space.w_NotImplemented
return W_ComplexObject(self.realval + w_rhs.realval,
self.imagval + w_rhs.imagval)
def descr_radd(self, space, w_lhs):
w_lhs = self._to_complex(space, w_lhs)
if w_lhs is None:
return space.w_NotImplemented
return W_ComplexObject(w_lhs.realval + self.realval,
w_lhs.imagval + self.imagval)
def descr_sub(self, space, w_rhs):
w_rhs = self._to_complex(space, w_rhs)
if w_rhs is None:
return space.w_NotImplemented
return W_ComplexObject(self.realval - w_rhs.realval,
self.imagval - w_rhs.imagval)
def descr_rsub(self, space, w_lhs):
w_lhs = self._to_complex(space, w_lhs)
if w_lhs is None:
return space.w_NotImplemented
return W_ComplexObject(w_lhs.realval - self.realval,
w_lhs.imagval - self.imagval)
def descr_mul(self, space, w_rhs):
w_rhs = self._to_complex(space, w_rhs)
if w_rhs is None:
return space.w_NotImplemented
return self.mul(w_rhs)
def descr_rmul(self, space, w_lhs):
w_lhs = self._to_complex(space, w_lhs)
if w_lhs is None:
return space.w_NotImplemented
return w_lhs.mul(self)
def descr_truediv(self, space, w_rhs):
w_rhs = self._to_complex(space, w_rhs)
if w_rhs is None:
return space.w_NotImplemented
try:
return self.div(w_rhs)
except ZeroDivisionError as e:
raise oefmt(space.w_ZeroDivisionError, "complex division by zero")
def descr_rtruediv(self, space, w_lhs):
w_lhs = self._to_complex(space, w_lhs)
if w_lhs is None:
return space.w_NotImplemented
try:
return w_lhs.div(self)
except ZeroDivisionError as e:
raise oefmt(space.w_ZeroDivisionError, "complex division by zero")
def descr_floordiv(self, space, w_rhs):
raise oefmt(space.w_TypeError, "can't take floor of complex number.")
descr_rfloordiv = func_with_new_name(descr_floordiv, 'descr_rfloordiv')
def descr_mod(self, space, w_rhs):
raise oefmt(space.w_TypeError, "can't mod complex numbers.")
descr_rmod = func_with_new_name(descr_mod, 'descr_rmod')
def descr_divmod(self, space, w_rhs):
raise oefmt(space.w_TypeError,
"can't take floor or mod of complex number.")
descr_rdivmod = func_with_new_name(descr_divmod, 'descr_rdivmod')
@unwrap_spec(w_third_arg=WrappedDefault(None))
def descr_pow(self, space, w_exponent, w_third_arg):
w_exponent = self._to_complex(space, w_exponent)
if w_exponent is None:
return space.w_NotImplemented
if not space.is_w(w_third_arg, space.w_None):
raise oefmt(space.w_ValueError, 'complex modulo')
try:
r = w_exponent.realval
if (w_exponent.imagval == 0.0 and -100.0 <= r <= 100.0 and
r == int(r)):
w_p = self.pow_small_int(int(r))
else:
w_p = self.pow(w_exponent)
except ZeroDivisionError:
raise oefmt(space.w_ZeroDivisionError,
"0.0 to a negative or complex power")
except OverflowError:
raise oefmt(space.w_OverflowError, "complex exponentiation")
return w_p
@unwrap_spec(w_third_arg=WrappedDefault(None))
def descr_rpow(self, space, w_lhs, w_third_arg):
w_lhs = self._to_complex(space, w_lhs)
if w_lhs is None:
return space.w_NotImplemented
return w_lhs.descr_pow(space, self, w_third_arg)
def descr_conjugate(self, space):
"""(A+Bj).conjugate() -> A-Bj"""
return space.newcomplex(self.realval, -self.imagval)
w_one = W_ComplexObject(1, 0)
def complexwprop(name, doc):
def fget(space, w_obj):
if not isinstance(w_obj, W_ComplexObject):
raise oefmt(space.w_TypeError, "descriptor is for 'complex'")
return space.newfloat(getattr(w_obj, name))
return GetSetProperty(fget, doc=doc, cls=W_ComplexObject)
W_ComplexObject.typedef = TypeDef("complex",
__doc__ = """complex(real[, imag]) -> complex number
Create a complex number from a real part and an optional imaginary part.
This is equivalent to (real + imag*1j) where imag defaults to 0.""",
__new__ = interp2app(W_ComplexObject.descr__new__),
__getnewargs__ = interp2app(W_ComplexObject.descr___getnewargs__),
real = complexwprop('realval', doc="the real part of a complex number"),
imag = complexwprop('imagval',
doc="the imaginary part of a complex number"),
__repr__ = interp2app(W_ComplexObject.descr_repr),
__str__ = interp2app(W_ComplexObject.descr_str),
__hash__ = interp2app(W_ComplexObject.descr_hash),
__format__ = interp2app(W_ComplexObject.descr_format),
__bool__ = interp2app(W_ComplexObject.descr_bool),
__int__ = interp2app(W_ComplexObject.int),
__float__ = interp2app(W_ComplexObject.descr_float),
__neg__ = interp2app(W_ComplexObject.descr_neg),
__pos__ = interp2app(W_ComplexObject.descr_pos),
__abs__ = interp2app(W_ComplexObject.descr_abs),
__eq__ = interp2app(W_ComplexObject.descr_eq),
__ne__ = interp2app(W_ComplexObject.descr_ne),
__lt__ = interp2app(W_ComplexObject._fail_cmp),
__le__ = interp2app(W_ComplexObject._fail_cmp),
__gt__ = interp2app(W_ComplexObject._fail_cmp),
__ge__ = interp2app(W_ComplexObject._fail_cmp),
__add__ = interp2app(W_ComplexObject.descr_add),
__radd__ = interp2app(W_ComplexObject.descr_radd),
__sub__ = interp2app(W_ComplexObject.descr_sub),
__rsub__ = interp2app(W_ComplexObject.descr_rsub),
__mul__ = interp2app(W_ComplexObject.descr_mul),
__rmul__ = interp2app(W_ComplexObject.descr_rmul),
__truediv__ = interp2app(W_ComplexObject.descr_truediv),
__rtruediv__ = interp2app(W_ComplexObject.descr_rtruediv),
__floordiv__ = interp2app(W_ComplexObject.descr_floordiv),
__rfloordiv__ = interp2app(W_ComplexObject.descr_rfloordiv),
__mod__ = interp2app(W_ComplexObject.descr_mod),
__rmod__ = interp2app(W_ComplexObject.descr_rmod),
__divmod__ = interp2app(W_ComplexObject.descr_divmod),
__rdivmod__ = interp2app(W_ComplexObject.descr_rdivmod),
__pow__ = interp2app(W_ComplexObject.descr_pow),
__rpow__ = interp2app(W_ComplexObject.descr_rpow),
conjugate = interp2app(W_ComplexObject.descr_conjugate),
)
|