1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
|
"""The builtin int type (W_AbstractInt) and the base impl (W_IntObject)
based on rpython ints.
In order to have the same behavior running on CPython, and after RPython
translation this module uses rarithmetic.ovfcheck to explicitly check
for overflows, something CPython does not do anymore.
"""
import operator
import sys
from rpython.rlib import jit
from rpython.rlib.objectmodel import instantiate
from rpython.rlib.rarithmetic import (
LONG_BIT, intmask, is_valid_int, ovfcheck, r_longlong, r_uint,
string_to_int)
from rpython.rlib.rbigint import (
InvalidEndiannessError, InvalidSignednessError, rbigint)
from rpython.rlib.rfloat import DBL_MANT_DIG
from rpython.rlib.rstring import (
ParseStringError, ParseStringOverflowError)
from rpython.tool.sourcetools import func_renamer, func_with_new_name
from pypy.interpreter import typedef
from pypy.interpreter.baseobjspace import W_Root
from pypy.interpreter.error import OperationError, oefmt
from pypy.interpreter.gateway import (
WrappedDefault, applevel, interp2app, interpindirect2app, unwrap_spec)
from pypy.interpreter.typedef import TypeDef
from pypy.objspace.std import newformat
from pypy.objspace.std.util import (
BINARY_OPS, CMP_OPS, COMMUTATIVE_OPS, IDTAG_INT, IDTAG_SHIFT, wrap_parsestringerror)
SENTINEL = object()
HASH_BITS = 61 if sys.maxsize > 2 ** 31 - 1 else 31
HASH_MODULUS = 2 ** HASH_BITS - 1
class W_AbstractIntObject(W_Root):
__slots__ = ()
def is_w(self, space, w_other):
from pypy.objspace.std.boolobject import W_BoolObject
if (not isinstance(w_other, W_AbstractIntObject) or
isinstance(w_other, W_BoolObject)):
return False
if self.user_overridden_class or w_other.user_overridden_class:
return self is w_other
x = space.bigint_w(self, allow_conversion=False)
y = space.bigint_w(w_other, allow_conversion=False)
return x.eq(y)
def immutable_unique_id(self, space):
if self.user_overridden_class:
return None
b = space.bigint_w(self)
b = b.lshift(IDTAG_SHIFT).int_or_(IDTAG_INT)
return space.newlong_from_rbigint(b)
@staticmethod
@unwrap_spec(byteorder='text', signed=bool)
def descr_from_bytes(space, w_inttype, w_obj, byteorder, signed=False):
"""int.from_bytes(bytes, byteorder, *, signed=False) -> int
Return the integer represented by the given array of bytes.
The bytes argument must either support the buffer protocol or be
an iterable object producing bytes. Bytes and bytearray are
examples of built-in objects that support the buffer protocol.
The byteorder argument determines the byte order used to
represent the integer. If byteorder is 'big', the most
significant byte is at the beginning of the byte array. If
byteorder is 'little', the most significant byte is at the end
of the byte array. To request the native byte order of the host
system, use `sys.byteorder' as the byte order value.
The signed keyword-only argument indicates whether two's
complement is used to represent the integer.
"""
from pypy.objspace.std.bytesobject import makebytesdata_w
bytes = makebytesdata_w(space, w_obj)
try:
bigint = rbigint.frombytes(bytes, byteorder=byteorder,
signed=signed)
except InvalidEndiannessError:
raise oefmt(space.w_ValueError,
"byteorder must be either 'little' or 'big'")
try:
as_int = bigint.toint()
except OverflowError:
w_obj = space.newlong_from_rbigint(bigint)
else:
w_obj = space.newint(as_int)
if not space.is_w(w_inttype, space.w_int):
# That's what from_bytes() does in CPython 3.5.2 too
w_obj = space.call_function(w_inttype, w_obj)
return w_obj
@unwrap_spec(length=int, byteorder='text', signed=bool)
def descr_to_bytes(self, space, length, byteorder, signed=False):
"""to_bytes(...)
int.to_bytes(length, byteorder, *, signed=False) -> bytes
Return an array of bytes representing an integer.
The integer is represented using length bytes. An OverflowError
is raised if the integer is not representable with the given
number of bytes.
The byteorder argument determines the byte order used to
represent the integer. If byteorder is 'big', the most
significant byte is at the beginning of the byte array. If
byteorder is 'little', the most significant byte is at the end
of the byte array. To request the native byte order of the host
system, use `sys.byteorder' as the byte order value.
The signed keyword-only argument determines whether two's
complement is used to represent the integer. If signed is False
and a negative integer is given, an OverflowError is raised.
"""
bigint = space.bigint_w(self)
try:
byte_string = bigint.tobytes(length, byteorder=byteorder,
signed=signed)
except InvalidEndiannessError:
raise oefmt(space.w_ValueError,
"byteorder must be either 'little' or 'big'")
except InvalidSignednessError:
raise oefmt(space.w_OverflowError,
"can't convert negative int to unsigned")
except OverflowError:
raise oefmt(space.w_OverflowError, "int too big to convert")
return space.newbytes(byte_string)
def descr_round(self, space, w_ndigits=None):
"""Rounding an Integral returns itself.
Rounding with an ndigits argument also returns an integer.
"""
# To round an integer m to the nearest 10**n (n positive), we
# make use of the divmod_near operation, defined by:
#
# divmod_near(a, b) = (q, r)
#
# where q is the nearest integer to the quotient a / b (the
# nearest even integer in the case of a tie) and r == a - q * b.
# Hence q * b = a - r is the nearest multiple of b to a,
# preferring even multiples in the case of a tie.
#
# So the nearest multiple of 10**n to m is:
#
# m - divmod_near(m, 10**n)[1]
# XXX: since divmod_near is pure python we can probably remove
# the longs used here. or this could at least likely be more
# efficient for W_IntObject
from pypy.objspace.std.longobject import newlong
if w_ndigits is None:
return self.int(space)
ndigits = space.bigint_w(space.index(w_ndigits))
# if ndigits >= 0 then no rounding is necessary; return self
# unchanged
if ndigits.ge(rbigint.fromint(0)):
return self.int(space)
# result = self - divmod_near(self, 10 ** -ndigits)[1]
right = rbigint.fromint(10).pow(ndigits.neg())
w_tuple = divmod_near(space, self, newlong(space, right))
_, w_r = space.fixedview(w_tuple, 2)
return space.sub(self, w_r)
def _self_unaryop(opname, doc=None):
@func_renamer('descr_' + opname)
def descr_unaryop(self, space):
return self.int(space)
descr_unaryop.__doc__ = doc
return descr_unaryop
descr_conjugate = _self_unaryop(
'conjugate', "Returns self, the complex conjugate of any int.")
descr_pos = _self_unaryop('pos', "x.__pos__() <==> +x")
descr_index = _self_unaryop('index',
"x[y:z] <==> x[y.__index__():z.__index__()]")
descr_trunc = _self_unaryop('trunc',
"Truncating an Integral returns itself.")
descr_floor = _self_unaryop('floor', "Flooring an Integral returns itself.")
descr_ceil = _self_unaryop('ceil', "Ceiling of an Integral returns itself.")
descr_get_numerator = _self_unaryop('get_numerator')
descr_get_real = _self_unaryop('get_real')
def descr_get_denominator(self, space):
return wrapint(space, 1)
def descr_get_imag(self, space):
return wrapint(space, 0)
def int(self, space):
"""x.__int__() <==> int(x)"""
raise NotImplementedError
def asbigint(self):
raise NotImplementedError
def descr_format(self, space, w_format_spec):
raise NotImplementedError
def descr_pow(self, space, w_exponent, w_modulus=None):
"""x.__pow__(y[, z]) <==> pow(x, y[, z])"""
raise NotImplementedError
descr_rpow = func_with_new_name(descr_pow, 'descr_rpow')
descr_rpow.__doc__ = "y.__rpow__(x[, z]) <==> pow(x, y[, z])"
def _abstract_unaryop(opname, doc=SENTINEL):
if doc is SENTINEL:
doc = 'x.__%s__() <==> %s(x)' % (opname, opname)
@func_renamer('descr_' + opname)
def descr_unaryop(self, space):
raise NotImplementedError
descr_unaryop.__doc__ = doc
return descr_unaryop
descr_repr = _abstract_unaryop('repr')
descr_str = _abstract_unaryop('str')
descr_bit_length = _abstract_unaryop('bit_length', """\
int.bit_length() -> int
Number of bits necessary to represent self in binary.
>>> bin(37)
'0b100101'
>>> (37).bit_length()
6""")
descr_hash = _abstract_unaryop('hash')
descr_getnewargs = _abstract_unaryop('getnewargs', None)
descr_float = _abstract_unaryop('float')
descr_neg = _abstract_unaryop('neg', "x.__neg__() <==> -x")
descr_abs = _abstract_unaryop('abs')
descr_bool = _abstract_unaryop('bool', "x.__bool__() <==> x != 0")
descr_invert = _abstract_unaryop('invert', "x.__invert__() <==> ~x")
def _abstract_cmpop(opname):
@func_renamer('descr_' + opname)
def descr_cmp(self, space, w_other):
raise NotImplementedError
descr_cmp.__doc__ = 'x.__%s__(y) <==> x%sy' % (opname, CMP_OPS[opname])
return descr_cmp
descr_lt = _abstract_cmpop('lt')
descr_le = _abstract_cmpop('le')
descr_eq = _abstract_cmpop('eq')
descr_ne = _abstract_cmpop('ne')
descr_gt = _abstract_cmpop('gt')
descr_ge = _abstract_cmpop('ge')
def _abstract_binop(opname):
oper = BINARY_OPS.get(opname)
if oper == '%':
oper = '%%'
oper = '%s(%%s, %%s)' % opname if not oper else '%%s%s%%s' % oper
@func_renamer('descr_' + opname)
def descr_binop(self, space, w_other):
raise NotImplementedError
descr_binop.__doc__ = "x.__%s__(y) <==> %s" % (opname,
oper % ('x', 'y'))
descr_rbinop = func_with_new_name(descr_binop, 'descr_r' + opname)
descr_rbinop.__doc__ = "x.__r%s__(y) <==> %s" % (opname,
oper % ('y', 'x'))
return descr_binop, descr_rbinop
descr_add, descr_radd = _abstract_binop('add')
descr_sub, descr_rsub = _abstract_binop('sub')
descr_mul, descr_rmul = _abstract_binop('mul')
descr_matmul, descr_rmatmul = _abstract_binop('matmul')
descr_and, descr_rand = _abstract_binop('and')
descr_or, descr_ror = _abstract_binop('or')
descr_xor, descr_rxor = _abstract_binop('xor')
descr_lshift, descr_rlshift = _abstract_binop('lshift')
descr_rshift, descr_rrshift = _abstract_binop('rshift')
descr_floordiv, descr_rfloordiv = _abstract_binop('floordiv')
descr_truediv, descr_rtruediv = _abstract_binop('truediv')
descr_mod, descr_rmod = _abstract_binop('mod')
descr_divmod, descr_rdivmod = _abstract_binop('divmod')
def _floordiv(space, x, y):
try:
z = ovfcheck(x // y)
except ZeroDivisionError:
raise oefmt(space.w_ZeroDivisionError,
"integer division or modulo by zero")
return wrapint(space, z)
def _truediv(space, x, y):
if not y:
raise oefmt(space.w_ZeroDivisionError, "division by zero")
if (DBL_MANT_DIG < LONG_BIT and
(r_uint(abs(x)) >> DBL_MANT_DIG or r_uint(abs(y)) >> DBL_MANT_DIG)):
# large x or y, use long arithmetic
raise OverflowError
# both ints can be exactly represented as doubles, do a
# floating-point division
a = float(x)
b = float(y)
return space.newfloat(a / b)
def _mod(space, x, y):
try:
z = ovfcheck(x % y)
except ZeroDivisionError:
raise oefmt(space.w_ZeroDivisionError, "integer modulo by zero")
return wrapint(space, z)
def _divmod(space, x, y):
try:
z = ovfcheck(x // y)
except ZeroDivisionError:
raise oefmt(space.w_ZeroDivisionError, "integer divmod by zero")
# no overflow possible
m = x % y
return space.newtuple([space.newint(z), space.newint(m)])
def _divmod_ovf2small(space, x, y):
from pypy.objspace.std.smalllongobject import W_SmallLongObject
a = r_longlong(x)
b = r_longlong(y)
return space.newtuple([W_SmallLongObject(a // b),
W_SmallLongObject(a % b)])
def _lshift(space, a, b):
if r_uint(b) < LONG_BIT: # 0 <= b < LONG_BIT
c = ovfcheck(a << b)
return wrapint(space, c)
if b < 0:
raise oefmt(space.w_ValueError, "negative shift count")
# b >= LONG_BIT
if a == 0:
return wrapint(space, a)
raise OverflowError
def _lshift_ovf2small(space, a, b):
from pypy.objspace.std.smalllongobject import W_SmallLongObject
w_a = W_SmallLongObject.fromint(a)
w_b = W_SmallLongObject.fromint(b)
return w_a.descr_lshift(space, w_b)
def _rshift(space, a, b):
if r_uint(b) >= LONG_BIT: # not (0 <= b < LONG_BIT)
if b < 0:
raise oefmt(space.w_ValueError, "negative shift count")
# b >= LONG_BIT
if a == 0:
return wrapint(space, a)
a = -1 if a < 0 else 0
else:
a = a >> b
return wrapint(space, a)
def _pow(space, iv, iw, iz):
"""Helper for pow"""
if iz == 0:
return _pow_nomod(iv, iw)
else:
return _pow_mod(space, iv, iw, iz)
@jit.look_inside_iff(lambda iv, iw: jit.isconstant(iw))
def _pow_nomod(iv, iw):
if iw <= 0:
if iw == 0:
return 1
# bounce it, since it always returns float
raise ValueError
temp = iv
ix = 1
while True:
if iw & 1:
try:
ix = ovfcheck(ix * temp)
except OverflowError:
raise
iw >>= 1 # Shift exponent down by 1 bit
if iw == 0:
break
try:
temp = ovfcheck(temp * temp) # Square the value of temp
except OverflowError:
raise
return ix
@jit.look_inside_iff(lambda space, iv, iw, iz:
jit.isconstant(iw) and jit.isconstant(iz))
def _pow_mod(space, iv, iw, iz):
from rpython.rlib.rarithmetic import mulmod
if iw <= 0:
if iw == 0:
return 1 % iz # != 1, for iz == 1 or iz < 0
raise oefmt(space.w_ValueError,
"pow() 2nd argument cannot be negative when 3rd "
"argument specified")
if iz < 0:
try:
iz = ovfcheck(-iz)
except OverflowError:
raise
iz_negative = True
else:
iz_negative = False
temp = iv
ix = 1
while True:
if iw & 1:
ix = mulmod(ix, temp, iz)
iw >>= 1 # Shift exponent down by 1 bit
if iw == 0:
break
temp = mulmod(temp, temp, iz)
if iz_negative and ix > 0:
ix -= iz
return ix
def _pow_ovf2long(space, iv, iw, w_modulus):
if space.is_none(w_modulus) and _recover_with_smalllong(space):
from pypy.objspace.std.smalllongobject import _pow as _pow_small
try:
# XXX: shouldn't have to pass r_longlong(0) here (see
# 4fa4c6b93a84)
return _pow_small(space, r_longlong(iv), iw, r_longlong(0))
except (OverflowError, ValueError):
pass
from pypy.objspace.std.longobject import W_LongObject
w_iv = W_LongObject.fromint(space, iv)
w_iw = W_LongObject.fromint(space, iw)
return w_iv.descr_pow(space, w_iw, w_modulus)
def _make_ovf2long(opname, ovf2small=None):
op = getattr(operator, opname, None)
assert op or ovf2small
def ovf2long(space, x, y):
"""Handle overflowing to smalllong or long"""
if _recover_with_smalllong(space):
if ovf2small:
return ovf2small(space, x, y)
# Assume a generic operation without an explicit ovf2small
# handler
from pypy.objspace.std.smalllongobject import W_SmallLongObject
a = r_longlong(x)
b = r_longlong(y)
return W_SmallLongObject(op(a, b))
from pypy.objspace.std.longobject import W_LongObject
w_x = W_LongObject.fromint(space, x)
w_y = W_LongObject.fromint(space, y)
return getattr(w_x, 'descr_' + opname)(space, w_y)
return ovf2long
class W_IntObject(W_AbstractIntObject):
__slots__ = 'intval'
_immutable_fields_ = ['intval']
def __init__(self, intval):
assert is_valid_int(intval)
self.intval = int(intval)
def __repr__(self):
"""representation for debugging purposes"""
return "%s(%d)" % (self.__class__.__name__, self.intval)
def is_w(self, space, w_other):
from pypy.objspace.std.boolobject import W_BoolObject
if (not isinstance(w_other, W_AbstractIntObject) or
isinstance(w_other, W_BoolObject)):
return False
if self.user_overridden_class or w_other.user_overridden_class:
return self is w_other
x = self.intval
try:
y = space.int_w(w_other)
except OperationError as e:
if e.match(space, space.w_OverflowError):
return False
raise
return x == y
def int_w(self, space, allow_conversion=True):
return self.intval
def _int_w(self, space):
return self.intval
unwrap = _int_w
def uint_w(self, space):
intval = self.intval
if intval < 0:
raise oefmt(space.w_ValueError,
"cannot convert negative integer to unsigned")
return r_uint(intval)
def bigint_w(self, space, allow_conversion=True):
return self.asbigint()
def _bigint_w(self, space):
return self.asbigint()
def float_w(self, space, allow_conversion=True):
return float(self.intval)
# note that we do NOT implement _float_w, because __float__ cannot return
# an int
def int(self, space):
if type(self) is W_IntObject:
return self
if not space.is_overloaded(self, space.w_int, '__int__'):
return space.newint(self.intval)
return W_Root.int(self, space)
def asbigint(self):
return rbigint.fromint(self.intval)
@staticmethod
@unwrap_spec(w_x=WrappedDefault(0))
def descr_new(space, w_inttype, w_x, w_base=None):
"Create and return a new object. See help(type) for accurate signature."
return _new_int(space, w_inttype, w_x, w_base)
def descr_hash(self, space):
return space.newint(_hash_int(self.intval))
def as_w_long(self, space):
return space.newlong(self.intval)
def descr_bool(self, space):
return space.newbool(self.intval != 0)
def descr_invert(self, space):
return wrapint(space, ~self.intval)
def descr_neg(self, space):
a = self.intval
try:
b = ovfcheck(-a)
except OverflowError:
if _recover_with_smalllong(space):
from pypy.objspace.std.smalllongobject import W_SmallLongObject
x = r_longlong(a)
return W_SmallLongObject(-x)
return self.as_w_long(space).descr_neg(space)
return wrapint(space, b)
def descr_abs(self, space):
pos = self.intval >= 0
return self.int(space) if pos else self.descr_neg(space)
def descr_float(self, space):
a = self.intval
x = float(a)
return space.newfloat(x)
def descr_getnewargs(self, space):
return space.newtuple([wrapint(space, self.intval)])
def descr_bit_length(self, space):
val = self.intval
bits = 0
if val < 0:
# warning, "-val" overflows here
val = -((val + 1) >> 1)
bits = 1
while val:
bits += 1
val >>= 1
return space.newint(bits)
def descr_repr(self, space):
res = str(self.intval)
return space.newtext(res)
descr_str = func_with_new_name(descr_repr, 'descr_str')
def descr_format(self, space, w_format_spec):
return newformat.run_formatter(space, w_format_spec,
"format_int_or_long", self,
newformat.INT_KIND)
@unwrap_spec(w_modulus=WrappedDefault(None))
def descr_pow(self, space, w_exponent, w_modulus=None):
if isinstance(w_exponent, W_IntObject):
y = w_exponent.intval
elif isinstance(w_exponent, W_AbstractIntObject):
self = self.as_w_long(space)
return self.descr_pow(space, w_exponent, w_modulus)
else:
return space.w_NotImplemented
x = self.intval
y = w_exponent.intval
if space.is_none(w_modulus):
z = 0
elif isinstance(w_modulus, W_IntObject):
z = w_modulus.intval
if z == 0:
raise oefmt(space.w_ValueError,
"pow() 3rd argument cannot be 0")
else:
# can't return NotImplemented (space.pow doesn't do full
# ternary, i.e. w_modulus.__zpow__(self, w_exponent)), so
# handle it ourselves
return _pow_ovf2long(space, x, y, w_modulus)
try:
result = _pow(space, x, y, z)
except (OverflowError, ValueError):
return _pow_ovf2long(space, x, y, w_modulus)
return space.newint(result)
@unwrap_spec(w_modulus=WrappedDefault(None))
def descr_rpow(self, space, w_base, w_modulus=None):
if isinstance(w_base, W_IntObject):
return w_base.descr_pow(space, self, w_modulus)
elif isinstance(w_base, W_AbstractIntObject):
self = self.as_w_long(space)
return self.descr_rpow(space, self, w_modulus)
return space.w_NotImplemented
def _make_descr_cmp(opname):
op = getattr(operator, opname)
descr_name = 'descr_' + opname
@func_renamer(descr_name)
def descr_cmp(self, space, w_other):
if isinstance(w_other, W_IntObject):
i = self.intval
j = w_other.intval
return space.newbool(op(i, j))
elif isinstance(w_other, W_AbstractIntObject):
self = self.as_w_long(space)
return getattr(self, descr_name)(space, w_other)
return space.w_NotImplemented
return descr_cmp
descr_lt = _make_descr_cmp('lt')
descr_le = _make_descr_cmp('le')
descr_eq = _make_descr_cmp('eq')
descr_ne = _make_descr_cmp('ne')
descr_gt = _make_descr_cmp('gt')
descr_ge = _make_descr_cmp('ge')
def _make_generic_descr_binop(opname, ovf=True):
op = getattr(operator,
opname + '_' if opname in ('and', 'or') else opname)
descr_name, descr_rname = 'descr_' + opname, 'descr_r' + opname
if ovf:
ovf2long = _make_ovf2long(opname)
@func_renamer(descr_name)
def descr_binop(self, space, w_other):
if isinstance(w_other, W_IntObject):
x = self.intval
y = w_other.intval
if ovf:
try:
z = ovfcheck(op(x, y))
except OverflowError:
return ovf2long(space, x, y)
else:
z = op(x, y)
return wrapint(space, z)
elif isinstance(w_other, W_AbstractIntObject):
self = self.as_w_long(space)
return getattr(self, descr_name)(space, w_other)
return space.w_NotImplemented
if opname in COMMUTATIVE_OPS:
@func_renamer(descr_rname)
def descr_rbinop(self, space, w_other):
return descr_binop(self, space, w_other)
return descr_binop, descr_rbinop
@func_renamer(descr_rname)
def descr_rbinop(self, space, w_other):
if isinstance(w_other, W_IntObject):
x = self.intval
y = w_other.intval
if ovf:
try:
z = ovfcheck(op(y, x))
except OverflowError:
return ovf2long(space, y, x)
else:
z = op(y, x)
return wrapint(space, z)
elif isinstance(w_other, W_AbstractIntObject):
self = self.as_w_long(space)
return getattr(self, descr_rname)(space, w_other)
return space.w_NotImplemented
return descr_binop, descr_rbinop
descr_add, descr_radd = _make_generic_descr_binop('add')
descr_sub, descr_rsub = _make_generic_descr_binop('sub')
descr_mul, descr_rmul = _make_generic_descr_binop('mul')
descr_and, descr_rand = _make_generic_descr_binop('and', ovf=False)
descr_or, descr_ror = _make_generic_descr_binop('or', ovf=False)
descr_xor, descr_rxor = _make_generic_descr_binop('xor', ovf=False)
def _make_descr_binop(func, ovf=True, ovf2small=None):
opname = func.__name__[1:]
descr_name, descr_rname = 'descr_' + opname, 'descr_r' + opname
if ovf:
ovf2long = _make_ovf2long(opname, ovf2small)
@func_renamer(descr_name)
def descr_binop(self, space, w_other):
if isinstance(w_other, W_IntObject):
x = self.intval
y = w_other.intval
if ovf:
try:
return func(space, x, y)
except OverflowError:
return ovf2long(space, x, y)
else:
return func(space, x, y)
elif isinstance(w_other, W_AbstractIntObject):
self = self.as_w_long(space)
return getattr(self, descr_name)(space, w_other)
return space.w_NotImplemented
@func_renamer(descr_rname)
def descr_rbinop(self, space, w_other):
if isinstance(w_other, W_IntObject):
x = self.intval
y = w_other.intval
if ovf:
try:
return func(space, y, x)
except OverflowError:
return ovf2long(space, y, x)
else:
return func(space, y, x)
elif isinstance(w_other, W_AbstractIntObject):
self = self.as_w_long(space)
return getattr(self, descr_rname)(space, w_other)
return space.w_NotImplemented
return descr_binop, descr_rbinop
descr_lshift, descr_rlshift = _make_descr_binop(
_lshift, ovf2small=_lshift_ovf2small)
descr_rshift, descr_rrshift = _make_descr_binop(_rshift, ovf=False)
descr_floordiv, descr_rfloordiv = _make_descr_binop(_floordiv)
descr_truediv, descr_rtruediv = _make_descr_binop(_truediv)
descr_mod, descr_rmod = _make_descr_binop(_mod)
descr_divmod, descr_rdivmod = _make_descr_binop(
_divmod, ovf2small=_divmod_ovf2small)
def setup_prebuilt(space):
if space.config.objspace.std.withprebuiltint:
W_IntObject.PREBUILT = []
for i in range(space.config.objspace.std.prebuiltintfrom,
space.config.objspace.std.prebuiltintto):
W_IntObject.PREBUILT.append(W_IntObject(i))
else:
W_IntObject.PREBUILT = None
def wrapint(space, x):
if not space.config.objspace.std.withprebuiltint:
return W_IntObject(x)
lower = space.config.objspace.std.prebuiltintfrom
upper = space.config.objspace.std.prebuiltintto
# use r_uint to perform a single comparison (this whole function is
# getting inlined into every caller so keeping the branching to a
# minimum is a good idea)
index = r_uint(x) - r_uint(lower)
if index >= r_uint(upper - lower):
w_res = instantiate(W_IntObject)
else:
w_res = W_IntObject.PREBUILT[index]
# obscure hack to help the CPU cache: we store 'x' even into a
# prebuilt integer's intval. This makes sure that the intval field
# is present in the cache in the common case where it is quickly
# reused. (we could use a prefetch hint if we had that)
w_res.intval = x
return w_res
divmod_near = applevel('''
def divmod_near(a, b):
"""Return a pair (q, r) such that a = b * q + r, and abs(r)
<= abs(b)/2, with equality possible only if q is even. In
other words, q == a / b, rounded to the nearest integer using
round-half-to-even."""
q, r = divmod(a, b)
# round up if either r / b > 0.5, or r / b == 0.5 and q is
# odd. The expression r / b > 0.5 is equivalent to 2 * r > b
# if b is positive, 2 * r < b if b negative.
greater_than_half = 2*r > b if b > 0 else 2*r < b
exactly_half = 2*r == b
if greater_than_half or exactly_half and q % 2 == 1:
q += 1
r -= b
return q, r
''', filename=__file__).interphook('divmod_near')
def _recover_with_smalllong(space):
"""True if there is a chance that a SmallLong would fit when an Int
does not
"""
return (space.config.objspace.std.withsmalllong and
sys.maxint == 2147483647)
def _string_to_int_or_long(space, w_inttype, w_source, string, base=10):
try:
value = string_to_int(string, base, no_implicit_octal=True)
except ParseStringError as e:
raise wrap_parsestringerror(space, e, w_source)
except ParseStringOverflowError as e:
return _retry_to_w_long(space, e.parser, w_inttype, w_source)
if space.is_w(w_inttype, space.w_int):
w_result = wrapint(space, value)
else:
w_result = space.allocate_instance(W_IntObject, w_inttype)
W_IntObject.__init__(w_result, value)
return w_result
def _retry_to_w_long(space, parser, w_inttype, w_source):
from pypy.objspace.std.longobject import newbigint
parser.rewind()
try:
bigint = rbigint._from_numberstring_parser(parser)
except ParseStringError as e:
raise wrap_parsestringerror(space, e, w_source)
return newbigint(space, w_inttype, bigint)
def _new_int(space, w_inttype, w_x, w_base=None):
from pypy.objspace.std.longobject import W_LongObject, newbigint
if space.config.objspace.std.withsmalllong:
from pypy.objspace.std.smalllongobject import W_SmallLongObject
else:
W_SmallLongObject = None
w_longval = None
w_value = w_x # 'x' is the keyword argument name in CPython
value = 0
if w_base is None:
# check for easy cases
if type(w_value) is W_IntObject:
if space.is_w(w_inttype, space.w_int):
return w_value
value = w_value.intval
w_obj = space.allocate_instance(W_IntObject, w_inttype)
W_IntObject.__init__(w_obj, value)
return w_obj
elif type(w_value) is W_LongObject:
if space.is_w(w_inttype, space.w_int):
return w_value
return newbigint(space, w_inttype, w_value.num)
elif W_SmallLongObject and type(w_value) is W_SmallLongObject:
if space.is_w(w_inttype, space.w_int):
return w_value
return newbigint(space, w_inttype, space.bigint_w(w_value))
elif space.lookup(w_value, '__int__') is not None:
return _from_intlike(space, w_inttype, space.int(w_value))
elif space.lookup(w_value, '__trunc__') is not None:
w_obj = space.trunc(w_value)
if not space.isinstance_w(w_obj, space.w_int):
w_obj = space.int(w_obj)
return _from_intlike(space, w_inttype, w_obj)
elif space.isinstance_w(w_value, space.w_unicode):
from pypy.objspace.std.unicodeobject import unicode_to_decimal_w
b = unicode_to_decimal_w(space, w_value, allow_surrogates=True)
return _string_to_int_or_long(space, w_inttype, w_value, b)
elif (space.isinstance_w(w_value, space.w_bytearray) or
space.isinstance_w(w_value, space.w_bytes)):
return _string_to_int_or_long(space, w_inttype, w_value,
space.charbuf_w(w_value))
else:
# If object supports the buffer interface
try:
buf = space.charbuf_w(w_value)
except OperationError as e:
if not e.match(space, space.w_TypeError):
raise
raise oefmt(space.w_TypeError,
"int() argument must be a string, a bytes-like "
"object or a number, not '%T'", w_value)
else:
return _string_to_int_or_long(space, w_inttype, w_value, buf)
else:
try:
base = space.getindex_w(w_base, None)
except OperationError as e:
if not e.match(space, space.w_OverflowError):
raise
base = 37 # this raises the right error in string_to_bigint()
if space.isinstance_w(w_value, space.w_unicode):
from pypy.objspace.std.unicodeobject import unicode_to_decimal_w
s = unicode_to_decimal_w(space, w_value, allow_surrogates=True)
elif (space.isinstance_w(w_value, space.w_bytes) or
space.isinstance_w(w_value, space.w_bytearray)):
s = space.charbuf_w(w_value)
else:
raise oefmt(space.w_TypeError,
"int() can't convert non-string with explicit base")
return _string_to_int_or_long(space, w_inttype, w_value, s, base)
def _from_intlike(space, w_inttype, w_intlike):
if space.is_w(w_inttype, space.w_int):
return w_intlike
from pypy.objspace.std.longobject import newbigint
return newbigint(space, w_inttype, space.bigint_w(w_intlike))
W_AbstractIntObject.typedef = TypeDef("int",
__doc__ = """int(x=0) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.__int__(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
>>> int('0b100', base=0)
4""",
__new__ = interp2app(W_IntObject.descr_new),
numerator = typedef.GetSetProperty(
W_AbstractIntObject.descr_get_numerator,
doc="the numerator of a rational number in lowest terms"),
denominator = typedef.GetSetProperty(
W_AbstractIntObject.descr_get_denominator,
doc="the denominator of a rational number in lowest terms"),
real = typedef.GetSetProperty(
W_AbstractIntObject.descr_get_real,
doc="the real part of a complex number"),
imag = typedef.GetSetProperty(
W_AbstractIntObject.descr_get_imag,
doc="the imaginary part of a complex number"),
from_bytes = interp2app(W_AbstractIntObject.descr_from_bytes,
as_classmethod=True),
to_bytes = interpindirect2app(W_AbstractIntObject.descr_to_bytes),
__repr__ = interpindirect2app(W_AbstractIntObject.descr_repr),
__str__ = interpindirect2app(W_AbstractIntObject.descr_str),
conjugate = interpindirect2app(W_AbstractIntObject.descr_conjugate),
bit_length = interpindirect2app(W_AbstractIntObject.descr_bit_length),
__format__ = interpindirect2app(W_AbstractIntObject.descr_format),
__hash__ = interpindirect2app(W_AbstractIntObject.descr_hash),
__getnewargs__ = interpindirect2app(W_AbstractIntObject.descr_getnewargs),
__int__ = interpindirect2app(W_AbstractIntObject.int),
__index__ = interpindirect2app(W_AbstractIntObject.descr_index),
__trunc__ = interpindirect2app(W_AbstractIntObject.descr_trunc),
__float__ = interpindirect2app(W_AbstractIntObject.descr_float),
__round__ = interpindirect2app(W_AbstractIntObject.descr_round),
__pos__ = interpindirect2app(W_AbstractIntObject.descr_pos),
__neg__ = interpindirect2app(W_AbstractIntObject.descr_neg),
__abs__ = interpindirect2app(W_AbstractIntObject.descr_abs),
__bool__ = interpindirect2app(W_AbstractIntObject.descr_bool),
__invert__ = interpindirect2app(W_AbstractIntObject.descr_invert),
__floor__ = interpindirect2app(W_AbstractIntObject.descr_floor),
__ceil__ = interpindirect2app(W_AbstractIntObject.descr_ceil),
__lt__ = interpindirect2app(W_AbstractIntObject.descr_lt),
__le__ = interpindirect2app(W_AbstractIntObject.descr_le),
__eq__ = interpindirect2app(W_AbstractIntObject.descr_eq),
__ne__ = interpindirect2app(W_AbstractIntObject.descr_ne),
__gt__ = interpindirect2app(W_AbstractIntObject.descr_gt),
__ge__ = interpindirect2app(W_AbstractIntObject.descr_ge),
__add__ = interpindirect2app(W_AbstractIntObject.descr_add),
__radd__ = interpindirect2app(W_AbstractIntObject.descr_radd),
__sub__ = interpindirect2app(W_AbstractIntObject.descr_sub),
__rsub__ = interpindirect2app(W_AbstractIntObject.descr_rsub),
__mul__ = interpindirect2app(W_AbstractIntObject.descr_mul),
__rmul__ = interpindirect2app(W_AbstractIntObject.descr_rmul),
__and__ = interpindirect2app(W_AbstractIntObject.descr_and),
__rand__ = interpindirect2app(W_AbstractIntObject.descr_rand),
__or__ = interpindirect2app(W_AbstractIntObject.descr_or),
__ror__ = interpindirect2app(W_AbstractIntObject.descr_ror),
__xor__ = interpindirect2app(W_AbstractIntObject.descr_xor),
__rxor__ = interpindirect2app(W_AbstractIntObject.descr_rxor),
__lshift__ = interpindirect2app(W_AbstractIntObject.descr_lshift),
__rlshift__ = interpindirect2app(W_AbstractIntObject.descr_rlshift),
__rshift__ = interpindirect2app(W_AbstractIntObject.descr_rshift),
__rrshift__ = interpindirect2app(W_AbstractIntObject.descr_rrshift),
__floordiv__ = interpindirect2app(W_AbstractIntObject.descr_floordiv),
__rfloordiv__ = interpindirect2app(W_AbstractIntObject.descr_rfloordiv),
__truediv__ = interpindirect2app(W_AbstractIntObject.descr_truediv),
__rtruediv__ = interpindirect2app(W_AbstractIntObject.descr_rtruediv),
__mod__ = interpindirect2app(W_AbstractIntObject.descr_mod),
__rmod__ = interpindirect2app(W_AbstractIntObject.descr_rmod),
__divmod__ = interpindirect2app(W_AbstractIntObject.descr_divmod),
__rdivmod__ = interpindirect2app(W_AbstractIntObject.descr_rdivmod),
__pow__ = interpindirect2app(W_AbstractIntObject.descr_pow),
__rpow__ = interpindirect2app(W_AbstractIntObject.descr_rpow),
)
def _hash_int(a):
sign = 1
if a < 0:
sign = -1
a = -a
x = r_uint(a)
# efficient x % HASH_MODULUS: as HASH_MODULUS is a Mersenne
# prime
x = (x & HASH_MODULUS) + (x >> HASH_BITS)
if x >= HASH_MODULUS:
x -= HASH_MODULUS
h = intmask(intmask(x) * sign)
return h - (h == -1)
|