1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
#! /usr/bin/env python
"""
Produces a logfile.gnumeric file which contains the data extracted from the
logfile generated with the PYPYLOG env variable.
Run your program like this::
$ PYPYLOG=gc-collect,jit-mem:logfile pypy your-program.py
This will produce "logfile", containing information about the memory used by
the GC and the number of loops created/freed by the JIT.
If you want, you can also measure the amout of used memory as seen by the OS
(the VmRSS) using memusage.py::
$ PYPYLOG=gc-collect,jit-mem:logfile ./memusage.py -o logfile.vmrss /path/to/pypy your-program.py
log2gnumeric will automatically pick logfile.vmrss, if present.
If you want to compare PyPy to CPython, you can add its VmRSS to the graph, by
using the -c option. To produce the .vmrss file, use again ./memusage.py::
$ ./memusage.py -o cpython.vmrss python your-program.py
$ ./log2gnumeric.py -c cpython.vmrss logfile
Note that on CPython it will take a different amout of time to complete, but
on the graph the plot will be scaled to match the duration of the PyPy run
(i.e., the two lines will end "at the same time").
If you are benchmarking translate.py, you can add the "translation-task"
category to the log, by setting PYPYLOG=gc-collect,jit-mem,translation-task.
You can freely edit the graph in log-template.gnumeric: this script will
create a new file replacing the 'translation-task' and 'gc-collect' sheets.
"""
import re, sys
import gzip
import optparse
def main(logname, options):
outname = logname + '.gnumeric'
data = open(logname).read()
data = data.replace('\n', '')
minclock, maxclock = get_clock_range(data)
time0 = minclock # we want "relative clocks"
maxtime = maxclock-time0
#
xml = gzip.open('log-template.gnumeric').read()
xml = replace_sheet(xml, 'translation-task', tasks_rows(time0, data))
xml = replace_sheet(xml, 'gc-collect', gc_collect_rows(time0, data))
xml = replace_sheet(xml, 'loops', loops_rows(time0, data))
xml = replace_sheet(xml, 'vmrss', vmrss_rows(logname + '.vmrss', maxtime))
xml = replace_sheet(xml, 'cpython-vmrss', vmrss_rows(options.cpython_vmrss, maxtime))
#
out = gzip.open(outname, 'wb')
out.write(xml)
out.close()
# ========================================================================
# functions to manipulate gnumeric files
# ========================================================================
def replace_sheet(xml, sheet_name, data):
pattern = '<gnm:Sheet .*?<gnm:Name>%s</gnm:Name>.*?(<gnm:Cells>.*?</gnm:Cells>)'
regex = re.compile(pattern % sheet_name, re.DOTALL)
cells = gen_cells(data)
match = regex.search(xml)
if not match:
print 'Cannot find sheet %s' % sheet_name
return xml
a, b = match.span(1)
xml2 = xml[:a] + cells + xml[b:]
return xml2
def gen_cells(data):
# values for the ValueType attribute
ValueType_Empty = 'ValueType="10"'
ValueType_Number = 'ValueType="40"'
ValueType_String = 'ValueType="60"'
#
parts = []
parts.append('<gnm:Cells>')
for i, row in enumerate(data):
for j, val in enumerate(row):
if val is None:
attr = ValueType_Empty
val = ''
elif isinstance(val, (int, long, float)):
attr = ValueType_Number
else:
attr = ValueType_String
cell = ' <gnm:Cell Row="%d" Col="%d" %s>%s</gnm:Cell>'
parts.append(cell % (i, j, attr, val))
parts.append(' </gnm:Cells>')
return '\n'.join(parts)
# ========================================================================
# functions to extract various data from the logs
# ========================================================================
CLOCK_FACTOR = 1
def read_clock(x):
timestamp = int(x, 16)
return timestamp / CLOCK_FACTOR
def get_clock_range(data):
s = r"\[([0-9a-f]+)\] "
r = re.compile(s)
clocks = [read_clock(x) for x in r.findall(data)]
return min(clocks), max(clocks)
def gc_collect_rows(time0, data):
s = r"""
----------- Full collection ------------------
\| used before collection:
\| in ArenaCollection: (\d+) bytes
\| raw_malloced: (\d+) bytes
\| used after collection:
\| in ArenaCollection: (\d+) bytes
\| raw_malloced: (\d+) bytes
\| number of major collects: (\d+)
`----------------------------------------------
\[([0-9a-f]+)\] gc-collect\}"""
#
r = re.compile(s.replace('\n', ''))
yield 'clock', 'gc-before', 'gc-after'
for a,b,c,d,e,f in r.findall(data):
clock = read_clock(f) - time0
yield clock, int(a)+int(b), int(c)+int(d)
def tasks_rows(time0, data):
s = r"""
\[([0-9a-f]+)\] \{translation-task
starting ([\w-]+)
"""
#
r = re.compile(s.replace('\n', ''))
yield 'clock', None, 'task'
for a,b in r.findall(data):
clock = read_clock(a) - time0
yield clock, 1, b
def loops_rows(time0, data):
s = r"""
\[([0-9a-f]+)\] \{jit-mem-looptoken-(alloc|free)
(.*?)\[
"""
#
r = re.compile(s.replace('\n', ''))
yield 'clock', 'total', 'loops', 'bridges'
loops = 0
bridges = 0
fake_total = 0
for clock, action, text in r.findall(data):
clock = read_clock(clock) - time0
if text.startswith('allocating Loop #'):
loops += 1
elif text.startswith('allocating Bridge #'):
bridges += 1
elif text.startswith('freeing Loop #'):
match = re.match('freeing Loop # .* with ([0-9]*) attached bridges', text)
loops -=1
bridges -= int(match.group(1))
total = loops+bridges
yield clock, loops+bridges, loops, bridges
def vmrss_rows(filename, maxtime):
lines = []
if filename:
try:
lines = open(filename).readlines()
except IOError:
print 'Warning: cannot find file %s, skipping this sheet' % filename
for row in vmrss_rows_impl(lines, maxtime):
yield row
def vmrss_rows_impl(lines, maxtime):
yield 'inferred clock', 'VmRSS'
numlines = len(lines)
for i, line in enumerate(lines):
mem = int(line)
clock = maxtime * i // (numlines-1)
yield clock, mem
if __name__ == '__main__':
CLOCK_FACTOR = 1000000000.0 # report GigaTicks instead of Ticks
parser = optparse.OptionParser(usage="%prog logfile [options]")
parser.format_description = lambda fmt: __doc__
parser.description = __doc__
parser.add_option('-c', '--cpython-vmrss', dest='cpython_vmrss', default=None, metavar='FILE', type=str,
help='the .vmrss file produced by CPython')
options, args = parser.parse_args()
if len(args) != 1:
parser.print_help()
sys.exit(2)
main(args[0], options)
|