1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
|
"""
Interp-level definition of frequently used functionals.
"""
import sys
from pypy.interpreter.baseobjspace import W_Root
from pypy.interpreter.error import OperationError, oefmt
from pypy.interpreter.gateway import (
interp2app, interpindirect2app, unwrap_spec,
WrappedDefault)
from pypy.interpreter.typedef import TypeDef, interp_attrproperty_w
from rpython.rlib import jit, rarithmetic
from rpython.rlib.objectmodel import specialize
from rpython.rlib.rarithmetic import r_uint, intmask
from pypy.objspace.std.util import generic_alias_class_getitem
def get_len_of_range(lo, hi, step):
# If lo >= hi, the range is empty.
# Else if n values are in the range, the last one is
# lo + (n-1)*step, which must be <= hi-1. Rearranging,
# n <= (hi - lo - 1)/step + 1, so taking the floor of the RHS gives
# the proper value. Since lo < hi in this case, hi-lo-1 >= 0, so
# the RHS is non-negative and so truncation is the same as the
# floor. Letting M be the largest positive long, the worst case
# for the RHS numerator is hi=M, lo=-M-1, and then
# hi-lo-1 = M-(-M-1)-1 = 2*M. Therefore unsigned long has enough
# precision to compute the RHS exactly.
assert step != 0
if step < 0:
lo, hi, step = hi, lo, -step
if lo < hi:
uhi = r_uint(hi)
ulo = r_uint(lo)
diff = uhi - ulo - 1
n = intmask(diff // r_uint(step) + 1)
else:
n = 0
return n
def compute_range_length(space, w_start, w_stop, w_step):
# Algorithm is equal to that of get_len_of_range(), but operates
# on wrapped objects.
if space.is_true(space.lt(w_step, space.newint(0))):
w_start, w_stop = w_stop, w_start
w_step = space.neg(w_step)
if space.is_true(space.lt(w_start, w_stop)):
w_diff = space.sub(space.sub(w_stop, w_start), space.newint(1))
w_len = space.add(space.floordiv(w_diff, w_step), space.newint(1))
else:
w_len = space.newint(0)
return w_len
def compute_slice_indices3(space, w_slice, w_length):
"An W_Object version of W_SliceObject.indices3"
from pypy.objspace.std.sliceobject import W_SliceObject
assert isinstance(w_slice, W_SliceObject)
w_0 = space.newint(0)
w_1 = space.newint(1)
if space.is_w(w_slice.w_step, space.w_None):
w_step = w_1
else:
w_step = space.index(w_slice.w_step)
if space.is_true(space.eq(w_step, w_0)):
raise oefmt(space.w_ValueError, "slice step cannot be zero")
negative_step = space.is_true(space.lt(w_step, w_0))
if space.is_w(w_slice.w_start, space.w_None):
if negative_step:
w_start = space.sub(w_length, w_1)
else:
w_start = w_0
else:
w_start = space.index(w_slice.w_start)
if space.is_true(space.lt(w_start, w_0)):
w_start = space.add(w_start, w_length)
if space.is_true(space.lt(w_start, w_0)):
if negative_step:
w_start = space.newint(-1)
else:
w_start = w_0
elif space.is_true(space.ge(w_start, w_length)):
if negative_step:
w_start = space.sub(w_length, w_1)
else:
w_start = w_length
if space.is_w(w_slice.w_stop, space.w_None):
if negative_step:
w_stop = space.newint(-1)
else:
w_stop = w_length
else:
w_stop = space.index(w_slice.w_stop)
if space.is_true(space.lt(w_stop, w_0)):
w_stop = space.add(w_stop, w_length)
if space.is_true(space.lt(w_stop, w_0)):
if negative_step:
w_stop = space.newint(-1)
else:
w_stop = w_0
elif space.is_true(space.ge(w_stop, w_length)):
if negative_step:
w_stop = space.sub(w_length, w_1)
else:
w_stop = w_length
return w_start, w_stop, w_step
def get_printable_location(has_key, has_item, greenkey):
return "min [has_key=%s, has_item=%s, %s]" % (
has_key, has_item, greenkey.iterator_greenkey_printable())
min_jitdriver = jit.JitDriver(name='min',
greens=['has_key', 'has_item', 'greenkey'], reds='auto',
get_printable_location=get_printable_location)
def get_printable_location(has_key, has_item, greenkey):
return "min [has_key=%s, has_item=%s, %s]" % (
has_key, has_item, greenkey.iterator_greenkey_printable())
max_jitdriver = jit.JitDriver(name='max',
greens=['has_key', 'has_item', 'greenkey'], reds='auto',
get_printable_location=get_printable_location)
@specialize.arg(4)
def min_max_sequence(space, w_sequence, w_key, w_default, implementation_of):
if implementation_of == "max":
compare = space.gt
jitdriver = max_jitdriver
else:
compare = space.lt
jitdriver = min_jitdriver
w_iter = space.iter(w_sequence)
greenkey = space.iterator_greenkey(w_iter)
has_key = w_key is not None
has_item = False
w_max_item = w_default
w_max_val = None
while True:
jitdriver.jit_merge_point(has_key=has_key, has_item=has_item,
greenkey=greenkey)
try:
w_item = space.next(w_iter)
except OperationError as e:
if not e.match(space, space.w_StopIteration):
raise
break
if has_key:
w_compare_with = space.call_function(w_key, w_item)
else:
w_compare_with = w_item
if (not has_item or
space.is_true(compare(w_compare_with, w_max_val))):
has_item = True
w_max_item = w_item
w_max_val = w_compare_with
if not has_item and not w_max_item:
raise oefmt(space.w_ValueError, "arg is an empty sequence")
return w_max_item
@specialize.arg(3)
@jit.look_inside_iff(lambda space, args_w, w_key, implementation_of:
jit.loop_unrolling_heuristic(args_w, len(args_w), 3))
def min_max_multiple_args(space, args_w, w_key, implementation_of):
# case of multiple arguments (at least two). We unroll it if there
# are 2 or 3 arguments.
if implementation_of == "max":
compare = space.gt
else:
compare = space.lt
w_max_item = args_w[0]
if w_key is not None:
w_max_val = space.call_function(w_key, w_max_item)
else:
w_max_val = w_max_item
for i in range(1, len(args_w)):
w_item = args_w[i]
if w_key is not None:
w_compare_with = space.call_function(w_key, w_item)
else:
w_compare_with = w_item
if space.is_true(compare(w_compare_with, w_max_val)):
w_max_item = w_item
w_max_val = w_compare_with
return w_max_item
@jit.unroll_safe # the loop over kwds
@specialize.arg(2)
def min_max(space, args, implementation_of):
w_key = None
w_default = None
if bool(args.keyword_names_w):
kwds_w = args.keyword_names_w
for n in range(len(kwds_w)):
if space.eq_w(kwds_w[n], space.newtext("key")):
w_key = args.keywords_w[n]
elif space.eq_w(kwds_w[n], space.newtext("default")):
w_default = args.keywords_w[n]
else:
raise oefmt(space.w_TypeError,
"%s() got unexpected keyword argument",
implementation_of)
#
if space.is_w(w_key, space.w_None):
w_key = None
args_w = args.arguments_w
if len(args_w) > 1:
if w_default is not None:
raise oefmt(space.w_TypeError,
"Cannot specify a default for %s() with multiple "
"positional arguments", implementation_of)
return min_max_multiple_args(space, args_w, w_key, implementation_of)
elif len(args_w):
return min_max_sequence(space, args_w[0], w_key, w_default,
implementation_of)
else:
raise oefmt(space.w_TypeError,
"%s() expects at least one argument, got 0",
implementation_of)
def max(space, __args__):
"""max(iterable, *[, default=obj, key=func]) -> value
max(arg1, arg2, *args, *[, key=func]) -> value
With a single iterable argument, return its biggest item. The
default keyword-only argument specifies an object to return if
the provided iterable is empty.
With two or more arguments, return the largest argument.
"""
return min_max(space, __args__, "max")
def min(space, __args__):
"""min(iterable, *[, default=obj, key=func]) -> value
min(arg1, arg2, *args, *[, key=func]) -> value
With a single iterable argument, return its smallest item. The
default keyword-only argument specifies an object to return if
the provided iterable is empty.
With two or more arguments, return the smallest argument.
"""
return min_max(space, __args__, "min")
class W_Enumerate(W_Root):
def __init__(self, w_iter_or_list, start, w_start):
# 'w_index' should never be a wrapped int here; if it would be,
# then it is actually None and the unwrapped int is in 'index'.
self.w_iter_or_list = w_iter_or_list
self.index = start
self.w_index = w_start
@staticmethod
def descr___new__(space, w_subtype, w_iterable, w_start=None):
from pypy.objspace.std.listobject import W_ListObject
if w_start is None:
start = 0
else:
w_start = space.index(w_start)
try:
start = space.int_w(w_start)
w_start = None
except OperationError as e:
if not e.match(space, space.w_OverflowError):
raise
start = -1
if start == 0 and type(w_iterable) is W_ListObject:
w_iter = w_iterable
else:
w_iter = space.iter(w_iterable)
self = space.allocate_instance(W_Enumerate, w_subtype)
self.__init__(w_iter, start, w_start)
return self
def descr___iter__(self, space):
return self
def descr_next(self, space):
from pypy.objspace.std.listobject import W_ListObject
w_index = self.w_index
w_iter_or_list = self.w_iter_or_list
w_item = None
if w_index is None:
index = self.index
if type(w_iter_or_list) is W_ListObject:
try:
w_item = w_iter_or_list.getitem(index)
except IndexError:
self.w_iter_or_list = None
raise OperationError(space.w_StopIteration, space.w_None)
self.index = index + 1
elif w_iter_or_list is None:
raise OperationError(space.w_StopIteration, space.w_None)
else:
try:
newval = rarithmetic.ovfcheck(index + 1)
except OverflowError:
w_index = space.newint(index)
self.w_index = space.add(w_index, space.newint(1))
self.index = -1
else:
self.index = newval
w_index = space.newint(index)
else:
self.w_index = space.add(w_index, space.newint(1))
if w_item is None:
w_item = space.next(self.w_iter_or_list)
return space.newtuple2(w_index, w_item)
def descr___reduce__(self, space):
w_index = self.w_index
if w_index is None:
w_index = space.newint(self.index)
return space.newtuple2(space.type(self),
space.newtuple2(self.w_iter_or_list, w_index))
# exported through _pickle_support
def _make_enumerate(space, w_iter_or_list, w_index):
if space.is_w(space.type(w_index), space.w_int):
index = space.int_w(w_index)
w_index = None
else:
index = -1
return W_Enumerate(w_iter_or_list, index, w_index)
W_Enumerate.typedef = TypeDef("enumerate",
__doc__ = """\
Return an enumerate object.
iterable
an object supporting iteration
The enumerate object yields pairs containing a count (from start, which
defaults to zero) and a value yielded by the iterable argument.
enumerate is useful for obtaining an indexed list:
(0, seq[0]), (1, seq[1]), (2, seq[2]), ...""",
_text_signature_ = "(iterable, start=0)",
__new__ = interp2app(W_Enumerate.descr___new__),
__iter__ = interp2app(W_Enumerate.descr___iter__),
__next__ = interp2app(W_Enumerate.descr_next),
__reduce__ = interp2app(W_Enumerate.descr___reduce__),
__class_getitem__ = interp2app(
generic_alias_class_getitem, as_classmethod=True),
)
class W_ReversedIterator(W_Root):
"""reverse iterator over values of the sequence."""
def __init__(self, space, w_sequence):
self.remaining = space.len_w(w_sequence) - 1
if not space.issequence_w(w_sequence):
raise oefmt(space.w_TypeError,
"argument to reversed() must be a sequence")
self.w_sequence = w_sequence
@staticmethod
def descr___new__2(space, w_subtype, w_sequence):
w_reversed_descr = space.lookup(w_sequence, "__reversed__")
if w_reversed_descr is not None:
w_reversed = space.get(w_reversed_descr, w_sequence)
return space.call_function(w_reversed)
self = space.allocate_instance(W_ReversedIterator, w_subtype)
self.__init__(space, w_sequence)
return self
def descr___iter__(self, space):
return self
def descr_length_hint(self, space):
# bah, there is even a CPython test that checks that this
# actually calls 'len_w(w_sequence)'. Obscure.
res = 0
if self.remaining >= 0:
total_length = space.len_w(self.w_sequence)
rem_length = self.remaining + 1
if rem_length <= total_length:
res = rem_length
return space.newint(res)
def descr_next(self, space):
if self.remaining >= 0:
w_index = space.newint(self.remaining)
try:
w_item = space.getitem(self.w_sequence, w_index)
except OperationError as e:
# Done
self.remaining = -1
self.w_sequence = None
if not (e.match(space, space.w_IndexError) or
e.match(space, space.w_StopIteration)):
raise
raise OperationError(space.w_StopIteration, space.w_None)
else:
self.remaining -= 1
return w_item
# Done
self.remaining = -1
self.w_sequence = None
raise OperationError(space.w_StopIteration, space.w_None)
def descr___reduce__(self, space):
if self.w_sequence:
w_state = space.newint(self.remaining)
return space.newtuple([
space.type(self),
space.newtuple([self.w_sequence]),
w_state])
else:
return space.newtuple2(
space.type(self),
space.newtuple([space.newtuple([])]))
def descr___setstate__(self, space, w_state):
self.remaining = space.int_w(w_state)
n = space.len_w(self.w_sequence)
if self.remaining < -1:
self.remaining = -1
elif self.remaining > n - 1:
self.remaining = n - 1
W_ReversedIterator.typedef = TypeDef("reversed",
__doc__ = """\
Return a reverse iterator over the values of the given sequence.""",
_text_signature_ = "(sequence, /)",
__new__ = interp2app(W_ReversedIterator.descr___new__2),
__iter__ = interp2app(W_ReversedIterator.descr___iter__),
__length_hint__ = interp2app(W_ReversedIterator.descr_length_hint),
__next__ = interp2app(W_ReversedIterator.descr_next),
__reduce__ = interp2app(W_ReversedIterator.descr___reduce__),
__setstate__ = interp2app(W_ReversedIterator.descr___setstate__),
)
class W_Range(W_Root):
def __init__(self, w_start, w_stop, w_step, w_length, promote_step=False):
self.w_start = w_start
self.w_stop = w_stop
self.w_step = w_step
self.w_length = w_length
self.promote_step = promote_step
def descr_new(space, w_subtype, w_start, w_stop=None, w_step=None):
w_start = space.index(w_start)
promote_step = False
if space.is_none(w_step): # no step argument provided
w_step = space.newint(1)
promote_step = True
if space.is_none(w_stop): # only 1 argument provided
w_start, w_stop = space.newint(0), w_start
else:
w_stop = space.index(w_stop)
w_step = space.index(w_step)
try:
step = space.int_w(w_step)
except OperationError:
pass # We know it's not zero
else:
if step == 0:
raise oefmt(space.w_ValueError,
"step argument must not be zero")
w_length = compute_range_length(space, w_start, w_stop, w_step)
obj = space.allocate_instance(W_Range, w_subtype)
W_Range.__init__(obj, w_start, w_stop, w_step, w_length, promote_step)
return obj
def descr_repr(self, space):
if not space.is_true(space.eq(self.w_step, space.newint(1))):
return space.mod(space.newtext("range(%d, %d, %d)"),
space.newtuple([self.w_start, self.w_stop,
self.w_step]))
else:
return space.mod(space.newtext("range(%d, %d)"),
space.newtuple([self.w_start, self.w_stop]))
def descr_len(self):
return self.w_length
def _compute_item0(self, space, w_index):
"Get a range item, when known to be inside bounds"
# return self.start + (i * self.step)
return space.add(self.w_start, space.mul(w_index, self.w_step))
def _compute_item(self, space, w_index):
w_zero = space.newint(0)
w_index = space.index(w_index)
if space.is_true(space.lt(w_index, w_zero)):
w_index = space.add(w_index, self.w_length)
if (space.is_true(space.ge(w_index, self.w_length)) or
space.is_true(space.lt(w_index, w_zero))):
raise oefmt(space.w_IndexError, "range object index out of range")
return self._compute_item0(space, w_index)
def _compute_slice(self, space, w_slice):
w_start, w_stop, w_step = compute_slice_indices3(
space, w_slice, self.w_length)
w_substep = space.mul(self.w_step, w_step)
w_substart = self._compute_item0(space, w_start)
if w_stop:
w_substop = self._compute_item0(space, w_stop)
else:
w_substop = w_substart
w_length = compute_range_length(space, w_substart, w_substop, w_substep)
obj = W_Range(w_substart, w_substop, w_substep, w_length)
return obj
def descr_getitem(self, space, w_index):
# Cannot use the usual space.decode_index methods, because
# numbers might not fit in longs.
if space.isinstance_w(w_index, space.w_slice):
return self._compute_slice(space, w_index)
else:
return self._compute_item(space, w_index)
def descr_iter(self, space):
try:
start = space.int_w(self.w_start)
stop = space.int_w(self.w_stop)
step = space.int_w(self.w_step)
length = space.int_w(self.w_length)
except OperationError as e:
pass
else:
if self.promote_step:
if start == 0:
return W_IntRangeOneArgIterator(space, stop)
return W_IntRangeStepOneIterator(space, start, stop)
return W_IntRangeIterator(space, start, length, step)
return W_LongRangeIterator(space, self.w_start, self.w_step,
self.w_length)
def descr_reversed(self, space):
# lastitem = self.start + (self.length-1) * self.step
w_lastitem = space.add(
self.w_start,
space.mul(space.sub(self.w_length, space.newint(1)),
self.w_step))
return W_LongRangeIterator(
space, w_lastitem, space.neg(self.w_step), self.w_length)
def descr_reduce(self, space):
return space.newtuple(
[space.type(self),
space.newtuple([self.w_start, self.w_stop, self.w_step]),
])
def _contains_long(self, space, w_item):
# Check if the value can possibly be in the range.
if space.is_true(space.gt(self.w_step, space.newint(0))):
# positive steps: start <= ob < stop
if not (space.is_true(space.le(self.w_start, w_item)) and
space.is_true(space.lt(w_item, self.w_stop))):
return False
else:
# negative steps: stop < ob <= start
if not (space.is_true(space.lt(self.w_stop, w_item)) and
space.is_true(space.le(w_item, self.w_start))):
return False
# Check that the stride does not invalidate ob's membership.
if space.is_true(space.mod(space.sub(w_item, self.w_start),
self.w_step)):
return False
return True
def descr_contains(self, space, w_item):
w_type = space.type(w_item)
if space.is_w(w_type, space.w_int) or space.is_w(w_type, space.w_bool):
return space.newbool(self._contains_long(space, w_item))
else:
return space.sequence_contains(self, w_item)
def descr_count(self, space, w_item):
w_type = space.type(w_item)
if space.is_w(w_type, space.w_int) or space.is_w(w_type, space.w_bool):
return space.newint(self._contains_long(space, w_item))
else:
return space.sequence_count(self, w_item)
def descr_index(self, space, w_item):
w_type = space.type(w_item)
if not (space.is_w(w_type, space.w_int) or
space.is_w(w_type, space.w_bool)):
return space.sequence_index(self, w_item)
if not self._contains_long(space, w_item):
raise oefmt(space.w_ValueError, "%R is not in range", w_item)
w_index = space.sub(w_item, self.w_start)
return space.floordiv(w_index, self.w_step)
def descr_eq(self, space, w_other):
# Compare two range objects.
if space.is_w(self, w_other):
return space.w_True
if not isinstance(w_other, W_Range):
return space.w_NotImplemented
if not space.eq_w(self.w_length, w_other.w_length):
return space.w_False
if space.eq_w(self.w_length, space.newint(0)):
return space.w_True
if not space.eq_w(self.w_start, w_other.w_start):
return space.w_False
if space.eq_w(self.w_length, space.newint(1)):
return space.w_True
return space.eq(self.w_step, w_other.w_step)
def descr_hash(self, space):
if space.eq_w(self.w_length, space.newint(0)):
w_tup = space.newtuple([self.w_length, space.w_None, space.w_None])
elif space.eq_w(self.w_length, space.newint(1)):
w_tup = space.newtuple([self.w_length, self.w_start, space.w_None])
else:
w_tup = space.newtuple([self.w_length, self.w_start, self.w_step])
return space.hash(w_tup)
def descr_bool(self, space):
return space.nonzero(self.w_length)
W_Range.typedef = TypeDef("range",
__doc__ = """range(stop) -> range object
range(start, stop[, step]) -> range object
Return an object that produces a sequence of integers from start (inclusive)
to stop (exclusive) by step. range(i, j) produces i, i+1, i+2, ..., j-1.
start defaults to 0, and stop is omitted! range(4) produces 0, 1, 2, 3.
These are exactly the valid indices for a list of 4 elements.
When step is given, it specifies the increment (or decrement).""",
__new__ = interp2app(W_Range.descr_new.im_func),
__repr__ = interp2app(W_Range.descr_repr),
__getitem__ = interp2app(W_Range.descr_getitem),
__iter__ = interp2app(W_Range.descr_iter),
__len__ = interp2app(W_Range.descr_len),
__reversed__ = interp2app(W_Range.descr_reversed),
__reduce__ = interp2app(W_Range.descr_reduce),
__contains__ = interp2app(W_Range.descr_contains),
__eq__ = interp2app(W_Range.descr_eq),
__hash__ = interp2app(W_Range.descr_hash),
__bool__ = interp2app(W_Range.descr_bool),
count = interp2app(W_Range.descr_count),
index = interp2app(W_Range.descr_index),
start = interp_attrproperty_w('w_start', cls=W_Range),
stop = interp_attrproperty_w('w_stop', cls=W_Range),
step = interp_attrproperty_w('w_step', cls=W_Range),
)
W_Range.typedef.acceptable_as_base_class = False
class W_AbstractRangeIterator(W_Root):
def descr_iter(self, space):
return self
def descr_len(self, space):
raise NotImplementedError
def descr_next(self, space):
raise NotImplementedError
def descr_reduce(self, space):
raise NotImplementedError
def descr_setstate(self, space, w_index):
raise NotImplementedError
class W_LongRangeIterator(W_AbstractRangeIterator):
def __init__(self, space, w_start, w_step, w_len, w_index=None):
self.w_start = w_start
self.w_step = w_step
self.w_len = w_len
if w_index is None:
w_index = space.newint(0)
self.w_index = w_index
def descr_next(self, space):
if space.is_true(space.lt(self.w_index, self.w_len)):
w_index = space.add(self.w_index, space.newint(1))
w_product = space.mul(self.w_index, self.w_step)
w_result = space.add(w_product, self.w_start)
self.w_index = w_index
return w_result
raise OperationError(space.w_StopIteration, space.w_None)
def descr_len(self, space):
return space.sub(self.w_len, self.w_index)
def descr_reduce(self, space):
from pypy.interpreter.mixedmodule import MixedModule
w_mod = space.getbuiltinmodule('_pickle_support')
mod = space.interp_w(MixedModule, w_mod)
w_args = space.newtuple([self.w_start, self.w_step, self.w_len, self.w_index])
return space.newtuple([mod.get('longrangeiter_new'), w_args, self.w_index])
def descr_setstate(self, space, w_index):
if space.is_true(space.lt(w_index, space.newint(0))):
w_index = space.newint(0)
elif space.is_true(space.lt(self.w_len, w_index)):
w_index = self.w_len
self.w_index = w_index
class W_IntRangeIterator(W_AbstractRangeIterator):
def __init__(self, space, current, remaining, step):
self.start = current
self.current = current
self.remaining = remaining
self.step = step
def descr_next(self, space):
return self.next(space)
def next(self, space):
if self.remaining > 0:
item = self.current
self.current = item + self.step
self.remaining -= 1
return space.newint(item)
raise OperationError(space.w_StopIteration, space.w_None)
def descr_len(self, space):
return self.get_remaining(space)
def descr_reduce(self, space):
from pypy.interpreter.mixedmodule import MixedModule
w_mod = space.getbuiltinmodule('_pickle_support')
mod = space.interp_w(MixedModule, w_mod)
new_inst = mod.get('intrangeiter_new')
nt = space.newtuple
tup = [space.newint(self.current), self.get_remaining(space), space.newint(self.step)]
return nt([new_inst, nt(tup), self.get_remaining(space)])
def get_remaining(self, space):
return space.newint(self.remaining)
def descr_setstate(self, space, w_remaining):
remaining = space.int_w(w_remaining)
if remaining < 0:
remaining = 0
if remaining > self.remaining:
remaining = self.remaining
self.remaining = remaining
class W_IntRangeStepOneIterator(W_IntRangeIterator):
_immutable_fields_ = ['stop']
def __init__(self, space, start, stop):
self.start = start
self.current = start
self.stop = stop
self.step = 1
def next(self, space):
if self.current < self.stop:
item = self.current
self.current = item + 1
return space.newint(item)
raise OperationError(space.w_StopIteration, space.w_None)
def get_remaining(self, space):
return space.newint(self.stop - self.current)
def descr_setstate(self, space, w_index):
index = space.int_w(w_index)
if index < self.start:
index = self.start
elif index > self.stop:
index = self.stop
self.current = index
class W_IntRangeOneArgIterator(W_IntRangeIterator):
""" iterator for range(integer). useful because the jit knows that its
values are always >= 0 """
_immutable_fields_ = ['stop']
def __init__(self, space, stop):
self.current = 0
self.stop = stop
self.step = 1
def next(self, space):
current = self.current
assert current >= 0
if current < self.stop:
self.current = current + 1
return space.newint(current)
raise OperationError(space.w_StopIteration, space.w_None)
def get_remaining(self, space):
return space.newint(self.stop - self.current)
def descr_setstate(self, space, w_index):
index = space.int_w(w_index)
if index < 0:
index = 0
elif index > self.stop:
index = self.stop
self.current = index
W_AbstractRangeIterator.typedef = TypeDef("range_iterator",
__iter__ = interp2app(W_AbstractRangeIterator.descr_iter),
__length_hint__ = interpindirect2app(W_AbstractRangeIterator.descr_len),
__next__ = interpindirect2app(W_AbstractRangeIterator.descr_next),
__reduce__ = interpindirect2app(W_AbstractRangeIterator.descr_reduce),
__setstate__ = interpindirect2app(W_AbstractRangeIterator.descr_setstate),
)
W_AbstractRangeIterator.typedef.acceptable_as_base_class = False
@jit.look_inside_iff(lambda space, args_w, error_name:
jit.isconstant(len(args_w)) and len(args_w) <= 2)
def build_iterators_from_args(space, args_w, error_name):
iterators_w = []
i = 0
for iterable_w in args_w:
try:
iterator_w = space.iter(iterable_w)
except OperationError as e:
if e.match(space, space.w_TypeError):
raise oefmt(space.w_TypeError,
"%s argument #%d must support iteration",
error_name, i + 1)
else:
raise
else:
iterators_w.append(iterator_w)
i += 1
return iterators_w
class W_Map(W_Root):
_immutable_fields_ = ["w_fun", "iterators_w"]
def __init__(self, space, w_fun, args_w):
self.space = space
self.w_fun = w_fun
self.iterators_w = build_iterators_from_args(space, args_w, "map")
def iter_w(self):
return self
def next_w(self):
# common case: 1 or 2 arguments
iterators_w = self.iterators_w
length = len(iterators_w)
if length == 1:
w_a = self.space.next(iterators_w[0])
return self.space.call_function(self.w_fun, w_a)
elif length == 2:
w_a = self.space.next(iterators_w[0])
w_b = self.space.next(iterators_w[1])
return self.space.call_function(self.w_fun, w_a, w_b)
else:
objects = self._get_objects()
w_objects = self.space.newtuple(objects)
return self.space.call(self.w_fun, w_objects)
def _get_objects(self):
# the loop is out of the way of the JIT
return [self.space.next(w_elem) for w_elem in self.iterators_w]
def descr_reduce(self, space):
w_map = space.getattr(space.getbuiltinmodule('builtins'),
space.newtext('map'))
args_w = [self.w_fun] + self.iterators_w
return space.newtuple([w_map, space.newtuple(args_w)])
def iterator_greenkey(self, space):
# XXX in theory we should tupleize the greenkeys of the callable and
# the sub-iterators, but much more work
if self.w_fun is not None:
w_res = space._try_fetch_pycode(self.w_fun)
if w_res is None:
w_res = self.space.type(self.w_fun)
elif len(self.iterators_w) > 0:
w_res = space.iterator_greenkey(self.iterators_w[0])
else:
w_res = None
return w_res
def W_Map___new__(space, w_subtype, w_fun, args_w):
if len(args_w) == 0:
raise oefmt(space.w_TypeError,
"map() must have at least two arguments")
r = space.allocate_instance(W_Map, w_subtype)
r.__init__(space, w_fun, args_w)
return r
W_Map.typedef = TypeDef(
'map',
__new__ = interp2app(W_Map___new__),
__iter__ = interp2app(W_Map.iter_w),
__next__ = interp2app(W_Map.next_w),
__reduce__ = interp2app(W_Map.descr_reduce),
__doc__ = """\
map(func, *iterables) --> map object
Make an iterator that computes the function using arguments from
each of the iterables. Stops when the shortest iterable is exhausted.""")
class W_Filter(W_Root):
reverse = False # set to True in itertools
def __init__(self, space, w_predicate, w_iterable):
self.space = space
if space.is_w(w_predicate, space.w_None):
self.w_predicate = None
else:
self.w_predicate = w_predicate
self.w_iterable = space.iter(w_iterable)
def iter_w(self):
return self
def next_w(self):
# unroll one iteration in case the filter mostly returns true
w_obj = self.space.next(self.w_iterable) # may raise w_StopIteration
if self.w_predicate is None:
pred = self.space.is_true(w_obj)
else:
w_pred = self.space.call_function(self.w_predicate, w_obj)
pred = self.space.is_true(w_pred)
if pred ^ self.reverse:
return w_obj
# otherwise, use a jit driver
return _filter_jitdriver(self.space, self.w_iterable,
self.w_predicate, self.reverse)
def descr_reduce(self, space):
w_filter = space.getattr(space.getbuiltinmodule('builtins'),
space.newtext('filter'))
args_w = [space.w_None if self.w_predicate is None else self.w_predicate,
self.w_iterable]
return space.newtuple([w_filter, space.newtuple(args_w)])
def get_printable_location(reverse, likely_pycode, greenkey):
return "filter [reverse=%s, %s]" % (
reverse, greenkey.iterator_greenkey_printable())
filter_jitdriver = jit.JitDriver(name='filter',
greens=['reverse', 'callable_greenkey', 'greenkey'], reds='auto',
get_printable_location=get_printable_location)
def _filter_jitdriver(space, w_iterable, w_predicate, reverse):
callable_greenkey = None
if w_predicate is not None:
callable_greenkey = space._try_fetch_pycode(w_predicate)
if callable_greenkey is None:
callable_greenkey = space.type(w_predicate)
greenkey = space.iterator_greenkey(w_iterable)
while True:
filter_jitdriver.jit_merge_point(
reverse=reverse,
callable_greenkey=callable_greenkey,
greenkey=greenkey)
w_obj = space.next(w_iterable) # may raise w_StopIteration
if w_predicate is None:
pred = space.is_true(w_obj)
else:
w_pred = space.call_function(w_predicate, w_obj)
pred = space.is_true(w_pred)
if pred ^ reverse:
return w_obj
def W_Filter___new__(space, w_subtype, w_predicate, w_iterable):
r = space.allocate_instance(W_Filter, w_subtype)
r.__init__(space, w_predicate, w_iterable)
return r
W_Filter.typedef = TypeDef(
'filter',
__new__ = interp2app(W_Filter___new__),
__iter__ = interp2app(W_Filter.iter_w),
__next__ = interp2app(W_Filter.next_w),
__reduce__ = interp2app(W_Filter.descr_reduce),
__doc__ = """\
filter(function or None, iterable) --> filter object
Return an iterator yielding those items of iterable for which function(item)
is true. If function is None, return the items that are true.""")
class W_Zip(W_Root):
_immutable_fields_ = ["w_fun", "iterators_w", "strict"]
def __init__(self, space, args_w, strict=False):
self.strict = strict
self.space = space
self.iterators_w = build_iterators_from_args(space, args_w, "zip")
self._iteration_progress = 0
def iter_w(self):
return self
def next_w(self):
iterators_w = self.iterators_w
length = len(iterators_w)
if length == 0:
raise OperationError(self.space.w_StopIteration, self.space.w_None)
if length == 1:
return self.space.newtuple([self.space.next(iterators_w[0])])
try:
self._iteration_progress = 0
objects = None
if length == 2:
w_a = self.space.next(iterators_w[0])
self._iteration_progress = 1
w_b = self.space.next(iterators_w[1])
return self.space.newtuple2(w_a, w_b)
else:
objects = [None] * length
self._get_objects(objects)
return self.space.newtuple(objects)
except OperationError as e:
if not e.match(self.space, self.space.w_StopIteration) or not self.strict:
raise
if self._iteration_progress:
self._raise_strict_error(self._iteration_progress, "shorter")
elif length == 2:
try:
self.space.next(iterators_w[1])
except OperationError as e:
if not e.match(self.space, self.space.w_StopIteration):
raise
else:
self._raise_strict_error(1, "longer")
else:
self._validate_strict(objects)
raise e
def _get_objects(self, objects):
# the loop is out of the way of the JIT
for i, w_elem in enumerate(self.iterators_w):
objects[i] = self.space.next(w_elem)
self._iteration_progress += 1
def _raise_strict_error(self, index, adjective):
plural = " " if index == 1 else "s 1-"
raise oefmt(self.space.w_ValueError, "zip() argument %d is %s than argument%s%d", index+1, adjective, plural, index)
def _validate_strict(self, objects):
# keep validation in its own function so the loop doesn't prevent the
# JIT from inlining W_Zip.next_w
for i, w_elem in enumerate(self.iterators_w):
try:
self.space.next(w_elem)
except OperationError as e:
if not e.match(self.space, self.space.w_StopIteration):
raise
else:
self._raise_strict_error(i, "longer")
def descr_reduce(self, space):
w_zip = space.getattr(space.getbuiltinmodule('builtins'),
space.newtext('zip'))
return space.newtuple([w_zip, space.newtuple(self.iterators_w)])
def iterator_greenkey(self, space):
# XXX in theory we should tupleize the greenkeys of all the
# sub-iterators, but much more work
if len(self.iterators_w) > 0:
return space.iterator_greenkey(self.iterators_w[0])
return None
@unwrap_spec(strict=bool)
def W_Zip___new__(space, w_subtype, args_w, __kwonly__, strict=False):
r = space.allocate_instance(W_Zip, w_subtype)
r.__init__(space, args_w, strict)
return r
W_Zip.typedef = TypeDef(
'zip',
__new__ = interp2app(W_Zip___new__),
__iter__ = interp2app(W_Zip.iter_w),
__next__ = interp2app(W_Zip.next_w),
__reduce__ = interp2app(W_Zip.descr_reduce),
__doc__ = """\
zip(*iterables) --> A zip object yielding tuples until an input is exhausted.
>>> list(zip('abcdefg', range(3), range(4)))
[('a', 0, 0), ('b', 1, 1), ('c', 2, 2)]
The zip object yields n-length tuples, where n is the number of iterables
passed as positional arguments to zip(). The i-th element in every tuple
comes from the i-th iterable argument to zip(). This continues until the
shortest argument is exhausted.""")
|