1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
#include "utf8.h"
#include <stddef.h>
#include <stdio.h>
#include <stdint.h>
#include <immintrin.h>
#define BIT(B,P) ((B >> (P-1)) & 0x1)
void _print_mmy(const char * msg, __m256i chunk)
{
printf("%s:", msg);
// unpack the first 8 bytes, padding with zeros
uint64_t a = _mm256_extract_epi64(chunk, 0);
uint64_t b = _mm256_extract_epi64(chunk, 1);
uint64_t c = _mm256_extract_epi64(chunk, 2);
uint64_t d = _mm256_extract_epi64(chunk, 3);
printf("%.2x%.2x%.2x%.2x %.2x%.2x%.2x%.2x %.2x%.2x%.2x%.2x %.2x%.2x%.2x%.2x "
"%.2x%.2x%.2x%.2x %.2x%.2x%.2x%.2x %.2x%.2x%.2x%.2x %.2x%.2x%.2x%.2x",
(unsigned char)((a >> 0) & 0xff),
(unsigned char)((a >> 8) & 0xff),
(unsigned char)((a >> 16) & 0xff),
(unsigned char)((a >> 24) & 0xff),
(unsigned char)((a >> 32) & 0xff),
(unsigned char)((a >> 40) & 0xff),
(unsigned char)((a >> 48) & 0xff),
(unsigned char)((a >> 56) & 0xff),
(unsigned char)((b >> 0) & 0xff),
(unsigned char)((b >> 8) & 0xff),
(unsigned char)((b >> 16) & 0xff),
(unsigned char)((b >> 24) & 0xff),
(unsigned char)((b >> 32) & 0xff),
(unsigned char)((b >> 40) & 0xff),
(unsigned char)((b >> 48) & 0xff),
(unsigned char)((b >> 56) & 0xff),
(unsigned char)((c >> 0) & 0xff),
(unsigned char)((c >> 8) & 0xff),
(unsigned char)((c >> 16) & 0xff),
(unsigned char)((c >> 24) & 0xff),
(unsigned char)((c >> 32) & 0xff),
(unsigned char)((c >> 40) & 0xff),
(unsigned char)((c >> 48) & 0xff),
(unsigned char)((c >> 56) & 0xff),
(unsigned char)((d >> 0) & 0xff),
(unsigned char)((d >> 8) & 0xff),
(unsigned char)((d >> 16) & 0xff),
(unsigned char)((d >> 24) & 0xff),
(unsigned char)((d >> 32) & 0xff),
(unsigned char)((d >> 40) & 0xff),
(unsigned char)((d >> 48) & 0xff),
(unsigned char)((d >> 56) & 0xff)
);
printf("\n");
}
ssize_t fu8_count_utf8_codepoints_avx(const char * utf8, size_t len)
{
const uint8_t * encoded = (const uint8_t*)utf8;
__builtin_prefetch(encoded, 0, 0);
size_t num_codepoints = 0;
__m256i chunk;
if (len == 0) {
return 0;
}
__m256i zero = _mm256_set1_epi8(0x00);
while (len >= 32) {
chunk = _mm256_loadu_si256((__m256i*)encoded);
if (_mm256_movemask_epi8(chunk) == 0) {
// valid ascii chars!
len -= 32;
encoded += 32;
num_codepoints += 32;
continue;
}
__builtin_prefetch(encoded+32, 0, 0);
__m256i count = _mm256_set1_epi8(0x1);
//_print_mm256x("chunk", chunk);
// fight against the fact that there is no comparison on unsigned values
__m256i chunk_signed = _mm256_add_epi8(chunk, _mm256_set1_epi8(0x80));
//_print_mm256x("shunk", chunk_signed);
// ERROR checking
// checking procedure works the following way:
//
// 1) mark all continuation bytes with either 0x1, 0x3, 0x7 (one, two or three bytes continuation)
// 2) then check that there is no byte that has an invalid continuation
__m256i twobytemarker = _mm256_cmpgt_epi8( chunk_signed, _mm256_set1_epi8(0xc0-1-0x80));
__m256i threebytemarker = _mm256_cmpgt_epi8(chunk_signed, _mm256_set1_epi8(0xe0-1-0x80));
__m256i fourbytemarker = _mm256_cmpgt_epi8( chunk_signed, _mm256_set1_epi8(0xf0-1-0x80));
// the general idea of the following code collects 0xff for each byte position
// in the variable contbytes.
// at the end check if each position in contbytes set to 0xff is a valid continuation byte
// check that 0xc0 > 0xc2
__m256i validtwobm = _mm256_cmpgt_epi8(chunk_signed, _mm256_set1_epi8(0xc2-1-0x80));
if (_mm256_movemask_epi8(_mm256_xor_si256(validtwobm, twobytemarker)) != 0) {
// two byte marker should not be in range [0xc0-0xc2)
return -1;
}
__m256i state2 = _mm256_andnot_si256(threebytemarker, twobytemarker);
__m256i contbytes = _mm256_slli_si256(_mm256_blendv_epi8(state2, _mm256_set1_epi8(0x1), twobytemarker), 1);
if (_mm256_movemask_epi8(threebytemarker) != 0) {
// contains at least one 3 byte marker
__m256i istate3 = _mm256_andnot_si256(fourbytemarker, threebytemarker);
__m256i state3 = _mm256_slli_si256(_mm256_blendv_epi8(zero, _mm256_set1_epi8(0x3), istate3), 1);
state3 = _mm256_or_si256(state3, _mm256_slli_si256(state3, 1));
contbytes = _mm256_or_si256(contbytes, state3);
// range check
__m256i equal_e0 = _mm256_cmpeq_epi8(_mm256_blendv_epi8(zero, chunk_signed, istate3),
_mm256_set1_epi8(0xe0-0x80));
if (_mm256_movemask_epi8(equal_e0) != 0) {
__m256i mask = _mm256_blendv_epi8(_mm256_set1_epi8(0x7f), chunk_signed, _mm256_slli_si256(equal_e0, 1));
__m256i check_surrogate = _mm256_cmpgt_epi8(_mm256_set1_epi8(0xa0-0x80), mask); // lt
if (_mm256_movemask_epi8(check_surrogate) != 0) {
// invalid surrograte character!!!
return -1;
}
}
// verify that there are now surrogates
if (!ALLOW_SURROGATES) {
__m256i equal_ed = _mm256_cmpeq_epi8(_mm256_blendv_epi8(zero, chunk_signed, istate3),
_mm256_set1_epi8(0xed-0x80));
if (_mm256_movemask_epi8(equal_ed) != 0) {
__m256i mask = _mm256_blendv_epi8(_mm256_set1_epi8(0x80), chunk_signed, _mm256_slli_si256(equal_ed, 1));
__m256i check_surrogate = _mm256_cmpgt_epi8(mask, _mm256_set1_epi8(0xa0-1-0x80));
if (_mm256_movemask_epi8(check_surrogate) != 0) {
// invalid surrograte character!!!
return -1;
}
}
}
}
if (_mm256_movemask_epi8(fourbytemarker) != 0) {
// contain a 4 byte marker
__m256i istate4 = _mm256_slli_si256(_mm256_blendv_epi8(zero, _mm256_set1_epi8(0x7), fourbytemarker), 1);
__m256i state4 =_mm256_or_si256(istate4, _mm256_slli_si256(istate4, 1));
state4 =_mm256_or_si256(state4, _mm256_slli_si256(istate4, 2));
contbytes = _mm256_or_si256(contbytes, state4);
// range check, filter out f0 and
__m256i equal_f0 = _mm256_cmpeq_epi8(_mm256_blendv_epi8(zero, chunk_signed, fourbytemarker),
_mm256_set1_epi8(0xf0-0x80));
if (_mm256_movemask_epi8(equal_f0) != 0) {
__m256i mask = _mm256_blendv_epi8(_mm256_set1_epi8(0x7f), chunk_signed, _mm256_slli_si256(equal_f0, 1));
__m256i check_surrogate = _mm256_cmpgt_epi8(_mm256_set1_epi8(0x90-0x80), mask);
if (_mm256_movemask_epi8(check_surrogate) != 0) {
return -1;
}
}
__m256i equal_f4 = _mm256_cmpeq_epi8(_mm256_blendv_epi8(zero, chunk_signed, fourbytemarker),
_mm256_set1_epi8(0xf4-0x80));
if (_mm256_movemask_epi8(equal_f4) != 0) {
__m256i mask = _mm256_blendv_epi8(_mm256_set1_epi8(0x80), chunk_signed, _mm256_slli_si256(equal_f4, 1));
__m256i check_surrogate = _mm256_cmpgt_epi8(mask, _mm256_set1_epi8(0x90-1-0x80));
if (_mm256_movemask_epi8(check_surrogate) != 0) {
return -1;
}
}
__m256i equal_f5_gt = _mm256_cmpgt_epi8(_mm256_blendv_epi8(zero, chunk_signed, fourbytemarker),
_mm256_set1_epi8(0xf4-0x80));
if (_mm256_movemask_epi8(equal_f5_gt) != 0) {
return -1;
}
}
// now check that contbytes and the actual byte values have a valid
// continuation at each position the marker indicates to have one
__m256i check_cont = _mm256_cmpgt_epi8(contbytes, zero);
__m256i contpos = _mm256_and_si256(_mm256_set1_epi8(0xc0), chunk);
contpos = _mm256_cmpeq_epi8(_mm256_set1_epi8(0x80), contpos);
__m256i validcont = _mm256_xor_si256(check_cont, contpos);
if (_mm256_movemask_epi8(validcont) != 0) {
// uff, nope, that is really not utf8
return -1;
}
// CORRECT, calculate the length
// copy 0x00 over to each place which is a continuation byte
count = _mm256_blendv_epi8(count, zero, contpos);
// count the code points using 2x 32 bit hadd and one last 16 hadd
// the result will end up at the lowest position
count = _mm256_hadd_epi32(count, zero);
count = _mm256_hadd_epi32(count, zero);
count = _mm256_hadd_epi16(count, zero);
uint16_t c = _mm256_extract_epi16(count, 0);
uint16_t c2 = _mm256_extract_epi16(count, 8);
uint16_t points = (c & 0xff) + ((c >> 8) & 0xff) + (c2 & 0xff) + ((c2 >> 8) & 0xff);
// these cases need to be handled:
// 16 byte boundary -> | <- 16 byte boundary
// -----------------------------------------+--------------------
// 1) 2 byte code point. e.g. ... c2 | 80 ...
// 2) 3 byte code point. e.g. ... e6 | 80 80 ...
// 3) 3 byte code point. e.g. ... e6 80 | 80 ...
// 4) 4 byte code point. e.g. ... f2 | 80 80 80 ...
// 5) 4 byte code point. e.g. ... f2 80 | 80 80 ...
// 6) 4 byte code point. e.g. ... f2 80 80 | 80 ...
//
int mask_chunk = _mm256_movemask_epi8(chunk);
int mask_conti = _mm256_movemask_epi8(contpos);
// little endian
int lenoff = 32;
int minus_codepoints = 0;
if (BIT(mask_chunk, 32) != 0 && BIT(mask_conti, 32) == 0) { // 1), 2), 4)
minus_codepoints = 1;
lenoff -= 1;
} else if (BIT(mask_chunk, 31) != 0 && BIT(mask_conti, 31) == 0 &&
BIT(mask_conti, 32) == 1) { // 3), 5)
minus_codepoints = 1;
lenoff -= 2;
} else if (BIT(mask_chunk, 30) != 0 && BIT(mask_conti, 30) == 0 &&
BIT(mask_conti, 31) == 1 && BIT(mask_conti, 32) == 1) { // 6)
minus_codepoints = 1;
lenoff -= 3;
}
num_codepoints += points - minus_codepoints;
len -= lenoff;
encoded += lenoff;
}
if (len == 0) {
return num_codepoints;
}
ssize_t result = fu8_count_utf8_codepoints_seq(encoded, len);
if (result == -1) {
return -1;
}
return num_codepoints + result;
return -1;
}
|