1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
import doctest
import unittest
doctests = """
########### Tests borrowed from or inspired by test_genexps.py ############
Test simple loop with conditional
>>> sum([i*i for i in range(100) if i&1 == 1])
166650
Test simple nesting
>>> [(i,j) for i in range(3) for j in range(4)]
[(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (2, 3)]
Test nesting with the inner expression dependent on the outer
>>> [(i,j) for i in range(4) for j in range(i)]
[(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2)]
Test the idiom for temporary variable assignment in comprehensions.
>>> [j*j for i in range(4) for j in [i+1]]
[1, 4, 9, 16]
>>> [j*k for i in range(4) for j in [i+1] for k in [j+1]]
[2, 6, 12, 20]
>>> [j*k for i in range(4) for j, k in [(i+1, i+2)]]
[2, 6, 12, 20]
Not assignment
>>> [i*i for i in [*range(4)]]
[0, 1, 4, 9]
>>> [i*i for i in (*range(4),)]
[0, 1, 4, 9]
Make sure the induction variable is not exposed
>>> i = 20
>>> sum([i*i for i in range(100)])
328350
>>> i
20
Verify that syntax error's are raised for listcomps used as lvalues
>>> [y for y in (1,2)] = 10 # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
SyntaxError: ...
>>> [y for y in (1,2)] += 10 # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
SyntaxError: ...
########### Tests borrowed from or inspired by test_generators.py ############
Make a nested list comprehension that acts like range()
>>> def frange(n):
... return [i for i in range(n)]
>>> frange(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Same again, only as a lambda expression instead of a function definition
>>> lrange = lambda n: [i for i in range(n)]
>>> lrange(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Generators can call other generators:
>>> def grange(n):
... for x in [i for i in range(n)]:
... yield x
>>> list(grange(5))
[0, 1, 2, 3, 4]
Make sure that None is a valid return value
>>> [None for i in range(10)]
[None, None, None, None, None, None, None, None, None, None]
########### Tests for various scoping corner cases ############
Return lambdas that use the iteration variable as a default argument
>>> items = [(lambda i=i: i) for i in range(5)]
>>> [x() for x in items]
[0, 1, 2, 3, 4]
Same again, only this time as a closure variable
>>> items = [(lambda: i) for i in range(5)]
>>> [x() for x in items]
[4, 4, 4, 4, 4]
Another way to test that the iteration variable is local to the list comp
>>> items = [(lambda: i) for i in range(5)]
>>> i = 20
>>> [x() for x in items]
[4, 4, 4, 4, 4]
And confirm that a closure can jump over the list comp scope
>>> items = [(lambda: y) for i in range(5)]
>>> y = 2
>>> [x() for x in items]
[2, 2, 2, 2, 2]
We also repeat each of the above scoping tests inside a function
>>> def test_func():
... items = [(lambda i=i: i) for i in range(5)]
... return [x() for x in items]
>>> test_func()
[0, 1, 2, 3, 4]
>>> def test_func():
... items = [(lambda: i) for i in range(5)]
... return [x() for x in items]
>>> test_func()
[4, 4, 4, 4, 4]
>>> def test_func():
... items = [(lambda: i) for i in range(5)]
... i = 20
... return [x() for x in items]
>>> test_func()
[4, 4, 4, 4, 4]
>>> def test_func():
... items = [(lambda: y) for i in range(5)]
... y = 2
... return [x() for x in items]
>>> test_func()
[2, 2, 2, 2, 2]
"""
__test__ = {'doctests' : doctests}
def load_tests(loader, tests, pattern):
tests.addTest(doctest.DocTestSuite())
return tests
if __name__ == "__main__":
unittest.main()
|