1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
|
The Object Space
================
.. contents::
.. _objectspace:
.. _Object Space:
Introduction
------------
The object space creates all objects in PyPy, and knows how to perform operations
on them. It may be helpful to think of an object space as being a library
offering a fixed API: a set of *operations*, along with implementations that
correspond to the known semantics of Python objects.
For example, :py:func:`add` is an operation, with implementations in the object
space that perform numeric addition (when :py:func:`add` is operating on numbers),
concatenation (when :py:func:`add` is operating on sequences), and so on.
We have some working object spaces which can be plugged into
the bytecode interpreter:
- The *Standard Object Space* is a complete implementation
of the various built-in types and objects of Python. The Standard Object
Space, together with the bytecode interpreter, is the foundation of our Python
implementation. Internally, it is a set of :ref:`interpreter-level <interpreter-level>` classes
implementing the various :ref:`application-level <application-level>` objects -- integers, strings,
lists, types, etc. To draw a comparison with CPython, the Standard Object
Space provides the equivalent of the C structures :c:type:`PyIntObject`,
:c:type:`PyListObject`, etc.
- various `Object Space proxies`_ wrap another object space (e.g. the standard
one) and adds new capabilities, like lazily computed objects (computed only
when an operation is performed on them), security-checking objects,
distributed objects living on several machines, etc.
The various object spaces documented here can be found in :source:`pypy/objspace`.
Note that most object-space operations take and return
:ref:`application-level <application-level>` objects, which are treated as
opaque "black boxes" by the interpreter. Only a very few operations allow the
bytecode interpreter to gain some knowledge about the value of an
application-level object.
.. _objspace-interface:
Object Space Interface
----------------------
This is the public API that all Object Spaces implement:
Administrative Functions
~~~~~~~~~~~~~~~~~~~~~~~~
.. py:function:: getexecutioncontext()
Return the currently active execution context.
(:source:`pypy/interpreter/executioncontext.py`).
.. py:function:: getbuiltinmodule(name)
Return a :py:class:`Module` object for the built-in module given by ``name``.
(:source:`pypy/interpreter/module.py`).
Operations on Objects in the Object Space
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
These functions both take and return "wrapped" (i.e. :ref:`application-level <application-level>`) objects.
The following functions implement operations with straightforward semantics that
directly correspond to language-level constructs:
``id, type, issubtype, iter, next, repr, str, len, hash,``
``getattr, setattr, delattr, getitem, setitem, delitem,``
``pos, neg, abs, invert, add, sub, mul, truediv, floordiv, div, mod, divmod, pow, lshift, rshift, and_, or_, xor,``
``nonzero, hex, oct, int, float, long, ord,``
``lt, le, eq, ne, gt, ge, cmp, coerce, contains,``
``inplace_add, inplace_sub, inplace_mul, inplace_truediv, inplace_floordiv,
inplace_div, inplace_mod, inplace_pow, inplace_lshift, inplace_rshift,
inplace_and, inplace_or, inplace_xor,``
``get, set, delete, userdel``
.. py:function:: call(w_callable, w_args, w_kwds)
Calls a function with the given positional (``w_args``) and keyword (``w_kwds``)
arguments.
.. py:function:: index(w_obj)
Implements index lookup (`as introduced in CPython 2.5`_) using ``w_obj``. Will return a
wrapped integer or long, or raise a :py:exc:`TypeError` if the object doesn't have an
:py:func:`__index__` special method.
.. _as introduced in CPython 2.5: https://www.python.org/dev/peps/pep-0357/
.. py:function:: is_(w_x, w_y)
Implements ``w_x is w_y``.
.. py:function:: isinstance(w_obj, w_type)
Implements :py:func:`issubtype` with ``type(w_obj)`` and ``w_type`` as arguments.
.. py:function::exception_match(w_exc_type, w_check_class)
Checks if the given exception type matches :py:obj:`w_check_class`. Used in
matching the actual exception raised with the list of those to catch in an
except clause.
Convenience Functions
~~~~~~~~~~~~~~~~~~~~~
The following functions are used so often that it was worthwhile to introduce
them as shortcuts -- however, they are not strictly necessary since they can be
expressed using several other object space methods.
.. py:function:: eq_w(w_obj1, w_obj2)
Returns :py:const:`True` when :py:obj:`w_obj1` and :py:obj:`w_obj2` are equal.
Shortcut for ``space.is_true(space.eq(w_obj1, w_obj2))``.
.. py:function:: is_w(w_obj1, w_obj2)
Shortcut for ``space.is_true(space.is_(w_obj1, w_obj2))``.
.. py:function:: hash_w(w_obj)
Shortcut for ``space.int_w(space.hash(w_obj))``.
.. py:function:: len_w(w_obj)
Shortcut for ``space.int_w(space.len(w_obj))``.
*NOTE* that the above four functions return :ref:`interpreter-level <interpreter-level>`
objects, not :ref:`application-level <application-level>` ones!
.. py:function:: not_(w_obj)
Shortcut for ``space.newbool(not space.is_true(w_obj))``.
.. py:function:: finditem(w_obj, w_key)
Equivalent to ``getitem(w_obj, w_key)`` but returns an **interpreter-level** None
instead of raising a KeyError if the key is not found.
.. py:function:: call_function(w_callable, *args_w, **kw_w)
Collects the arguments in a wrapped tuple and dict and invokes
``space.call(w_callable, ...)``.
.. py:function:: call_method(w_object, 'method', ...)
Uses :py:meth:`space.getattr` to get the method object, and then :py:meth:`space.call_function`
to invoke it.
.. py:function:: unpackiterable(w_iterable[, expected_length=-1])
Iterates over :py:obj:`w_x` (using :py:meth:`space.iter` and :py:meth:`space.next`)
and collects the resulting wrapped objects in a list. If ``expected_length`` is
given and the length does not match, raises an exception.
Of course, in cases where iterating directly is better than collecting the
elements in a list first, you should use :py:meth:`space.iter` and :py:meth:`space.next`
directly.
.. py:function:: unpacktuple(w_tuple[, expected_length=None])
Equivalent to :py:func:`unpackiterable`, but only for tuples.
.. py:function:: callable(w_obj)
Implements the built-in :py:func:`callable`.
Creation of Application Level objects
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. py:function:: wrap(x)
**Deprecated! Eventually this method should disappear.**
Returns a wrapped object that is a reference to the interpreter-level object
:py:obj:`x`. This can be used either on simple immutable objects (integers,
strings, etc) to create a new wrapped object, or on instances of :py:class:`W_Root`
to obtain an application-level-visible reference to them. For example,
most classes of the bytecode interpreter subclass :py:class:`W_Root` and can
be directly exposed to application-level code in this way - functions, frames,
code objects, etc.
.. py:function:: newint(i)
Creates a wrapped object holding an integral value. `newint` creates an object
of type `W_IntObject`.
.. py:function:: newlong(l)
Creates a wrapped object holding an integral value. The main difference to newint
is the type of the argument (which is rpython.rlib.rbigint.rbigint). On PyPy3 this
method will return an :py:class:`int` (PyPy2 it returns a :py:class:`long`).
.. py:function:: newbytes(t)
The given argument is a rpython bytestring. Creates a wrapped object
of type :py:class:`bytes` (both on PyPy2 and PyPy3).
.. py:function:: newtext(t)
The given argument is a rpython bytestring. Creates a wrapped object
of type :py:class:`str`. On PyPy3 this will return a wrapped unicode
object. The object will hold a utf-8-nosg decoded value of `t`.
The "utf-8-nosg" codec used here is slightly different from the
"utf-8" implemented in Python 2 or Python 3: it is defined as utf-8
without any special handling of surrogate characters. They are
encoded using the same three-bytes sequence that encodes any char in
the range from ``'\u0800'`` to ``'\uffff'``.
PyPy2 will return a bytestring object. No encoding/decoding steps will be applied.
.. py:function:: newbool(b)
Creates a wrapped :py:class:`bool` object from an :ref:`interpreter-level <interpreter-level>`
object.
.. py:function:: newtuple([w_x, w_y, w_z, ...])
Creates a new wrapped tuple out of an interpreter-level list of wrapped objects.
.. py:function:: newlist([..])
Creates a wrapped :py:class:`list` from an interpreter-level list of wrapped objects.
.. py:function:: newdict
Returns a new empty dictionary.
.. py:function:: newslice(w_start, w_end, w_step)
Creates a new slice object.
.. py:function:: newunicode(ustr)
Creates a Unicode string from an rpython unicode string.
This method may disappear soon and be replaced by :py:function::`newutf8`.
.. py:function:: newutf8(bytestr)
Creates a Unicode string from an rpython byte string, decoded as
"utf-8-nosg". On PyPy3 it is the same as :py:function::`newtext`.
Many more space operations can be found in `pypy/interpreter/baseobjspace.py` and
`pypy/objspace/std/objspace.py`.
Conversions from Application Level to Interpreter Level
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. py:function:: unwrap(w_x)
Returns the interpreter-level equivalent of :py:obj:`w_x` -- use this
**ONLY** for testing, because this method is not RPython and thus cannot be
translated! In most circumstances you should use the functions described
below instead.
.. py:function:: is_true(w_x)
Returns a interpreter-level boolean (:py:const:`True` or :py:const:`False`) that
gives the truth value of the wrapped object :py:obj:`w_x`.
This is a particularly important operation because it is necessary to implement,
for example, if-statements in the language (or rather, to be pedantic, to
implement the conditional-branching bytecodes into which if-statements are
compiled).
.. py:function:: int_w(w_x)
If :py:obj:`w_x` is an application-level integer or long which can be converted
without overflow to an integer, return an interpreter-level integer. Otherwise
raise :py:exc:`TypeError` or :py:exc:`OverflowError`.
.. py:function:: bigint_w(w_x)
If :py:obj:`w_x` is an application-level integer or long, return an interpreter-level
:py:class:`rbigint`. Otherwise raise :py:exc:`TypeError`.
.. py:function:: bytes_w(w_x)
Takes an application level :py:class:`bytes` (on PyPy2 this equals
`str`) and returns a rpython byte string.
.. py:function:: text_w(w_x)
PyPy2 takes either a :py:class:`str` and returns a rpython byte
string, or it takes an :py:class:`unicode` and uses the systems
default encoding to return a rpython byte string.
.. py:function:: str_w(w_x)
**Deprecated. use text_w or bytes_w instead**
If :py:obj:`w_x` is an application-level string, return an interpreter-level string.
Otherwise raise :py:exc:`TypeError`.
.. py:function:: unicode_w(w_x)
Takes an application level :py:class::`unicode` and return an
interpreter-level unicode string. This method may disappear soon and
be replaced by :py:function::`text_w`.
.. py:function:: float_w(w_x)
If :py:obj:`w_x` is an application-level float, integer or long, return an
interpreter-level float. Otherwise raise :py:exc:`TypeError` (or:py:exc:`OverflowError`
in the case of very large longs).
.. py:function:: getindex_w(w_obj[, w_exception=None])
Call ``index(w_obj)``. If the resulting integer or long object can be converted
to an interpreter-level :py:class:`int`, return that. If not, return a clamped
result if :py:obj:`w_exception` is None, otherwise raise the exception at the
application level.
(If :py:obj:`w_obj` can't be converted to an index, :py:func:`index` will raise an
application-level :py:exc:`TypeError`.)
.. py:function:: interp_w(RequiredClass, w_x[, can_be_None=False])
If :py:obj:`w_x` is a wrapped instance of the given bytecode interpreter class,
unwrap it and return it. If :py:obj:`can_be_None` is :py:const:`True`, a wrapped
:py:const:`None` is also accepted and returns an interpreter-level :py:const:`None`.
Otherwise, raises an :py:exc:`OperationError` encapsulating a :py:exc:`TypeError`
with a nice error message.
.. py:function:: interpclass_w(w_x)
If :py:obj:`w_x` is a wrapped instance of an bytecode interpreter class -- for
example :py:class:`Function`, :py:class:`Frame`, :py:class:`Cell`, etc. -- return
it unwrapped. Otherwise return :py:const:`None`.
Data Members
~~~~~~~~~~~~
.. py:data:: space.builtin
The :py:class:`Module` containing the builtins.
.. py:data:: space.sys
The ``sys`` :py:class:`Module`.
.. py:data:: space.w_None
The ObjSpace's instance of :py:const:`None`.
.. py:data:: space.w_True
The ObjSpace's instance of :py:const:`True`.
.. py:data:: space.w_False
The ObjSpace's instance of :py:const:`False`.
.. py:data:: space.w_Ellipsis
The ObjSpace's instance of :py:const:`Ellipsis`.
.. py:data:: space.w_NotImplemented
The ObjSpace's instance of :py:const:`NotImplemented`.
.. py:data:: space.w_int
space.w_float
space.w_long
space.w_tuple
space.w_str
space.w_unicode
space.w_type
space.w_instance
space.w_slice
Python's most common basic type objects.
.. py:data:: space.w_[XYZ]Error
Python's built-in exception classes (:py:class:`KeyError`, :py:class:`IndexError`,
etc).
.. TODO: is it worth listing out all ~50 builtin exception types (https://docs.python.org/2/library/exceptions.html)?
.. py:data:: ObjSpace.MethodTable
List of tuples containing ``(method_name, symbol, number_of_arguments, list_of_special_names)``
for the regular part of the interface.
*NOTE* that tuples are interpreter-level.
.. py:data:: ObjSpace.BuiltinModuleTable
List of names of built-in modules.
.. py:data:: ObjSpace.ConstantTable
List of names of the constants that the object space should define.
.. py:data:: ObjSpace.ExceptionTable
List of names of exception classes.
.. py:data:: ObjSpace.IrregularOpTable
List of names of methods that have an irregular API (take and/or return
non-wrapped objects).
.. _standard-object-space:
The Standard Object Space
-------------------------
Introduction
~~~~~~~~~~~~
The Standard Object Space (:source:`pypy/objspace/std/`) is the direct equivalent
of CPython's object library (the ``Objects/`` subdirectory in the distribution).
It is an implementation of the common Python types in a lower-level language.
The Standard Object Space defines an abstract parent class, :py:class:`W_Object`
as well as subclasses like :py:class:`W_IntObject`, :py:class:`W_ListObject`,
and so on. A wrapped object (a "black box" for the bytecode interpreter's main
loop) is an instance of one of these classes. When the main loop invokes an
operation (such as addition), between two wrapped objects :py:obj:`w1` and
:py:obj:`w2`, the Standard Object Space does some internal dispatching (similar
to ``Object/abstract.c`` in CPython) and invokes a method of the proper
:py:class:`W_XYZObject` class that can perform the operation.
The operation itself is done with the primitives allowed by RPython, and the
result is constructed as a wrapped object. For example, compare the following
implementation of integer addition with the function :c:func:`int_add()` in
``Object/intobject.c``: ::
def add__Int_Int(space, w_int1, w_int2):
x = w_int1.intval
y = w_int2.intval
try:
z = ovfcheck(x + y)
except OverflowError:
raise FailedToImplementArgs(space.w_OverflowError,
space.wrap("integer addition"))
return W_IntObject(space, z)
This may seem like a lot of work just for integer objects (why wrap them into
:py:class:`W_IntObject` instances instead of using plain integers?), but the
code is kept simple and readable by wrapping all objects (from simple integers
to more complex types) in the same way.
(Interestingly, the obvious optimization above has actually been made in PyPy,
but isn't hard-coded at this level -- see :doc:`interpreter-optimizations`.)
Object types
~~~~~~~~~~~~
The larger part of the :source:`pypy/objspace/std/` package defines and
implements the library of Python's standard built-in object types. Each type
``xxx`` (:py:class:`int`, :py:class:`float`, :py:class:`list`,
:py:class:`tuple`, :py:class:`str`, :py:class:`type`, etc.) is typically
implemented in the module ``xxxobject.py``.
The ``W_AbstractXxxObject`` class, when present, is the abstract base
class, which mainly defines what appears on the Python-level type
object. There are then actual implementations as subclasses, which are
called ``W_XxxObject`` or some variant for the cases where we have
several different implementations. For example,
:source:`pypy/objspace/std/bytesobject.py` defines ``W_AbstractBytesObject``,
which contains everything needed to build the ``str`` app-level type;
and there are subclasses ``W_BytesObject`` (the usual string) and
``W_Buffer`` (a special implementation tweaked for repeated
additions, in :source:`pypy/objspace/std/bufferobject.py`). For mutable data
types like lists and dictionaries, we have a single class
``W_ListObject`` or ``W_DictMultiObject`` which has an indirection to
the real data and a strategy; the strategy can change as the content of
the object changes.
From the user's point of view, even when there are several
``W_AbstractXxxObject`` subclasses, this is not visible: at the
app-level, they are still all instances of exactly the same Python type.
PyPy knows that (e.g.) the application-level type of its
interpreter-level ``W_BytesObject`` instances is str because there is a
``typedef`` class attribute in ``W_BytesObject`` which points back to
the string type specification from :source:`pypy/objspace/std/bytesobject.py`;
all other implementations of strings use the same ``typedef`` from
:source:`pypy/objspace/std/bytesobject.py`.
For other examples of multiple implementations of the same Python type,
see :doc:`interpreter-optimizations`.
Object Space proxies
--------------------
We have implemented several *proxy object spaces*, which wrap another object
space (typically the standard one) and add some capabilities to all objects. To
find out more, see :doc:`objspace-proxies`.
|