1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
|
import pytest
from hypothesis import given, strategies, example
from pypy.interpreter.location import (encode_positions,
decode_positions, _offset2lineno, linetable2lnotab,
marklines, _decode_entry, DecodeError)
def check_positions(positions, firstlineno=1, expected=None):
if expected is None:
expected = positions
res = decode_positions(
encode_positions(positions, firstlineno),
firstlineno
)
assert res == expected
def test_encode_positions():
# valid
positions = [(1, 1, 1, 5), (1, 1, 5, 10), (2, 2, 5, 10)]
check_positions(positions)
check_positions(positions, 0)
def test_encode_positions_invalid():
# everything invalid
positions = [(1, 1, 1, 5), (-1, -1, -1, -1), (2, 2, 5, 10)]
check_positions(positions)
check_positions(positions, 0)
def test_encode_positions_invalid_but_lineno_is_fine():
# just lineno valid
positions = [(1, 1, 1, 5), (1, -1, -1, -1), (2, 2, 5, 10)]
check_positions(positions)
check_positions(positions, 0)
def test_out_of_range_positions():
positions = [
(5, 1000, 1, 1), # too large end_lineno - lineno
(6, 1, 300, 400), # col_offset too big
(6, 1, 0, 300), # end_col_offset too big
(7, 1, 3, 2), # end_lineno smaller than lineno
]
check_positions(positions, expected=[(5, -1, -1, -1), (6, -1, -1, -1), (6, -1, -1, -1), (7, -1, -1, -1)])
def test_lineno_smaller_than_firstlineno():
positions = [
(1, 1, 1, 1),
(2, 2, 2, 2),
(3, 3, 3, 3),
(4, 4, 4, 4),
(5, 5, 5, 5)
]
check_positions(positions, 5, expected=[(-1, -1, -1, -1)] * 4 + [(5, 5, 5, 5)])
def test_offset2lineno():
positions = [(lineno, lineno, 1, 1) for lineno in [1, 1, 5, 3, 23, 1999]]
table = encode_positions(positions, 1)
for stopat in range(len(positions)):
assert _offset2lineno(table, 1, stopat) == positions[stopat][0]
def lnotab_offset2lineno(tab, line, stopat):
addr = 0
for i in range(0, len(tab), 2):
addr = addr + ord(tab[i])
if addr > stopat:
break
line_offset = ord(tab[i+1])
if line_offset > 0x80:
line_offset -= 0x100
line = line + line_offset
return line
def test_linetable2lnotab():
positions = [(lineno, lineno, 1, 1) for lineno in [1, 1, 1, 3, 3, 2, 2, 17]]
table = encode_positions(positions, 1)
lnotab = linetable2lnotab(table, 1)
# check that the bdeltas are even
for bdelta in lnotab[::2]:
assert ord(bdelta) & 1 == 0
for stopat in range(len(positions)):
assert lnotab_offset2lineno(lnotab, 1, stopat * 2) == positions[stopat][0]
def test_marklines():
positions = [(lineno, lineno, 1, 1) for lineno in [1, 1, 1, 3, -1, 3, 2, -1, -1, -1, 2, 17, -1, 1]]
table = encode_positions(positions, 1)
lines = marklines(table, 1)
assert lines == [1, -1, -1, 3, -1, -1, 2, -1, -1, -1, -1, 17, -1, 1]
# check crash-safety
def go_through_positions(table, firstlineno):
position = 0
while position < len(table):
lineno, end_lineno, col_offset, end_col_offset, position = _decode_entry(table, firstlineno, position)
@given(strategies.binary(), strategies.integers(min_value=0, max_value=2**30))
def test_decode_doesnt_crash(b, firstlineno):
try:
go_through_positions(b, firstlineno)
except Exception as e:
if not isinstance(e, DecodeError):
raise
def test_decode_entry_empty_string():
with pytest.raises(DecodeError):
_decode_entry(b'', 1, 0)
|