1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
from rpython.rtyper.lltypesystem import lltype, llmemory, rffi
from rpython.rlib.objectmodel import specialize, we_are_translated
from rpython.rlib.rdynload import DLLHANDLE, dlsym, dlclose
from pypy.interpreter.error import oefmt
from pypy.module._cffi_backend.parse_c_type import (
_CFFI_OPCODE_T, GLOBAL_S, CDL_INTCONST_S, STRUCT_UNION_S, FIELD_S,
ENUM_S, TYPENAME_S, ll_set_cdl_realize_global_int)
from pypy.module._cffi_backend.realize_c_type import getop
from pypy.module._cffi_backend.lib_obj import W_LibObject
from pypy.module._cffi_backend import cffi_opcode, cffi1_module, misc
class W_DlOpenLibObject(W_LibObject):
def __init__(self, ffi, w_filename, flags):
space = ffi.space
fname, handle, autoclose = misc.dlopen_w(space, w_filename, flags)
W_LibObject.__init__(self, ffi, fname)
self.libhandle = handle
if autoclose:
self.register_finalizer(space)
def _finalize_(self):
h = self.libhandle
if h != rffi.cast(DLLHANDLE, 0):
self.libhandle = rffi.cast(DLLHANDLE, 0)
dlclose(h)
def cdlopen_fetch(self, name):
if not self.libhandle:
raise oefmt(self.ffi.w_FFIError, "library '%s' has been closed",
self.libname)
try:
cdata = dlsym(self.libhandle, name)
found = bool(cdata)
except KeyError:
found = False
if not found:
raise oefmt(self.ffi.w_FFIError,
"symbol '%s' not found in library '%s'",
name, self.libname)
return rffi.cast(rffi.CCHARP, cdata)
def cdlopen_close(self):
libhandle = self.libhandle
self.libhandle = rffi.cast(DLLHANDLE, 0)
if not libhandle:
return
self.may_unregister_rpython_finalizer(self.ffi.space)
# Clear the dict to force further accesses to do cdlopen_fetch()
# again, and fail because the library was closed. Note that the
# JIT may have elided some accesses, and so has addresses as
# constants. We could work around it with a quasi-immutable flag
# but unsure it's worth it.
self.dict_w.clear()
if dlclose(libhandle) < 0:
raise oefmt(self.ffi.w_FFIError, "error closing library '%s'",
self.libname)
class StringDecoder:
def __init__(self, ffi, string):
self.ffi = ffi
self.string = string
self.pos = 0
def next_4bytes(self):
pos = self.pos
src = ord(self.string[pos])
if src >= 0x80:
src -= 0x100
src = ((src << 24) |
(ord(self.string[pos + 1]) << 16) |
(ord(self.string[pos + 2]) << 8 ) |
(ord(self.string[pos + 3]) ))
self.pos = pos + 4
return src
def next_opcode(self):
return rffi.cast(_CFFI_OPCODE_T, self.next_4bytes())
def next_name(self):
frm = self.pos
i = self.string.find('\x00', frm)
if i < 0:
i = len(self.string)
self.pos = i + 1
p = rffi.str2charp(self.string[frm : i])
self.ffi._finalizer.free_mems.append(p)
return rffi.cast(rffi.CONST_CCHARP, p)
def allocate(ffi, nbytes):
nbytes = llmemory.raw_malloc_usage(nbytes)
if not we_are_translated():
nbytes *= 2 # hack to account for the fact that raw_malloc_usage()
# returns an approximation, ignoring padding and alignment
p = lltype.malloc(rffi.CCHARP.TO, nbytes, flavor='raw', zero=True)
ffi._finalizer.free_mems.append(p)
return p
@specialize.arg(1)
def allocate_array(ffi, OF, nitems):
nbytes = llmemory.raw_malloc_usage(rffi.sizeof(OF))
p = allocate(ffi, nitems * nbytes)
return rffi.cast(rffi.CArrayPtr(OF), p)
def ffiobj_init(ffi, module_name, version, types, w_globals,
w_struct_unions, w_enums, w_typenames, w_includes):
space = ffi.space
# xxx force ll2ctypes conversion here. This appears to be needed,
# otherwise ll2ctypes explodes. I don't want to know :-(
rffi.cast(lltype.Signed, ffi.ctxobj)
if version == -1 and not types:
return
if not (cffi1_module.VERSION_MIN <= version <= cffi1_module.VERSION_MAX):
raise oefmt(space.w_ImportError,
"cffi out-of-line Python module '%s' has unknown version %s",
module_name, hex(version))
if types:
# unpack a string of 4-byte entries into an array of _cffi_opcode_t
n = len(types) // 4
ntypes = allocate_array(ffi, _CFFI_OPCODE_T, n)
decoder = StringDecoder(ffi, types)
for i in range(n):
ntypes[i] = decoder.next_opcode()
ffi.ctxobj.ctx.c_types = ntypes
rffi.setintfield(ffi.ctxobj.ctx, 'c_num_types', n)
ffi.cached_types = [None] * n
if w_globals is not None:
# unpack a tuple alternating strings and ints, each two together
# describing one global_s entry with no specified address or size.
# The int is only used with integer constants.
globals_w = space.fixedview(w_globals)
n = len(globals_w) // 2
size = n * rffi.sizeof(GLOBAL_S) + n * llmemory.raw_malloc_usage(rffi.sizeof(CDL_INTCONST_S))
p = allocate(ffi, size)
nglobs = rffi.cast(rffi.CArrayPtr(GLOBAL_S), p)
p = rffi.ptradd(p, n * rffi.sizeof(GLOBAL_S))
nintconsts = rffi.cast(rffi.CArrayPtr(CDL_INTCONST_S), p)
for i in range(n):
decoder = StringDecoder(ffi, space.bytes_w(globals_w[i * 2]))
nglobs[i].c_type_op = decoder.next_opcode()
nglobs[i].c_name = decoder.next_name()
op = getop(nglobs[i].c_type_op)
if op == cffi_opcode.OP_CONSTANT_INT or op == cffi_opcode.OP_ENUM:
w_integer = globals_w[i * 2 + 1]
ll_set_cdl_realize_global_int(nglobs[i])
bigint = space.bigint_w(w_integer)
ullvalue = bigint.ulonglongmask()
rffi.setintfield(nintconsts[i], 'neg', int(bigint.get_sign() <= 0))
rffi.setintfield(nintconsts[i], 'value', ullvalue)
ffi.ctxobj.ctx.c_globals = rffi.cast(lltype.Ptr(GLOBAL_S), nglobs)
rffi.setintfield(ffi.ctxobj.ctx, 'c_num_globals', n)
if w_struct_unions is not None:
# unpack a tuple of struct/unions, each described as a sub-tuple;
# the item 0 of each sub-tuple describes the struct/union, and
# the items 1..N-1 describe the fields, if any
struct_unions_w = space.fixedview(w_struct_unions)
n = len(struct_unions_w)
nftot = 0 # total number of fields
for i in range(n):
nftot += space.len_w(struct_unions_w[i]) - 1
nstructs = allocate_array(ffi, STRUCT_UNION_S, n)
nfields = allocate_array(ffi, FIELD_S, nftot)
nf = 0
for i in range(n):
# 'desc' is the tuple of strings (desc_struct, desc_field_1, ..)
desc = space.fixedview(struct_unions_w[i])
nf1 = len(desc) - 1
decoder = StringDecoder(ffi, space.bytes_w(desc[0]))
rffi.setintfield(nstructs[i], 'c_type_index', decoder.next_4bytes())
flags = decoder.next_4bytes()
rffi.setintfield(nstructs[i], 'c_flags', flags)
nstructs[i].c_name = decoder.next_name()
if flags & (cffi_opcode.F_OPAQUE | cffi_opcode.F_EXTERNAL):
rffi.setintfield(nstructs[i], 'c_size', -1)
rffi.setintfield(nstructs[i], 'c_alignment', -1)
rffi.setintfield(nstructs[i], 'c_first_field_index', -1)
rffi.setintfield(nstructs[i], 'c_num_fields', 0)
assert nf1 == 0
else:
rffi.setintfield(nstructs[i], 'c_size', -2)
rffi.setintfield(nstructs[i], 'c_alignment', -2)
rffi.setintfield(nstructs[i], 'c_first_field_index', nf)
rffi.setintfield(nstructs[i], 'c_num_fields', nf1)
for j in range(nf1):
decoder = StringDecoder(ffi, space.bytes_w(desc[j + 1]))
# this 'decoder' is for one of the other strings beyond
# the first one, describing one field each
type_op = decoder.next_opcode()
nfields[nf].c_field_type_op = type_op
rffi.setintfield(nfields[nf], 'c_field_offset', -1)
if getop(type_op) != cffi_opcode.OP_NOOP:
field_size = decoder.next_4bytes()
else:
field_size = -1
rffi.setintfield(nfields[nf], 'c_field_size', field_size)
nfields[nf].c_name = decoder.next_name()
nf += 1
assert nf == nftot
ffi.ctxobj.ctx.c_struct_unions = rffi.cast(lltype.Ptr(STRUCT_UNION_S), nstructs)
ffi.ctxobj.ctx.c_fields = rffi.cast(lltype.Ptr(FIELD_S), nfields)
rffi.setintfield(ffi.ctxobj.ctx, 'c_num_struct_unions', n)
if w_enums:
# unpack a tuple of strings, each of which describes one enum_s entry
enums_w = space.fixedview(w_enums)
n = len(enums_w)
nenums = allocate_array(ffi, ENUM_S, n)
for i in range(n):
decoder = StringDecoder(ffi, space.bytes_w(enums_w[i]))
rffi.setintfield(nenums[i], 'c_type_index', decoder.next_4bytes())
rffi.setintfield(nenums[i], 'c_type_prim', decoder.next_4bytes())
nenums[i].c_name = decoder.next_name()
nenums[i].c_enumerators = decoder.next_name()
ffi.ctxobj.ctx.c_enums = rffi.cast(lltype.Ptr(ENUM_S), nenums)
rffi.setintfield(ffi.ctxobj.ctx, 'c_num_enums', n)
if w_typenames:
# unpack a tuple of strings, each of which describes one typename_s
# entry
typenames_w = space.fixedview(w_typenames)
n = len(typenames_w)
ntypenames = allocate_array(ffi, TYPENAME_S, n)
for i in range(n):
decoder = StringDecoder(ffi, space.bytes_w(typenames_w[i]))
rffi.setintfield(ntypenames[i],'c_type_index',decoder.next_4bytes())
ntypenames[i].c_name = decoder.next_name()
ffi.ctxobj.ctx.c_typenames = rffi.cast(lltype.Ptr(TYPENAME_S), ntypenames)
rffi.setintfield(ffi.ctxobj.ctx, 'c_num_typenames', n)
if w_includes:
from pypy.module._cffi_backend.ffi_obj import W_FFIObject
#
for w_parent_ffi in space.fixedview(w_includes):
parent_ffi = space.interp_w(W_FFIObject, w_parent_ffi)
ffi.included_ffis_libs.append((parent_ffi, None))
|