File: interp_cmath.py

package info (click to toggle)
pypy3 7.3.19%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 212,236 kB
  • sloc: python: 2,098,316; ansic: 540,565; sh: 21,462; asm: 14,419; cpp: 4,451; makefile: 4,209; objc: 761; xml: 530; exp: 499; javascript: 314; pascal: 244; lisp: 45; csh: 12; awk: 4
file content (234 lines) | stat: -rw-r--r-- 6,080 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import math
from rpython.rlib.objectmodel import specialize
from rpython.tool.sourcetools import func_with_new_name
from pypy.interpreter.error import oefmt
from pypy.interpreter.gateway import unwrap_spec
from pypy.module.cmath.moduledef import names_and_docstrings
from rpython.rlib import rcomplex, rfloat

pi   = math.pi
tau  = math.pi * 2.0
e    = math.e
inf  = float('inf')
nan  = float('nan')
infj = complex(0.0, inf)
nanj = complex(0.0, nan)


@specialize.arg(0)
def call_c_func(c_func, space, x, y):
    try:
        result = c_func(x, y)
    except ValueError:
        raise oefmt(space.w_ValueError, "math domain error")
    except OverflowError:
        raise oefmt(space.w_OverflowError, "math range error")
    return result


def unaryfn(c_func):
    def wrapper(space, w_z):
        x, y = space.unpackcomplex(w_z)
        resx, resy = call_c_func(c_func, space, x, y)
        return space.newcomplex(resx, resy)
    #
    name = c_func.func_name
    assert name.startswith('c_')
    wrapper.func_doc = names_and_docstrings[name[2:]]
    fnname = 'wrapped_' + name[2:]
    globals()[fnname] = func_with_new_name(wrapper, fnname)
    return c_func


def c_neg(x, y):
    return rcomplex.c_neg(x,y)


@unaryfn
def c_sqrt(x, y):
    return rcomplex.c_sqrt(x,y)

@unaryfn
def c_acos(x, y):
    return rcomplex.c_acos(x,y)

@unaryfn
def c_acosh(x, y):
    return rcomplex.c_acosh(x,y)

@unaryfn
def c_asin(x, y):
    return rcomplex.c_asin(x,y)

@unaryfn
def c_asinh(x, y):
    return rcomplex.c_asinh(x,y)

@unaryfn
def c_atan(x, y):
    return rcomplex.c_atan(x,y)

@unaryfn
def c_atanh(x, y):
    return rcomplex.c_atanh(x,y)

@unaryfn
def c_log(x, y):
    return rcomplex.c_log(x,y)

_inner_wrapped_log = wrapped_log

def wrapped_log(space, w_z, w_base=None):
    w_logz = _inner_wrapped_log(space, w_z)
    if w_base is not None:
        w_logbase = _inner_wrapped_log(space, w_base)
        return space.truediv(w_logz, w_logbase)
    else:
        return w_logz
wrapped_log.func_doc = _inner_wrapped_log.func_doc


@unaryfn
def c_log10(x, y):
    return rcomplex.c_log10(x,y)

@unaryfn
def c_exp(x, y):
    return rcomplex.c_exp(x,y)

@unaryfn
def c_cosh(x, y):
    return rcomplex.c_cosh(x,y)

@unaryfn
def c_sinh(x, y):
    return rcomplex.c_sinh(x,y)

@unaryfn
def c_tanh(x, y):
    return rcomplex.c_tanh(x,y)

@unaryfn
def c_cos(x, y):
    return rcomplex.c_cos(x,y)

@unaryfn
def c_sin(x, y):
    return rcomplex.c_sin(x,y)

@unaryfn
def c_tan(x, y):
    return rcomplex.c_tan(x,y)

def c_rect(r, phi):
    return rcomplex.c_rect(r,phi)

def wrapped_rect(space, w_x, w_y):
    x = space.float_w(w_x)
    y = space.float_w(w_y)
    resx, resy = call_c_func(c_rect, space, x, y)
    return space.newcomplex(resx, resy)
wrapped_rect.func_doc = names_and_docstrings['rect']


def c_phase(x, y):
    return rcomplex.c_phase(x,y)

def wrapped_phase(space, w_z):
    x, y = space.unpackcomplex(w_z)
    result = call_c_func(c_phase, space, x, y)
    return space.newfloat(result)
wrapped_phase.func_doc = names_and_docstrings['phase']


def c_abs(x, y):
    return rcomplex.c_abs(x,y)

def c_polar(x, y):
    return rcomplex.c_polar(x,y)

def wrapped_polar(space, w_z):
    x, y = space.unpackcomplex(w_z)
    resx, resy = call_c_func(c_polar, space, x, y)
    return space.newtuple2(space.newfloat(resx), space.newfloat(resy))
wrapped_polar.func_doc = names_and_docstrings['polar']


def c_isinf(x, y):
    return rcomplex.c_isinf(x,y)

def wrapped_isinf(space, w_z):
    x, y = space.unpackcomplex(w_z)
    res = c_isinf(x, y)
    return space.newbool(res)
wrapped_isinf.func_doc = names_and_docstrings['isinf']


def c_isnan(x, y):
    return rcomplex.c_isnan(x,y)

def wrapped_isnan(space, w_z):
    x, y = space.unpackcomplex(w_z)
    res = c_isnan(x, y)
    return space.newbool(res)
wrapped_isnan.func_doc = names_and_docstrings['isnan']

def c_isfinite(x, y):
    return rcomplex.c_isfinite(x, y)

def wrapped_isfinite(space, w_z):
    x, y = space.unpackcomplex(w_z)
    res = c_isfinite(x, y)
    return space.newbool(res)
wrapped_isfinite.func_doc = names_and_docstrings['isfinite']


@unwrap_spec(rel_tol=float, abs_tol=float)
def isclose(space, w_a, w_b, __kwonly__, rel_tol=1e-09, abs_tol=0.0):
    """isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0) -> bool

Determine whether two complex numbers are close in value.

   rel_tol
       maximum difference for being considered "close", relative to the
       magnitude of the input values
   abs_tol
       maximum difference for being considered "close", regardless of the
       magnitude of the input values

Return True if a is close in value to b, and False otherwise.

For the values to be considered close, the difference between them
must be smaller than at least one of the tolerances.

-inf, inf and NaN behave similarly to the IEEE 754 Standard.  That
is, NaN is not close to anything, even itself.  inf and -inf are
only close to themselves."""
    ax, ay = space.unpackcomplex(w_a)
    bx, by = space.unpackcomplex(w_b)
    #
    # sanity check on the inputs
    if rel_tol < 0.0 or abs_tol < 0.0:
        raise oefmt(space.w_ValueError, "tolerances must be non-negative")
    #
    # short circuit exact equality -- needed to catch two infinities of
    # the same sign. And perhaps speeds things up a bit sometimes.
    if ax == bx and ay == by:
        return space.w_True
    #
    # This catches the case of two infinities of opposite sign, or
    # one infinity and one finite number. Two infinities of opposite
    # sign would otherwise have an infinite relative tolerance.
    # Two infinities of the same sign are caught by the equality check
    # above.
    if (math.isinf(ax) or math.isinf(ay) or
        math.isinf(bx) or math.isinf(by)):
        return space.w_False
    #
    # now do the regular computation
    # this is essentially the "weak" test from the Boost library
    diff = c_abs(bx - ax, by - ay)
    result = ((diff <= rel_tol * c_abs(bx, by) or
               diff <= rel_tol * c_abs(ax, ay)) or
              diff <= abs_tol)
    return space.newbool(result)