1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
from __future__ import with_statement
from pypy.module.cmath import interp_cmath
import os, sys, math
def test_special_values():
from rpython.rlib.special_value import sqrt_special_values
assert len(sqrt_special_values) == 7
assert len(sqrt_special_values[4]) == 7
assert isinstance(sqrt_special_values[5][1], tuple)
assert sqrt_special_values[5][1][0] == 1e200 * 1e200
assert sqrt_special_values[5][1][1] == -0.
assert math.copysign(1., sqrt_special_values[5][1][1]) == -1.
class AppTestCMath:
spaceconfig = dict(usemodules=['cmath'])
def test_sign(self):
import math
z = eval("-0j")
assert z == -0j
assert math.copysign(1., z.real) == -1.0
assert math.copysign(1., z.imag) == -1.0
def test_sqrt(self):
import cmath, math
assert cmath.sqrt(3+4j) == 2+1j
z = cmath.sqrt(-0j)
assert math.copysign(1., z.real) == 1.
assert math.copysign(1., z.imag) == -1.
dbl_min = 2.2250738585072014e-308
z = cmath.sqrt((dbl_min * 0.00000000000001) + 0j)
assert abs(z.real - 1.49107189843e-161) < 1e-170
assert z.imag == 0.0
z = cmath.sqrt(1e200*1e200 - 10j)
assert math.isinf(z.real) and z.real > 0.0
assert z.imag == 0.0 and math.copysign(1., z.imag) == -1.
def test_log(self):
import cmath, math
z = cmath.log(100j, 10j)
assert abs(z - (1.6824165174565446-0.46553647994440367j)) < 1e-10
def test_pi_tau_e(self):
import cmath, math
assert cmath.pi == math.pi
assert cmath.tau == math.tau
assert cmath.tau == cmath.pi * 2.0
assert cmath.e == math.e
def test_rect(self):
import cmath
z = cmath.rect(2.0, cmath.pi/2)
assert abs(z - 2j) < 1e-10
def test_polar(self):
import cmath
r, phi = cmath.polar(2j)
assert r == 2
assert abs(phi - cmath.pi/2) < 1e-10
def test_phase(self):
import cmath
phi = cmath.phase(2j)
assert abs(phi - cmath.pi/2) < 1e-10
def test_valueerror(self):
import cmath
raises(ValueError, cmath.log, 0j)
def test_stringarg(self):
import cmath
raises(TypeError, cmath.log, "-3j")
def test_isinf(self):
import cmath
assert not cmath.isinf(2+3j)
assert cmath.isinf(float("inf"))
assert cmath.isinf(-float("inf"))
assert cmath.isinf(complex("infj"))
assert cmath.isinf(complex("2-infj"))
assert cmath.isinf(complex("inf+nanj"))
assert cmath.isinf(complex("nan+infj"))
def test_isnan(self):
import cmath
assert not cmath.isnan(2+3j)
assert cmath.isnan(float("nan"))
assert cmath.isnan(complex("nanj"))
assert cmath.isnan(complex("inf+nanj"))
assert cmath.isnan(complex("nan+infj"))
def test_isfinite(self):
import cmath
import math
real_vals = [
float('-inf'), -2.3, -0.0, 0.0, 2.3, float('inf'), float('nan')
]
for x in real_vals:
for y in real_vals:
z = complex(x, y)
assert cmath.isfinite(z) == (math.isfinite(x) and math.isfinite(y))
def test_user_defined_complex(self):
import cmath
class Foo(object):
def __complex__(self):
return 2j
r, phi = cmath.polar(Foo())
assert r == 2
assert abs(phi - cmath.pi/2) < 1e-10
def test_user_defined_float(self):
import cmath
class Foo(object):
def __float__(self):
return 2.0
assert cmath.polar(Foo()) == (2, 0)
def test_isclose(self):
import cmath
raises(ValueError, cmath.isclose, 2, 3, rel_tol=-0.5)
raises(ValueError, cmath.isclose, 2, 3, abs_tol=-0.5)
for z in [0.0, 1.0, 1j,
complex("inf"), complex("infj"),
complex("-inf"), complex("-infj")]:
assert cmath.isclose(z, z)
assert not cmath.isclose(complex("infj"), complex("-infj"))
assert cmath.isclose(1j, 1j+1e-12)
assert not cmath.isclose(1j, 1j+1e-12, rel_tol=1e-13)
assert not cmath.isclose(100000j, 100001j)
assert cmath.isclose(100000j, 100001j, rel_tol=1e-4)
assert cmath.isclose(100000j, 100001j, abs_tol=1.5)
assert not cmath.isclose(100000j, 100001j, abs_tol=0.5)
def test_infinity_and_nan_constants(self):
import cmath, math
assert cmath.inf.real == math.inf
assert cmath.inf.imag == 0.0
assert cmath.infj.real == 0.0
assert cmath.infj.imag == math.inf
assert math.isnan(cmath.nan.real)
assert cmath.nan.imag == 0.0
assert cmath.nanj.real == 0.0
assert math.isnan(cmath.nanj.imag)
# Check consistency with reprs.
assert repr(cmath.inf) == "inf"
assert repr(cmath.infj) == "infj"
assert repr(cmath.nan) == "nan"
assert repr(cmath.nanj) == "nanj"
def parse_testfile(fname):
"""Parse a file with test values
Empty lines or lines starting with -- are ignored
yields id, fn, arg_real, arg_imag, exp_real, exp_imag
"""
with open(fname) as fp:
for line in fp:
# skip comment lines and blank lines
if line.startswith('--') or not line.strip():
continue
lhs, rhs = line.split('->')
id, fn, arg_real, arg_imag = lhs.split()
rhs_pieces = rhs.split()
exp_real, exp_imag = rhs_pieces[0], rhs_pieces[1]
flags = rhs_pieces[2:]
yield (id, fn,
float(arg_real), float(arg_imag),
float(exp_real), float(exp_imag),
flags
)
def rAssertAlmostEqual(a, b, rel_err = 2e-15, abs_err = 5e-323, msg=''):
"""Fail if the two floating-point numbers are not almost equal.
Determine whether floating-point values a and b are equal to within
a (small) rounding error. The default values for rel_err and
abs_err are chosen to be suitable for platforms where a float is
represented by an IEEE 754 double. They allow an error of between
9 and 19 ulps.
"""
# special values testing
if math.isnan(a):
if math.isnan(b):
return
raise AssertionError(msg + '%r should be nan' % (b,))
if math.isinf(a):
if a == b:
return
raise AssertionError(msg + 'finite result where infinity expected: '
'expected %r, got %r' % (a, b))
# if both a and b are zero, check whether they have the same sign
# (in theory there are examples where it would be legitimate for a
# and b to have opposite signs; in practice these hardly ever
# occur).
if not a and not b:
if math.copysign(1., a) != math.copysign(1., b):
raise AssertionError(msg + 'zero has wrong sign: expected %r, '
'got %r' % (a, b))
# if a-b overflows, or b is infinite, return False. Again, in
# theory there are examples where a is within a few ulps of the
# max representable float, and then b could legitimately be
# infinite. In practice these examples are rare.
try:
absolute_error = abs(b-a)
except OverflowError:
pass
else:
# test passes if either the absolute error or the relative
# error is sufficiently small. The defaults amount to an
# error of between 9 ulps and 19 ulps on an IEEE-754 compliant
# machine.
if absolute_error <= max(abs_err, rel_err * abs(a)):
return
raise AssertionError(msg + '%r and %r are not sufficiently close' % (a, b))
def test_specific_values():
#if not float.__getformat__("double").startswith("IEEE"):
# return
import rpython
# too fragile...
fname = os.path.join(os.path.dirname(rpython.rlib.__file__), 'test', 'rcomplex_testcases.txt')
for id, fn, ar, ai, er, ei, flags in parse_testfile(fname):
arg = (ar, ai)
expected = (er, ei)
function = getattr(interp_cmath, 'c_' + fn)
#
if 'divide-by-zero' in flags or 'invalid' in flags:
try:
actual = function(*arg)
except ValueError:
continue
else:
raise AssertionError('ValueError not raised in test '
'%s: %s(complex(%r, %r))' % (id, fn,
ar, ai))
if 'overflow' in flags:
try:
actual = function(*arg)
except OverflowError:
continue
else:
raise AssertionError('OverflowError not raised in test '
'%s: %s(complex(%r, %r))' % (id, fn,
ar, ai))
actual = function(*arg)
if 'ignore-real-sign' in flags:
actual = (abs(actual[0]), actual[1])
expected = (abs(expected[0]), expected[1])
if 'ignore-imag-sign' in flags:
actual = (actual[0], abs(actual[1]))
expected = (expected[0], abs(expected[1]))
# for the real part of the log function, we allow an
# absolute error of up to 2e-15.
if fn in ('log', 'log10'):
real_abs_err = 2e-15
else:
real_abs_err = 5e-323
error_message = (
'%s: %s(complex(%r, %r))\n'
'Expected: complex(%r, %r)\n'
'Received: complex(%r, %r)\n'
) % (id, fn, ar, ai,
expected[0], expected[1],
actual[0], actual[1])
rAssertAlmostEqual(expected[0], actual[0],
abs_err=real_abs_err,
msg=error_message)
rAssertAlmostEqual(expected[1], actual[1],
msg=error_message)
|