1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
"""
Numpy C-API for PyPy - S. H. Muller, 2013/07/26
"""
from pypy.interpreter.error import OperationError, oefmt
from rpython.rtyper.lltypesystem import rffi, lltype
from pypy.module.cpyext.api import cpython_api, Py_ssize_t, CANNOT_FAIL
from pypy.module.cpyext.api import PyObject
from pypy.module.micronumpy.ndarray import W_NDimArray
from pypy.module.micronumpy.ctors import array
from pypy.module.micronumpy.descriptor import get_dtype_cache, W_Dtype
from pypy.module.micronumpy.concrete import ConcreteArray
from pypy.module.micronumpy.constants import (ARRAY_C_CONTIGUOUS,
ARRAY_F_CONTIGUOUS, ARRAY_OWNDATA, ARRAY_ALIGNED, ARRAY_WRITEABLE,
ARRAY_NOTSWAPPED, CORDER, FORTRANORDER)
from pypy.module.micronumpy import ufuncs
from rpython.rlib.rawstorage import RAW_STORAGE_PTR
from pypy.interpreter.typedef import TypeDef
from pypy.interpreter.baseobjspace import W_Root
from pypy.interpreter.argument import Arguments
from pypy.interpreter.gateway import interp2app
ARRAY_BEHAVED = ARRAY_ALIGNED | ARRAY_WRITEABLE
ARRAY_BEHAVED_NS = ARRAY_ALIGNED | ARRAY_WRITEABLE | ARRAY_NOTSWAPPED
ARRAY_CARRAY = ARRAY_C_CONTIGUOUS | ARRAY_BEHAVED
ARRAY_DEFAULT = ARRAY_CARRAY
npy_intpp = rffi.CArrayPtr(Py_ssize_t)
HEADER = 'pypy_numpy.h'
@cpython_api([PyObject], rffi.INT_real, error=CANNOT_FAIL, header=HEADER)
def _PyArray_Check(space, w_obj):
w_obj_type = space.type(w_obj)
w_type = space.gettypeobject(W_NDimArray.typedef)
return (space.is_w(w_obj_type, w_type) or
space.issubtype_w(w_obj_type, w_type))
@cpython_api([PyObject], rffi.INT_real, error=CANNOT_FAIL, header=HEADER)
def _PyArray_CheckExact(space, w_obj):
w_obj_type = space.type(w_obj)
w_type = space.gettypeobject(W_NDimArray.typedef)
return space.is_w(w_obj_type, w_type)
@cpython_api([PyObject], rffi.INT_real, error=CANNOT_FAIL, header=HEADER)
def _PyArray_FLAGS(space, w_array):
assert isinstance(w_array, W_NDimArray)
flags = ARRAY_BEHAVED_NS | w_array.get_flags()
return flags
@cpython_api([PyObject], rffi.INT_real, error=CANNOT_FAIL, header=HEADER)
def _PyArray_NDIM(space, w_array):
assert isinstance(w_array, W_NDimArray)
return len(w_array.get_shape())
@cpython_api([PyObject, Py_ssize_t], Py_ssize_t, error=CANNOT_FAIL, header=HEADER)
def _PyArray_DIM(space, w_array, n):
assert isinstance(w_array, W_NDimArray)
return w_array.get_shape()[n]
@cpython_api([PyObject, Py_ssize_t], Py_ssize_t, error=CANNOT_FAIL, header=HEADER)
def _PyArray_STRIDE(space, w_array, n):
assert isinstance(w_array, W_NDimArray)
return w_array.implementation.get_strides()[n]
@cpython_api([PyObject], Py_ssize_t, error=CANNOT_FAIL, header=HEADER)
def _PyArray_SIZE(space, w_array):
assert isinstance(w_array, W_NDimArray)
return w_array.get_size()
@cpython_api([PyObject], rffi.INT_real, error=CANNOT_FAIL, header=HEADER)
def _PyArray_ITEMSIZE(space, w_array):
assert isinstance(w_array, W_NDimArray)
return w_array.get_dtype().elsize
@cpython_api([PyObject], Py_ssize_t, error=CANNOT_FAIL, header=HEADER)
def _PyArray_NBYTES(space, w_array):
assert isinstance(w_array, W_NDimArray)
return w_array.get_size() * w_array.get_dtype().elsize
@cpython_api([PyObject], rffi.INT_real, error=CANNOT_FAIL, header=HEADER)
def _PyArray_TYPE(space, w_array):
assert isinstance(w_array, W_NDimArray)
return w_array.get_dtype().num
@cpython_api([PyObject], rffi.VOIDP, error=CANNOT_FAIL, header=HEADER)
def _PyArray_DATA(space, w_array):
# fails on scalars - see PyArray_FromAny()
assert isinstance(w_array, W_NDimArray)
return rffi.cast(rffi.VOIDP, w_array.implementation.storage)
PyArray_Descr = PyObject
NULL = lltype.nullptr(rffi.VOIDP.TO)
@cpython_api([PyObject, PyArray_Descr, Py_ssize_t, Py_ssize_t, Py_ssize_t, rffi.VOIDP],
PyObject, header=HEADER)
def _PyArray_FromAny(space, w_obj, w_dtype, min_depth, max_depth, requirements, context):
""" This is the main function used to obtain an array from any nested
sequence, or object that exposes the array interface, op. The
parameters allow specification of the required dtype, the
minimum (min_depth) and maximum (max_depth) number of dimensions
acceptable, and other requirements for the array.
The dtype argument needs to be a PyArray_Descr structure indicating
the desired data-type (including required byteorder). The dtype
argument may be NULL, indicating that any data-type (and byteorder)
is acceptable.
Unless FORCECAST is present in flags, this call will generate an error
if the data type cannot be safely obtained from the object. If you
want to use NULL for the dtype and ensure the array is notswapped then
use PyArray_CheckFromAny.
A value of 0 for either of the depth parameters causes the parameter
to be ignored.
Any of the following array flags can be added (e.g. using |) to get
the requirements argument. If your code can handle general (e.g.
strided, byte-swapped, or unaligned arrays) then requirements
may be 0. Also, if op is not already an array (or does not expose
the array interface), then a new array will be created (and filled
from op using the sequence protocol). The new array will have
ARRAY_DEFAULT as its flags member.
The context argument is passed to the __array__ method of op and is
only used if the array is constructed that way. Almost always this
parameter is NULL.
"""
if requirements not in (0, ARRAY_DEFAULT):
raise oefmt(space.w_NotImplementedError,
"_PyArray_FromAny called with not-implemented "
"requirements argument")
w_array = array(space, w_obj, w_dtype=w_dtype, copy=False)
if min_depth !=0 and len(w_array.get_shape()) < min_depth:
raise oefmt(space.w_ValueError,
"object of too small depth for desired array")
elif max_depth !=0 and len(w_array.get_shape()) > max_depth:
raise oefmt(space.w_ValueError,
"object of too deep for desired array")
elif w_array.is_scalar():
# since PyArray_DATA() fails on scalars, create a 1D array and set empty
# shape. So the following combination works for *reading* scalars:
# PyObject *arr = PyArray_FromAny(obj);
# int nd = PyArray_NDIM(arr);
# void *data = PyArray_DATA(arr);
impl = w_array.implementation
w_array = W_NDimArray.from_shape(space, [1], impl.dtype)
w_array.implementation.setitem(0, impl.getitem(impl.start + 0))
w_array.implementation.shape = []
return w_array
@cpython_api([Py_ssize_t], PyObject, header=HEADER)
def PyArray_DescrFromType(space, typenum):
try:
dtype = get_dtype_cache(space).dtypes_by_num(typenum)
return dtype
except KeyError:
raise oefmt(space.w_ValueError,
"PyArray_DescrFromType called with invalid dtype %d",
typenum)
@cpython_api([PyObject, Py_ssize_t, Py_ssize_t, Py_ssize_t], PyObject, header=HEADER)
def _PyArray_FromObject(space, w_obj, typenum, min_depth, max_depth):
try:
dtype = get_dtype_cache(space).dtypes_by_num(typenum)
except KeyError:
raise oefmt(space.w_ValueError,
"_PyArray_FromObject called with invalid dtype %d",
typenum)
try:
return _PyArray_FromAny(space, w_obj, dtype, min_depth, max_depth,
0, NULL);
except OperationError as e:
if e.match(space, space.w_NotImplementedError):
errstr = space.text_w(e.get_w_value(space))
raise oefmt(space.w_NotImplementedError,
"_PyArray_FromObject %s", errstr[16:])
raise
def get_shape_and_dtype(space, nd, dims, typenum):
shape = []
for i in range(nd):
shape.append(rffi.cast(rffi.LONG, dims[i]))
dtype = get_dtype_cache(space).dtypes_by_num(typenum)
return shape, dtype
def simple_new(space, nd, dims, typenum,
order=CORDER, owning=False, w_subtype=None):
shape, dtype = get_shape_and_dtype(space, nd, dims, typenum)
return W_NDimArray.from_shape(space, shape, dtype)
def simple_new_from_data(space, nd, dims, typenum, data,
order=CORDER, owning=False, w_subtype=None):
shape, dtype = get_shape_and_dtype(space, nd, dims, typenum)
storage = rffi.cast(RAW_STORAGE_PTR, data)
return W_NDimArray.from_shape_and_storage(space, shape, storage, dtype,
order=order, owning=owning, w_subtype=w_subtype)
@cpython_api([Py_ssize_t, npy_intpp, Py_ssize_t], PyObject, header=HEADER)
def _PyArray_SimpleNew(space, nd, dims, typenum):
return simple_new(space, nd, dims, typenum)
@cpython_api([Py_ssize_t, npy_intpp, Py_ssize_t, rffi.VOIDP], PyObject, header=HEADER)
def _PyArray_SimpleNewFromData(space, nd, dims, typenum, data):
return simple_new_from_data(space, nd, dims, typenum, data, owning=False)
@cpython_api([Py_ssize_t, npy_intpp, Py_ssize_t, rffi.VOIDP], PyObject, header=HEADER)
def _PyArray_SimpleNewFromDataOwning(space, nd, dims, typenum, data):
# Variant to take over ownership of the memory, equivalent to:
# PyObject *arr = PyArray_SimpleNewFromData(nd, dims, typenum, data);
# ((PyArrayObject*)arr)->flags |= ARRAY_OWNDATA;
return simple_new_from_data(space, nd, dims, typenum, data, owning=True)
@cpython_api([rffi.VOIDP, Py_ssize_t, npy_intpp, Py_ssize_t, npy_intpp,
rffi.VOIDP, Py_ssize_t, Py_ssize_t, PyObject], PyObject, header=HEADER)
def _PyArray_New(space, subtype, nd, dims, typenum, strides, data, itemsize, flags, obj):
if strides:
raise oefmt(space.w_NotImplementedError, "strides must be NULL")
order = CORDER if flags & ARRAY_C_CONTIGUOUS else FORTRANORDER
owning = True if flags & ARRAY_OWNDATA else False
w_subtype = None
if data:
return simple_new_from_data(space, nd, dims, typenum, data,
order=order, owning=owning, w_subtype=w_subtype)
else:
return simple_new(space, nd, dims, typenum,
order=order, owning=owning, w_subtype=w_subtype)
@cpython_api([PyObject, PyObject], rffi.INT_real, error=-1, header=HEADER)
def PyArray_CopyInto(space, w_dest, w_src):
assert isinstance(w_dest, W_NDimArray)
assert isinstance(w_src, W_NDimArray)
space.appexec([w_dest, w_src], """(dest, src):
dest[:] = src
""" )
return 0
gufunctype = lltype.Ptr(ufuncs.GenericUfunc)
@cpython_api([rffi.CArrayPtr(gufunctype), rffi.VOIDP, rffi.CCHARP, Py_ssize_t, Py_ssize_t,
Py_ssize_t, Py_ssize_t, rffi.CCHARP, rffi.CCHARP, Py_ssize_t,
rffi.CCHARP], PyObject, header=HEADER)
def PyUFunc_FromFuncAndDataAndSignature(space, funcs, data, types, ntypes,
nin, nout, identity, name, doc, check_return, signature):
w_signature = rffi.charp2str(signature)
return do_ufunc(space, funcs, data, types, ntypes, nin, nout, identity, name, doc,
check_return, w_signature)
def do_ufunc(space, funcs, data, types, ntypes, nin, nout, identity, name, doc,
check_return, w_signature):
funcs_w = [None] * ntypes
dtypes_w = [None] * ntypes * (nin + nout)
for i in range(ntypes):
funcs_w[i] = ufuncs.W_GenericUFuncCaller(funcs[i], data)
for i in range(ntypes*(nin+nout)):
dtypes_w[i] = get_dtype_cache(space).dtypes_by_num(ord(types[i]))
w_funcs = space.newlist(funcs_w)
w_dtypes = space.newlist(dtypes_w)
w_doc = rffi.charp2str(doc)
w_name = rffi.charp2str(name)
w_identity = space.newint(identity)
ufunc_generic = ufuncs.frompyfunc(space, w_funcs, nin, nout, w_dtypes,
w_signature, w_identity, w_name, w_doc, stack_inputs=True)
return ufunc_generic
@cpython_api([rffi.CArrayPtr(gufunctype), rffi.VOIDP, rffi.CCHARP, Py_ssize_t, Py_ssize_t,
Py_ssize_t, Py_ssize_t, rffi.CCHARP, rffi.CCHARP, Py_ssize_t], PyObject, header=HEADER)
def PyUFunc_FromFuncAndData(space, funcs, data, types, ntypes,
nin, nout, identity, name, doc, check_return):
w_signature = ','.join(['()'] * nin) + '->' + ','.join(['()'] * nout)
return do_ufunc(space, funcs, data, types, ntypes, nin, nout, identity,
name, doc, check_return, w_signature)
|