1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
|
from pypy.interpreter.baseobjspace import W_Root
from pypy.interpreter.error import OperationError, oefmt
from pypy.interpreter.typedef import TypeDef, make_weakref_descr
from pypy.interpreter.gateway import interp2app, unwrap_spec, WrappedDefault
from pypy.objspace.std.util import generic_alias_class_getitem, builtinclass_new_args_check
from rpython.rlib import jit
from rpython.rtyper.lltypesystem import rffi
from pypy.module.__builtin__.functional import W_Filter, build_iterators_from_args
def W_Twoarg__new__(space, w_subtype, W_Base, name, __args__):
args_w = __args__.arguments_w
w_type = space.gettypeobject(W_Base.typedef)
w_init = space.newtext("__init__")
if (space.is_w(w_subtype, w_type) or
space.is_w(space.getattr(w_subtype, w_init), space.getattr(w_type, w_init))):
if __args__.keyword_names_w:
raise oefmt(space.w_TypeError,
"%s() takes no keyword arguments", name)
length = len(args_w) if args_w else 0
if length != 2:
raise oefmt(space.w_TypeError,
"%s() expected 2 arguments, got %d", name, length)
return args_w
class W_Count(W_Root):
def __init__(self, space, w_firstval, w_step):
self.space = space
self.w_c = w_firstval
self.w_step = w_step
def iter_w(self):
return self
def next_w(self):
w_c = self.w_c
self.w_c = self.space.add(w_c, self.w_step)
return w_c
def single_argument(self):
space = self.space
return (space.isinstance_w(self.w_step, space.w_int) and
space.eq_w(self.w_step, space.newint(1)))
def repr_w(self):
space = self.space
cls_name = space.type(self).getname(space)
c = space.text_w(space.repr(self.w_c))
if self.single_argument():
s = '%s(%s)' % (cls_name, c)
else:
step = space.text_w(space.repr(self.w_step))
s = '%s(%s, %s)' % (cls_name, c, step)
return self.space.newtext(s)
def reduce_w(self):
space = self.space
if self.single_argument():
args_w = [self.w_c]
else:
args_w = [self.w_c, self.w_step]
return space.newtuple2(space.gettypefor(W_Count),
space.newtuple(args_w))
def check_number(space, w_obj):
if (space.lookup(w_obj, '__int__') is None and
space.lookup(w_obj, '__float__') is None and
not space.isinstance_w(w_obj, space.w_complex)
):
raise oefmt(space.w_TypeError, "expected a number")
@unwrap_spec(w_start=WrappedDefault(0), w_step=WrappedDefault(1))
def W_Count___new__(space, w_subtype, w_start, w_step):
check_number(space, w_start)
check_number(space, w_step)
r = space.allocate_instance(W_Count, w_subtype)
r.__init__(space, w_start, w_step)
return r
W_Count.typedef = TypeDef(
'itertools.count',
__new__ = interp2app(W_Count___new__),
__iter__ = interp2app(W_Count.iter_w),
__next__ = interp2app(W_Count.next_w),
__reduce__ = interp2app(W_Count.reduce_w),
__repr__ = interp2app(W_Count.repr_w),
__doc__ = """Make an iterator that returns evenly spaced values starting
with n. If not specified n defaults to zero. Often used as an
argument to imap() to generate consecutive data points. Also,
used with izip() to add sequence numbers.
Equivalent to:
def count(start=0, step=1):
n = start
while True:
yield n
n += step
""")
class W_Repeat(W_Root):
def __init__(self, space, w_obj, w_times):
self.space = space
self.w_obj = w_obj
if w_times is None:
self.counting = False
self.count = 0
else:
self.counting = True
self.count = max(self.space.int_w(w_times), 0)
def next_w(self):
if self.counting:
if self.count <= 0:
raise OperationError(self.space.w_StopIteration, self.space.w_None)
self.count -= 1
return self.w_obj
def iter_w(self):
return self
def length_w(self):
if not self.counting:
return self.space.w_NotImplemented
return self.space.newint(self.count)
def repr_w(self):
space = self.space
cls_name = space.type(self).getname(space)
objrepr = self.space.text_w(space.repr(self.w_obj))
if self.counting:
s = '%s(%s, %d)' % (cls_name, objrepr, self.count)
else:
s = '%s(%s)' % (cls_name, objrepr)
return self.space.newtext(s)
def descr_reduce(self):
space = self.space
if self.counting:
args_w = [self.w_obj, space.newint(self.count)]
else:
args_w = [self.w_obj]
return space.newtuple([space.gettypefor(W_Repeat),
space.newtuple(args_w)])
def W_Repeat___new__(space, w_subtype, w_object, w_times=None):
r = space.allocate_instance(W_Repeat, w_subtype)
r.__init__(space, w_object, w_times)
return r
W_Repeat.typedef = TypeDef(
'itertools.repeat',
__new__ = interp2app(W_Repeat___new__),
__iter__ = interp2app(W_Repeat.iter_w),
__length_hint__ = interp2app(W_Repeat.length_w),
__next__ = interp2app(W_Repeat.next_w),
__repr__ = interp2app(W_Repeat.repr_w),
__reduce__ = interp2app(W_Repeat.descr_reduce),
__doc__ = """Make an iterator that returns object over and over again.
Runs indefinitely unless the times argument is specified. Used
as argument to imap() for invariant parameters to the called
function.
Equivalent to :
def repeat(object, times=None):
if times is None:
while True:
yield object
else:
for i in xrange(times):
yield object
""")
class W_TakeWhile(W_Root):
def __init__(self, space, w_predicate, w_iterable):
self.space = space
self.w_predicate = w_predicate
self.w_iterable = space.iter(w_iterable)
self.stopped = False
def iter_w(self):
return self
def next_w(self):
if self.stopped:
raise OperationError(self.space.w_StopIteration, self.space.w_None)
w_obj = self.space.next(self.w_iterable) # may raise a w_StopIteration
w_bool = self.space.call_function(self.w_predicate, w_obj)
if not self.space.is_true(w_bool):
self.stopped = True
raise OperationError(self.space.w_StopIteration, self.space.w_None)
return w_obj
def descr_reduce(self, space):
return space.newtuple([
space.type(self),
space.newtuple([self.w_predicate, self.w_iterable]),
space.newbool(self.stopped)
])
def descr_setstate(self, space, w_state):
self.stopped = space.bool_w(w_state)
def W_TakeWhile___new__(space, w_subtype, __args__):
args_w = W_Twoarg__new__(space, w_subtype, W_TakeWhile, "takewhile", __args__)
r = space.allocate_instance(W_TakeWhile, w_subtype)
r.__init__(space, args_w[0], args_w[1])
return r
W_TakeWhile.typedef = TypeDef(
'itertools.takewhile',
__new__ = interp2app(W_TakeWhile___new__),
__iter__ = interp2app(W_TakeWhile.iter_w),
__next__ = interp2app(W_TakeWhile.next_w),
__reduce__ = interp2app(W_TakeWhile.descr_reduce),
__setstate__ = interp2app(W_TakeWhile.descr_setstate),
__doc__ = """Make an iterator that returns elements from the iterable as
long as the predicate is true.
Equivalent to :
def takewhile(predicate, iterable):
for x in iterable:
if predicate(x):
yield x
else:
break
""")
class W_DropWhile(W_Root):
def __init__(self, space, w_predicate, w_iterable):
self.space = space
self.w_predicate = w_predicate
self.w_iterable = space.iter(w_iterable)
self.started = False
def iter_w(self):
return self
def next_w(self):
if self.started:
w_obj = self.space.next(self.w_iterable) # may raise w_StopIter
else:
while True:
w_obj = self.space.next(self.w_iterable) # may raise w_StopIter
w_bool = self.space.call_function(self.w_predicate, w_obj)
if not self.space.is_true(w_bool):
self.started = True
break
return w_obj
def descr_reduce(self, space):
return space.newtuple([
space.type(self),
space.newtuple([self.w_predicate, self.w_iterable]),
space.newbool(self.started)
])
def descr_setstate(self, space, w_state):
self.started = space.bool_w(w_state)
def W_DropWhile___new__(space, w_subtype, __args__):
args_w = W_Twoarg__new__(space, w_subtype, W_DropWhile, "dropwhile", __args__)
r = space.allocate_instance(W_DropWhile, w_subtype)
r.__init__(space, args_w[0], args_w[1])
return r
W_DropWhile.typedef = TypeDef(
'itertools.dropwhile',
__new__ = interp2app(W_DropWhile___new__),
__iter__ = interp2app(W_DropWhile.iter_w),
__next__ = interp2app(W_DropWhile.next_w),
__reduce__ = interp2app(W_DropWhile.descr_reduce),
__setstate__ = interp2app(W_DropWhile.descr_setstate),
__doc__ = """Make an iterator that drops elements from the iterable as long
as the predicate is true; afterwards, returns every
element. Note, the iterator does not produce any output until the
predicate is true, so it may have a lengthy start-up time.
Equivalent to :
def dropwhile(predicate, iterable):
iterable = iter(iterable)
for x in iterable:
if not predicate(x):
yield x
break
for x in iterable:
yield x
""")
class W_FilterFalse(W_Filter):
reverse = True
def descr_reduce(self, space):
args_w = [space.w_None if self.w_predicate is None else self.w_predicate,
self.w_iterable]
return space.newtuple([space.type(self), space.newtuple(args_w)])
def W_FilterFalse___new__(space, w_subtype, __args__):
args_w = W_Twoarg__new__(space, w_subtype, W_FilterFalse, 'filterfalse', __args__)
r = space.allocate_instance(W_FilterFalse, w_subtype)
r.__init__(space, args_w[0], args_w[1])
return r
W_FilterFalse.typedef = TypeDef(
'itertools.filterfalse',
__new__ = interp2app(W_FilterFalse___new__),
__iter__ = interp2app(W_FilterFalse.iter_w),
__next__ = interp2app(W_FilterFalse.next_w),
__reduce__ = interp2app(W_FilterFalse.descr_reduce),
__doc__ = """Make an iterator that filters elements from iterable returning
only those for which the predicate is False. If predicate is
None, return the items that are false.
Equivalent to :
def filterfalse(predicate, iterable):
if predicate is None:
predicate = bool
for x in iterable:
if not predicate(x):
yield x
""")
def get_printable_location(greenkey):
return "islice_ignore_items [%s]" % (greenkey.iterator_greenkey_printable(), )
islice_ignore_items_driver = jit.JitDriver(name='islice_ignore_items',
greens=['greenkey'],
reds=['w_islice', 'w_iterator'],
get_printable_location=get_printable_location)
class W_ISlice(W_Root):
def __init__(self, space, w_iterable, w_startstop, args_w):
self.iterable = space.iter(w_iterable)
self.space = space
num_args = len(args_w)
if num_args == 0:
start = 0
w_stop = w_startstop
elif num_args <= 2:
if space.is_w(w_startstop, space.w_None):
start = 0
else:
start = self.arg_int_w(w_startstop, 0,
"Indicies for islice() must be None or non-negative integers")
w_stop = args_w[0]
else:
raise oefmt(space.w_TypeError,
"islice() takes at most 4 arguments (%d given)",
num_args)
if space.is_w(w_stop, space.w_None):
stop = -1
else:
stop = self.arg_int_w(w_stop, 0,
"Stop argument must be a non-negative integer or None.")
stop = max(start, stop) # for obscure CPython compatibility
if num_args == 2:
w_step = args_w[1]
if space.is_w(w_step, space.w_None):
step = 1
else:
step = self.arg_int_w(w_step, 1,
"Step for islice() must be a positive integer or None")
else:
step = 1
self.count = rffi.cast(rffi.UNSIGNED, 0)
self.next = rffi.cast(rffi.UNSIGNED, start)
self.stop = stop
self.step = rffi.cast(rffi.UNSIGNED, step)
def arg_int_w(self, w_obj, minimum, errormsg):
space = self.space
try:
result = space.int_w(space.index(w_obj))
except OperationError as e:
if e.async(space):
raise
result = -1
if result < minimum:
raise OperationError(space.w_ValueError, space.newtext(errormsg))
return result
def iter_w(self):
return self
def next_w(self):
if self.iterable is None:
raise OperationError(self.space.w_StopIteration, self.space.w_None)
if self.count != self.next:
self._ignore_items()
stop = self.stop
if 0 <= stop <= self.count:
self.iterable = None
raise OperationError(self.space.w_StopIteration,
self.space.w_None)
try:
item = self.space.next(self.iterable)
except OperationError as e:
if e.match(self.space, self.space.w_StopIteration):
self.iterable = None
raise
self.count += 1
oldnext = self.next
new_next = self.next + self.step
if new_next < oldnext or (stop >=0 and new_next > rffi.cast(rffi.UNSIGNED,stop)):
self.next = rffi.cast(rffi.UNSIGNED, stop)
else:
self.next = new_next
return item
def _ignore_items(self):
w_iterator = self.iterable
greenkey = self.space.iterator_greenkey(w_iterator)
while True:
islice_ignore_items_driver.jit_merge_point(
greenkey=greenkey, w_islice=self, w_iterator=w_iterator)
if self.count >= self.next:
break
try:
self.space.next(w_iterator)
except OperationError as e:
if e.match(self.space, self.space.w_StopIteration):
self.iterable = None
raise
self.count += 1
def descr_reduce(self, space):
if self.iterable is None:
return space.newtuple([
space.type(self),
space.newtuple([space.iter(space.newlist([])),
space.newint(0)]),
space.newint(0),
])
stop = self.stop
if stop == -1:
w_stop = space.w_None
else:
w_stop = space.newint(stop)
return space.newtuple([
space.type(self),
space.newtuple([self.iterable,
space.newint(self.next),
w_stop,
space.newint(self.step)]),
space.newint(self.count),
])
def descr_setstate(self, space, w_state):
self.count = rffi.cast(rffi.UNSIGNED, space.int_w(w_state))
def W_ISlice___new__(space, w_subtype, w_iterable, w_startstop, __args__):
args_w = __args__.arguments_w
w_islice = space.gettypeobject(W_ISlice.typedef)
w_init = space.newtext("__init__")
if (space.is_w(w_subtype, w_islice) or
space.is_w(space.getattr(w_subtype, w_init), space.getattr(w_islice, w_init))):
if __args__.keyword_names_w:
raise oefmt(space.w_TypeError,
"islice() takes no keyword arguments")
r = space.allocate_instance(W_ISlice, w_subtype)
r.__init__(space, w_iterable, w_startstop, args_w)
return r
W_ISlice.typedef = TypeDef(
'itertools.islice',
__new__ = interp2app(W_ISlice___new__),
__iter__ = interp2app(W_ISlice.iter_w),
__next__ = interp2app(W_ISlice.next_w),
__reduce__ = interp2app(W_ISlice.descr_reduce),
__setstate__ = interp2app(W_ISlice.descr_setstate),
__doc__ = """Make an iterator that returns selected elements from the
iterable. If start is non-zero, then elements from the iterable
are skipped until start is reached. Afterward, elements are
returned consecutively unless step is set higher than one which
results in items being skipped. If stop is None, then iteration
continues until the iterator is exhausted, if at all; otherwise,
it stops at the specified position. Unlike regular slicing,
islice() does not support negative values for start, stop, or
step. Can be used to extract related fields from data where the
internal structure has been flattened (for example, a multi-line
report may list a name field on every third line).
""")
class W_Chain(W_Root):
def __init__(self, space, w_iterables):
self.space = space
self.w_iterables = w_iterables
self.w_it = None
def iter_w(self):
return self
def _advance(self):
if self.w_iterables is None:
raise OperationError(self.space.w_StopIteration, self.space.w_None)
self.w_it = self.space.iter(self.space.next(self.w_iterables))
def next_w(self):
if not self.w_it:
try:
self._advance()
except OperationError as e:
raise e
try:
return self.space.next(self.w_it)
except OperationError as e:
return self._handle_error(e)
def _handle_error(self, e):
while True:
if not e.match(self.space, self.space.w_StopIteration):
raise e
try:
self._advance() # may raise StopIteration itself
except OperationError as e:
self.w_iterables = None
raise e
try:
return self.space.next(self.w_it)
except OperationError as e:
pass # loop back to the start of _handle_error(e)
def descr_reduce(self, space):
if self.w_iterables is not None:
if self.w_it is not None:
inner_contents = [self.w_iterables, self.w_it]
else:
inner_contents = [self.w_iterables]
result_w = [space.type(self),
space.newtuple([]),
space.newtuple(inner_contents)]
else:
result_w = [space.type(self),
space.newtuple([])]
return space.newtuple(result_w)
def descr_setstate(self, space, w_state):
state = space.unpackiterable(w_state)
num_args = len(state)
if num_args < 1:
raise oefmt(space.w_TypeError,
"function takes at least 1 argument (%d given)",
num_args)
elif num_args == 1:
self.w_iterables = state[0]
elif num_args == 2:
self.w_iterables, self.w_it = state
else:
raise oefmt(space.w_TypeError,
"function takes at most 2 arguments (%d given)",
num_args)
def W_Chain___new__(space, w_subtype, __args__):
args_w = __args__.arguments_w
w_chain = space.gettypeobject(W_Chain.typedef)
w_init = space.newtext("__init__")
if (space.is_w(w_subtype, w_chain) or
space.is_w(space.getattr(w_subtype, w_init), space.getattr(w_chain, w_init))):
if __args__.keyword_names_w:
raise oefmt(space.w_TypeError,
"chain() takes no keyword arguments")
r = space.allocate_instance(W_Chain, w_subtype)
w_args = space.newtuple(args_w)
r.__init__(space, space.iter(w_args))
return r
def chain_from_iterable(space, w_cls, w_arg):
"""chain.from_iterable(iterable) --> chain object
Alternate chain() constructor taking a single iterable argument
that evaluates lazily."""
r = space.allocate_instance(W_Chain, w_cls)
r.__init__(space, space.iter(w_arg))
return r
W_Chain.typedef = TypeDef(
'itertools.chain',
__new__ = interp2app(W_Chain___new__),
__iter__ = interp2app(W_Chain.iter_w),
__next__ = interp2app(W_Chain.next_w),
__reduce__ = interp2app(W_Chain.descr_reduce),
__setstate__ = interp2app(W_Chain.descr_setstate),
from_iterable = interp2app(chain_from_iterable, as_classmethod=True),
__class_getitem__ = interp2app(
generic_alias_class_getitem, as_classmethod=True),
__doc__ = """Make an iterator that returns elements from the first iterable
until it is exhausted, then proceeds to the next iterable, until
all of the iterables are exhausted. Used for treating consecutive
sequences as a single sequence.
Equivalent to :
def chain(*iterables):
for it in iterables:
for element in it:
yield element
""")
class W_ZipLongest(W_Root):
_immutable_fields_ = ["w_fillvalue", "iterators"]
def __init__(self, space, w_fun, args_w):
self.space = space
self.w_fun = w_fun
self.iterators_w = build_iterators_from_args(space, args_w, "zip_longest")
def iter_w(self):
return self
def _fetch(self, index):
w_iter = self.iterators_w[index]
if w_iter is not None:
space = self.space
try:
return space.next(w_iter)
except OperationError as e:
if not e.match(space, space.w_StopIteration):
raise
self.active -= 1
if self.active <= 0:
# It was the last active iterator
raise
self.iterators_w[index] = None
return self.w_fillvalue
def next_w(self):
# common case: 2 arguments
if len(self.iterators_w) == 2:
return self.space.newtuple2(self._fetch(0), self._fetch(1))
else:
objects = self._get_objects()
return self.space.newtuple(objects)
def _get_objects(self):
# the loop is out of the way of the JIT
nb = len(self.iterators_w)
if nb == 0:
raise OperationError(self.space.w_StopIteration, self.space.w_None)
return [self._fetch(index) for index in range(nb)]
def descr_reduce(self, space):
result_w = [space.type(self)]
if self.iterators_w is not None:
iterators = [iterator if iterator is not None else space.newtuple([])
for iterator in self.iterators_w]
iterators = space.newtuple(iterators)
else:
iterators = space.newtuple([])
result_w = [space.type(self),
iterators,
self.w_fillvalue]
return space.newtuple(result_w)
def descr_setstate(self, space, w_state):
self.w_fillvalue = w_state
def iterator_greenkey(self, space):
# XXX in theory we should tupleize the greenkeys of all the
# sub-iterators, but much more work
if len(self.iterators_w) > 0:
return space.iterator_greenkey(self.iterators_w[0])
return None
def W_ZipLongest___new__(space, w_subtype, __args__):
arguments_w, kwds_w = __args__.unpack()
w_fillvalue = space.w_None
if kwds_w:
if "fillvalue" in kwds_w:
w_fillvalue = kwds_w["fillvalue"]
del kwds_w["fillvalue"]
if kwds_w:
raise oefmt(space.w_TypeError,
"zip_longest() got unexpected keyword argument(s)")
self = space.allocate_instance(W_ZipLongest, w_subtype)
self.__init__(space, space.w_None, arguments_w)
self.w_fillvalue = w_fillvalue
self.active = len(self.iterators_w)
return self
W_ZipLongest.typedef = TypeDef(
'itertools.zip_longest',
__new__ = interp2app(W_ZipLongest___new__),
__iter__ = interp2app(W_ZipLongest.iter_w),
__next__ = interp2app(W_ZipLongest.next_w),
__reduce__ = interp2app(W_ZipLongest.descr_reduce),
__setstate__ = interp2app(W_ZipLongest.descr_setstate),
__doc__ = """Return a zip_longest object whose .next() method returns a tuple where
the i-th element comes from the i-th iterable argument. The .next()
method continues until the longest iterable in the argument sequence
is exhausted and then it raises StopIteration. When the shorter iterables
are exhausted, the fillvalue is substituted in their place. The fillvalue
defaults to None or can be specified by a keyword argument.
""")
class W_Cycle(W_Root):
def __init__(self, space, w_iterable):
self.space = space
self.saved_w = []
self.w_iterable = space.iter(w_iterable)
self.index = 0 # 0 during the first iteration; > 0 afterwards
def iter_w(self):
return self
def next_w(self):
if self.index > 0:
if not self.saved_w:
raise OperationError(self.space.w_StopIteration, self.space.w_None)
try:
w_obj = self.saved_w[self.index]
except IndexError:
self.index = 1
w_obj = self.saved_w[0]
else:
self.index += 1
else:
try:
w_obj = self.space.next(self.w_iterable)
except OperationError as e:
if e.match(self.space, self.space.w_StopIteration):
self.index = 1
if not self.saved_w:
raise
w_obj = self.saved_w[0]
else:
raise
else:
self.saved_w.append(w_obj)
return w_obj
def descr_reduce(self, space):
# reduces differently than CPython 3.5. Unsure if it is a
# problem. To be on the safe side, keep three arguments for
# __setstate__; CPython takes two.
return space.newtuple([
space.type(self),
space.newtuple([self.w_iterable]),
space.newtuple([
space.newlist(self.saved_w),
space.newint(self.index),
# space.newbool(self.index > 0),
]),
])
def descr_setstate(self, space, w_state):
state_w = space.unpackiterable(w_state, 2)
w_saved = state_w[0]
self.saved_w = space.unpackiterable(w_saved)
w_index = state_w[1]
self.index = space.int_w(w_index)
# w_exhausted ignored
# w_exhausted = state_w[2]
def W_Cycle___new__(space, w_subtype, w_iterable, __posonly__, __args__):
w_type = space.gettypeobject(W_Cycle.typedef)
builtinclass_new_args_check(space, "cycle", w_type, w_subtype, __args__)
r = space.allocate_instance(W_Cycle, w_subtype)
r.__init__(space, w_iterable)
return r
W_Cycle.typedef = TypeDef(
'itertools.cycle',
__new__ = interp2app(W_Cycle___new__),
__iter__ = interp2app(W_Cycle.iter_w),
__next__ = interp2app(W_Cycle.next_w),
__reduce__ = interp2app(W_Cycle.descr_reduce),
__setstate__ = interp2app(W_Cycle.descr_setstate),
__doc__ = """Make an iterator returning elements from the iterable and
saving a copy of each. When the iterable is exhausted, return
elements from the saved copy. Repeats indefinitely.
Equivalent to :
def cycle(iterable):
saved = []
for element in iterable:
yield element
saved.append(element)
while saved:
for element in saved:
yield element
""")
class W_StarMap(W_Root):
def __init__(self, space, w_fun, w_iterable):
self.space = space
self.w_fun = w_fun
self.w_iterable = self.space.iter(w_iterable)
def iter_w(self):
return self
def next_w(self):
w_obj = self.space.next(self.w_iterable)
return self.space.call(self.w_fun, w_obj)
def descr_reduce(self):
return self.space.newtuple([self.space.gettypefor(W_StarMap),
self.space.newtuple([
self.w_fun,
self.w_iterable])
])
def W_StarMap___new__(space, w_subtype, __args__):
args_w = W_Twoarg__new__(space, w_subtype, W_StarMap, "starmap", __args__)
r = space.allocate_instance(W_StarMap, w_subtype)
r.__init__(space, args_w[0], args_w[1])
return r
W_StarMap.typedef = TypeDef(
'itertools.starmap',
__new__ = interp2app(W_StarMap___new__),
__iter__ = interp2app(W_StarMap.iter_w),
__next__ = interp2app(W_StarMap.next_w),
__reduce__ = interp2app(W_StarMap.descr_reduce),
__doc__ = """Make an iterator that computes the function using arguments
tuples obtained from the iterable. Used instead of imap() when
argument parameters are already grouped in tuples from a single
iterable (the data has been ``pre-zipped''). The difference
between imap() and starmap() parallels the distinction between
function(a,b) and function(*c).
Equivalent to :
def starmap(function, iterable):
iterable = iter(iterable)
while True:
yield function(*iterable.next())
""")
@unwrap_spec(n=int)
def tee(space, w_iterable, n=2):
"""Return n independent iterators from a single iterable.
Note : once tee() has made a split, the original iterable
should not be used anywhere else; otherwise, the iterable could get
advanced without the tee objects being informed.
Note : this member of the toolkit may require significant auxiliary
storage (depending on how much temporary data needs to be stored).
In general, if one iterator is going to use most or all of the
data before the other iterator, it is faster to use list() instead
of tee()
If iter(iterable) has no method __copy__(), this is equivalent to:
def tee(iterable, n=2):
def gen(next, data={}, cnt=[0]):
for i in count():
if i == cnt[0]:
item = data[i] = next()
cnt[0] += 1
else:
item = data[i] # data.pop(i) if it's the last one
yield item
it = iter(iterable)
return tuple([gen(it.next) for i in range(n)])
If iter(iterable) has a __copy__ method, though, we just return
a tuple t = (iterable, t[0].__copy__(), t[1].__copy__(), ...).
"""
if n < 0:
raise oefmt(space.w_ValueError, "n must be >= 0")
w_iterator = space.iter(w_iterable)
if space.findattr(w_iterator, space.newtext("__copy__")) is not None:
# In this case, we don't instantiate any W_TeeIterable.
# We just rely on doing repeated __copy__(). This case
# includes the situation where w_iterable is already
# a W_TeeIterable itself.
iterators_w = [w_iterator] * n
for i in range(1, n):
iterators_w[i] = space.call_method(w_iterator, "__copy__")
else:
w_chained_list = W_TeeChainedListNode(space)
iterators_w = [W_TeeIterable(space, w_iterator, w_chained_list)
for x in range(n)]
return space.newtuple(iterators_w)
class W_TeeChainedListNode(W_Root):
def __init__(self, space):
self.w_next = None
self.w_obj = None
self.running = False
def reduce_w(self, space):
list_w = []
node = self
while node is not None and node.w_obj is not None:
list_w.append(node.w_obj)
node = node.w_next
if not list_w:
return space.newtuple([space.type(self), space.newtuple([])])
return space.newtuple(
[space.type(self),
space.newtuple([]),
space.newtuple([space.newlist(list_w)])
])
def descr_setstate(self, space, w_state):
state = space.unpackiterable(w_state)
if len(state) != 1:
raise oefmt(space.w_ValueError, "invalid arguments")
obj_list_w = space.unpackiterable(state[0])
node = self
for w_obj in obj_list_w:
node.w_obj = w_obj
node.w_next = W_TeeChainedListNode(space)
node = node.w_next
def W_TeeChainedListNode___new__(space, w_subtype):
r = space.allocate_instance(W_TeeChainedListNode, w_subtype)
r.__init__(space)
return r
W_TeeChainedListNode.typedef = TypeDef(
'itertools._tee_dataobject',
__new__ = interp2app(W_TeeChainedListNode___new__),
__weakref__ = make_weakref_descr(W_TeeChainedListNode),
__reduce__ = interp2app(W_TeeChainedListNode.reduce_w),
__setstate__ = interp2app(W_TeeChainedListNode.descr_setstate)
)
W_TeeChainedListNode.typedef.acceptable_as_base_class = False
class W_TeeIterable(W_Root):
def __init__(self, space, w_iterator, w_chained_list=None):
self.space = space
self.w_iterator = w_iterator
self.w_chained_list = w_chained_list
def iter_w(self):
return self
def next_w(self):
w_chained_list = self.w_chained_list
if w_chained_list is None:
raise OperationError(self.space.w_StopIteration, self.space.w_None)
if w_chained_list.running:
raise oefmt(self.space.w_RuntimeError,
"cannot re-enter the tee iterator")
w_obj = w_chained_list.w_obj
if w_obj is None:
w_chained_list.running = True
try:
w_obj = self.space.next(self.w_iterator)
w_chained_list.running = False
except OperationError as e:
if e.match(self.space, self.space.w_StopIteration):
self.w_chained_list = None
w_chained_list.running = False
raise
w_chained_list.w_next = W_TeeChainedListNode(self.space)
w_chained_list.w_obj = w_obj
self.w_chained_list = w_chained_list.w_next
return w_obj
def copy_w(self):
space = self.space
tee_iter = W_TeeIterable(space, self.w_iterator, self.w_chained_list)
return tee_iter
def reduce_w(self):
return self.space.newtuple([self.space.gettypefor(W_TeeIterable),
self.space.newtuple([self.space.newtuple([])]),
self.space.newtuple([
self.w_iterator,
self.w_chained_list])
])
def setstate_w(self, w_state):
state = self.space.unpackiterable(w_state)
num_args = len(state)
if num_args != 2:
raise oefmt(self.space.w_TypeError,
"function takes exactly 2 arguments (%d given)",
num_args)
w_iterator, w_chained_list = state
if not isinstance(w_chained_list, W_TeeChainedListNode):
raise oefmt(self.space.w_TypeError,
"must be itertools._tee_dataobject, not %s",
self.space.type(w_chained_list).name)
self.w_iterator = w_iterator
self.w_chained_list = w_chained_list
def W_TeeIterable___new__(space, w_subtype, w_iterable):
if isinstance(w_iterable, W_TeeIterable):
myiter = space.interp_w(W_TeeIterable, w_iterable)
w_iterator = myiter.w_iterator
w_chained_list = myiter.w_chained_list
else:
w_iterator = space.iter(w_iterable)
w_chained_list = W_TeeChainedListNode(space)
return W_TeeIterable(space, w_iterator, w_chained_list)
W_TeeIterable.typedef = TypeDef(
'itertools._tee',
__new__ = interp2app(W_TeeIterable___new__),
__iter__ = interp2app(W_TeeIterable.iter_w),
__next__ = interp2app(W_TeeIterable.next_w),
__copy__ = interp2app(W_TeeIterable.copy_w),
__weakref__ = make_weakref_descr(W_TeeIterable),
__reduce__ = interp2app(W_TeeIterable.reduce_w),
__setstate__ = interp2app(W_TeeIterable.setstate_w)
)
W_TeeIterable.typedef.acceptable_as_base_class = False
class W_GroupBy(W_Root):
def __init__(self, space, w_iterable, w_fun):
self.space = space
self.w_iterator = self.space.iter(w_iterable)
if w_fun is None:
w_fun = space.w_None
self.w_keyfunc = w_fun
self.w_tgtkey = None
self.w_currkey = None
self.w_currvalue = None
def iter_w(self):
return self
def next_w(self):
self.w_currgrouper = None
self._skip_to_next_iteration_group()
w_key = self.w_tgtkey = self.w_currkey
w_grouper = W_GroupByIterator(self, w_key)
return self.space.newtuple2(w_key, w_grouper)
def _skip_to_next_iteration_group(self):
space = self.space
while True:
if self.w_currkey is None:
pass
elif self.w_tgtkey is None:
break
else:
if not space.eq_w(self.w_tgtkey, self.w_currkey):
break
w_newvalue = space.next(self.w_iterator)
if space.is_w(self.w_keyfunc, space.w_None):
w_newkey = w_newvalue
else:
w_newkey = space.call_function(self.w_keyfunc, w_newvalue)
self.w_currkey = w_newkey
self.w_currvalue = w_newvalue
def descr_reduce(self, space):
items_w = [space.type(self),
space.newtuple([
self.w_iterator,
self.w_keyfunc])]
if (self.w_tgtkey is not None and self.w_currkey is not None
and self.w_currvalue is not None):
items_w = items_w + [
space.newtuple([
self.w_currkey,
self.w_currvalue,
self.w_tgtkey])
]
return space.newtuple(items_w)
def descr_setstate(self, space, w_state):
state = space.unpackiterable(w_state)
num_args = len(state)
if num_args != 3:
raise oefmt(space.w_TypeError,
"function takes exactly 3 arguments (%d given)",
num_args)
self.w_currkey, self.w_currvalue, self.w_tgtkey = state
def W_GroupBy___new__(space, w_subtype, w_iterable, w_key=None):
r = space.allocate_instance(W_GroupBy, w_subtype)
r.__init__(space, w_iterable, w_key)
return r
W_GroupBy.typedef = TypeDef(
'itertools.groupby',
__new__ = interp2app(W_GroupBy___new__),
__iter__ = interp2app(W_GroupBy.iter_w),
__next__ = interp2app(W_GroupBy.next_w),
__reduce__ = interp2app(W_GroupBy.descr_reduce),
__setstate__ = interp2app(W_GroupBy.descr_setstate),
__doc__ = """Make an iterator that returns consecutive keys and groups from the
iterable. The key is a function computing a key value for each
element. If not specified or is None, key defaults to an identity
function and returns the element unchanged. Generally, the
iterable needs to already be sorted on the same key function.
The returned group is itself an iterator that shares the
underlying iterable with groupby(). Because the source is shared,
when the groupby object is advanced, the previous group is no
longer visible. So, if that data is needed later, it should be
stored as a list:
groups = []
uniquekeys = []
for k, g in groupby(data, keyfunc):
groups.append(list(g)) # Store group iterator as a list
uniquekeys.append(k)
""")
class W_GroupByIterator(W_Root):
def __init__(self, groupby, w_tgtkey):
self.groupby = groupby
self.w_tgtkey = w_tgtkey
groupby.w_currgrouper = self
def iter_w(self):
return self
def next_w(self):
groupby = self.groupby
space = groupby.space
if groupby.w_currgrouper is not self:
raise OperationError(space.w_StopIteration, space.w_None)
if groupby.w_currvalue is None:
w_newvalue = space.next(groupby.w_iterator)
if space.is_w(groupby.w_keyfunc, space.w_None):
w_newkey = w_newvalue
else:
w_newkey = space.call_function(groupby.w_keyfunc, w_newvalue)
#assert groupby.w_currvalue is None
# ^^^ check disabled, see http://bugs.python.org/issue30347
groupby.w_currkey = w_newkey
groupby.w_currvalue = w_newvalue
assert groupby.w_currkey is not None
if not space.eq_w(self.w_tgtkey, groupby.w_currkey):
raise OperationError(space.w_StopIteration, space.w_None)
w_result = groupby.w_currvalue
groupby.w_currvalue = None
groupby.w_currkey = None
return w_result
def descr_reduce(self, space):
if self.groupby.w_currgrouper is not self:
w_callable = space.builtin.get('iter')
return space.newtuple([w_callable, space.newtuple([space.newtuple([])])])
return space.newtuple([
space.type(self),
space.newtuple([
self.groupby,
self.w_tgtkey]),
])
def W_GroupByIterator__new__(space, w_subtype, w_parent, w_tgtkey):
r = space.allocate_instance(W_GroupByIterator, w_subtype)
groupby = space.interp_w(W_GroupBy, w_parent)
r.__init__(groupby, w_tgtkey)
return r
W_GroupByIterator.typedef = TypeDef(
'itertools._groupby',
__new__ = interp2app(W_GroupByIterator__new__),
__iter__ = interp2app(W_GroupByIterator.iter_w),
__next__ = interp2app(W_GroupByIterator.next_w),
__reduce__ = interp2app(W_GroupByIterator.descr_reduce))
W_GroupByIterator.typedef.acceptable_as_base_class = False
class W_Compress(W_Root):
def __init__(self, space, w_data, w_selectors):
self.space = space
self.w_data = space.iter(w_data)
self.w_selectors = space.iter(w_selectors)
def iter_w(self):
return self
def next_w(self):
# No need to check for StopIteration since either w_data
# or w_selectors will raise this. The shortest one stops first.
while True:
w_next_item = self.space.next(self.w_data)
w_next_selector = self.space.next(self.w_selectors)
if self.space.is_true(w_next_selector):
return w_next_item
def descr_reduce(self, space):
return space.newtuple([
space.type(self),
space.newtuple([self.w_data, self.w_selectors])
])
def W_Compress__new__(space, w_subtype, w_data, w_selectors):
r = space.allocate_instance(W_Compress, w_subtype)
r.__init__(space, w_data, w_selectors)
return r
W_Compress.typedef = TypeDef(
'itertools.compress',
__new__ = interp2app(W_Compress__new__),
__iter__ = interp2app(W_Compress.iter_w),
__next__ = interp2app(W_Compress.next_w),
__reduce__ = interp2app(W_Compress.descr_reduce),
__doc__ = """Make an iterator that filters elements from *data* returning
only those that have a corresponding element in *selectors* that evaluates to
``True``. Stops when either the *data* or *selectors* iterables has been
exhausted.
Equivalent to::
def compress(data, selectors):
# compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F
return (d for d, s in zip(data, selectors) if s)
""")
class W_Product(W_Root):
def __init__(self, space, args_w, w_repeat):
self.gears = [
space.unpackiterable(arg_w)[:] for arg_w in args_w
] * space.int_w(w_repeat)
#
for gear in self.gears:
if len(gear) == 0:
self.indices = None
self.lst = None
self.stopped = True
break
else:
self.indices = [0] * len(self.gears)
self.lst = None
self.stopped = False
def _rotate_previous_gears(self):
lst = self.lst
x = len(self.gears) - 1
lst[x] = self.gears[x][0]
self.indices[x] = 0
x -= 1
# the outer loop runs as long as a we have a carry
while x >= 0:
gear = self.gears[x]
index = self.indices[x] + 1
if index < len(gear):
# no carry: done
lst[x] = gear[index]
self.indices[x] = index
return
lst[x] = gear[0]
self.indices[x] = 0
x -= 1
else:
self.lst = None
self.stopped = True
def fill_next_result(self):
# the last gear is done here, in a function with no loop,
# to allow the JIT to look inside
if self.lst is None:
self.lst = [None for gear in self.gears]
for index, gear in enumerate(self.gears):
self.lst[index] = gear[0]
return
lst = self.lst
x = len(self.gears) - 1
if x >= 0:
gear = self.gears[x]
index = self.indices[x] + 1
if index < len(gear):
# no carry: done
lst[x] = gear[index]
self.indices[x] = index
else:
self._rotate_previous_gears()
else:
self.stopped = True
def iter_w(self, space):
return self
def next_w(self, space):
if not self.stopped:
self.fill_next_result()
if self.stopped:
raise OperationError(space.w_StopIteration, space.w_None)
w_result = space.newtuple(self.lst[:])
return w_result
def descr_reduce(self, space):
if not self.stopped:
gears = [space.newtuple(gear) for gear in self.gears]
result_w = [
space.type(self),
space.newtuple(gears)
]
if self.lst is not None:
indices_w = [space.newint(index) for index in self.indices]
result_w = result_w + [space.newtuple(indices_w)]
else:
result_w = [
space.type(self),
space.newtuple([space.newtuple([])])
]
return space.newtuple(result_w)
def descr_setstate(self, space, w_state):
gear_count = len(self.gears)
indices_w = space.unpackiterable(w_state)
lst = []
for i, gear in enumerate(self.gears):
w_index = indices_w[i]
index = space.int_w(w_index)
gear_size = len(gear)
if self.indices is None or gear_size == 0:
self.stopped = True
return
if index < 0:
index = 0
if index > gear_size - 1:
index = gear_size - 1
self.indices[i] = index
lst.append(gear[index])
self.lst = lst
def W_Product__new__(space, w_subtype, __args__):
arguments_w, kwds_w = __args__.unpack()
w_repeat = space.newint(1)
if kwds_w:
if 'repeat' in kwds_w:
w_repeat = kwds_w['repeat']
del kwds_w['repeat']
if kwds_w:
raise oefmt(space.w_TypeError,
"product() got unexpected keyword argument(s)")
r = space.allocate_instance(W_Product, w_subtype)
r.__init__(space, arguments_w, w_repeat)
return r
W_Product.typedef = TypeDef(
'itertools.product',
__new__ = interp2app(W_Product__new__),
__iter__ = interp2app(W_Product.iter_w),
__next__ = interp2app(W_Product.next_w),
__reduce__ = interp2app(W_Product.descr_reduce),
__setstate__ = interp2app(W_Product.descr_setstate),
__doc__ = """
Cartesian product of input iterables.
Equivalent to nested for-loops in a generator expression. For example,
``product(A, B)`` returns the same as ``((x,y) for x in A for y in B)``.
The nested loops cycle like an odometer with the rightmost element advancing
on every iteration. This pattern creates a lexicographic ordering so that if
the input's iterables are sorted, the product tuples are emitted in sorted
order.
To compute the product of an iterable with itself, specify the number of
repetitions with the optional *repeat* keyword argument. For example,
``product(A, repeat=4)`` means the same as ``product(A, A, A, A)``.
This function is equivalent to the following code, except that the
actual implementation does not build up intermediate results in memory::
def product(*args, **kwds):
# product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
# product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
pools = map(tuple, args) * kwds.get('repeat', 1)
result = [[]]
for pool in pools:
result = [x+[y] for x in result for y in pool]
for prod in result:
yield tuple(prod)
""")
class W_Combinations(W_Root):
def __init__(self, space, pool_w, indices, r):
self.pool_w = pool_w
self.indices = indices
self.r = r
self.last_result_w = None
self.stopped = r > len(pool_w)
def get_maximum(self, i):
return i + len(self.pool_w) - self.r
def max_index(self, j):
return self.indices[j - 1] + 1
def descr__iter__(self, space):
return self
def descr_next(self, space):
if self.stopped:
raise OperationError(space.w_StopIteration, space.w_None)
if self.last_result_w is None:
# On the first pass, initialize result tuple using the indices
result_w = [None] * self.r
for i in xrange(self.r):
index = self.indices[i]
result_w[i] = self.pool_w[index]
else:
# Copy the previous result
result_w = self.last_result_w[:]
# Scan indices right-to-left until finding one that is not at its
# maximum
i = self.r - 1
while i >= 0 and self.indices[i] == self.get_maximum(i):
i -= 1
# If i is negative, then the indices are all at their maximum value
# and we're done
if i < 0:
self.stopped = True
raise OperationError(space.w_StopIteration, space.w_None)
# Increment the current index which we know is not at its maximum.
# Then move back to the right setting each index to its lowest
# possible value
self.indices[i] += 1
for j in xrange(i + 1, self.r):
self.indices[j] = self.max_index(j)
# Update the result for the new indices starting with i, the
# leftmost index that changed
for i in xrange(i, self.r):
index = self.indices[i]
w_elem = self.pool_w[index]
result_w[i] = w_elem
self.last_result_w = result_w
return space.newtuple(result_w)
def descr_reduce(self, space):
if self.stopped:
pool_w = []
else:
pool_w = self.pool_w
result_w = [
space.type(self),
space.newtuple([
space.newtuple(pool_w), space.newint(self.r)
])]
if self.last_result_w is not None and not self.stopped:
# we must pickle the indices and use them for setstate
result_w = result_w + [
space.newtuple([
space.newint(index) for index in self.indices])]
return space.newtuple(result_w)
def descr_setstate(self, space, w_state):
indices_w = space.fixedview(w_state)
if len(indices_w) != self.r:
raise oefmt(space.w_ValueError, "invalid arguments")
for i in range(self.r):
index = space.int_w(indices_w[i])
max = self.get_maximum(i)
# clamp the index (beware of negative max)
if index > max:
index = max
if index < 0:
index = 0
self.indices[i] = index
self.last_result_w = [
self.pool_w[self.indices[i]]
for i in range(self.r)]
@unwrap_spec(r=int)
def W_Combinations__new__(space, w_subtype, w_iterable, r):
pool_w = space.fixedview(w_iterable)
if r < 0:
raise oefmt(space.w_ValueError, "r must be non-negative")
indices = range(r)
res = space.allocate_instance(W_Combinations, w_subtype)
res.__init__(space, pool_w, indices, r)
return res
W_Combinations.typedef = TypeDef("itertools.combinations",
__new__ = interp2app(W_Combinations__new__),
__iter__ = interp2app(W_Combinations.descr__iter__),
__next__ = interp2app(W_Combinations.descr_next),
__reduce__ = interp2app(W_Combinations.descr_reduce),
__setstate__ = interp2app(W_Combinations.descr_setstate),
__doc__ = """\
combinations(iterable, r) --> combinations object
Return successive r-length combinations of elements in the iterable.
combinations(range(4), 3) --> (0,1,2), (0,1,3), (0,2,3), (1,2,3)""",
)
class W_CombinationsWithReplacement(W_Combinations):
def __init__(self, space, pool_w, indices, r):
W_Combinations.__init__(self, space, pool_w, indices, r)
self.stopped = len(pool_w) == 0 and r > 0
def get_maximum(self, i):
return len(self.pool_w) - 1
def max_index(self, j):
return self.indices[j - 1]
def descr_reduce(self, space):
if self.stopped:
pool_w = []
else:
pool_w = self.pool_w
result_w = [
space.type(self),
space.newtuple([
space.newtuple(pool_w), space.newint(self.r)
])]
if self.last_result_w is not None and not self.stopped:
# we must pickle the indices and use them for setstate
result_w = result_w + [
space.newtuple([
space.newint(index) for index in self.indices])]
return space.newtuple(result_w)
def descr_setstate(self, space, w_state):
indices_w = space.fixedview(w_state)
if len(indices_w) != self.r:
raise oefmt(space.w_ValueError, "invalid arguments")
for i in range(self.r):
index = space.int_w(indices_w[i])
max = self.get_maximum(i)
# clamp the index (beware of negative max)
if index > max:
index = max
if index < 0:
index = 0
self.indices[i] = index
self.last_result_w = [
self.pool_w[self.indices[i]]
for i in range(self.r)]
@unwrap_spec(r=int)
def W_CombinationsWithReplacement__new__(space, w_subtype, w_iterable, r):
pool_w = space.fixedview(w_iterable)
if r < 0:
raise oefmt(space.w_ValueError, "r must be non-negative")
indices = [0] * r
res = space.allocate_instance(W_CombinationsWithReplacement, w_subtype)
res.__init__(space, pool_w, indices, r)
return res
W_CombinationsWithReplacement.typedef = TypeDef(
"itertools.combinations_with_replacement",
__new__ = interp2app(W_CombinationsWithReplacement__new__),
__iter__ = interp2app(W_CombinationsWithReplacement.descr__iter__),
__next__ = interp2app(W_CombinationsWithReplacement.descr_next),
__reduce__ = interp2app(W_CombinationsWithReplacement.descr_reduce),
__setstate__ = interp2app(W_CombinationsWithReplacement.descr_setstate),
__doc__ = """\
combinations_with_replacement(iterable, r) --> combinations_with_replacement object
Return successive r-length combinations of elements in the iterable
allowing individual elements to have successive repeats.
combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC""",
)
class W_Permutations(W_Root):
def __init__(self, space, pool_w, r):
self.pool_w = pool_w
self.r = r
n = len(pool_w)
n_minus_r = n - r
if n_minus_r < 0:
self.stopped = self.raised_stop_iteration = True
else:
self.stopped = self.raised_stop_iteration = False
self.indices = range(n)
self.cycles = range(n, n_minus_r, -1)
self.started = False
def descr__iter__(self, space):
return self
def descr_next(self, space):
if self.stopped:
self.raised_stop_iteration = True
raise OperationError(space.w_StopIteration, space.w_None)
r = self.r
indices = self.indices
w_result = space.newtuple([self.pool_w[indices[i]]
for i in range(r)])
cycles = self.cycles
i = r - 1
while i >= 0:
j = cycles[i] - 1
if j > 0:
cycles[i] = j
indices[i], indices[-j] = indices[-j], indices[i]
return w_result
cycles[i] = len(indices) - i
n1 = len(indices) - 1
assert n1 >= 0
num = indices[i]
for k in range(i, n1):
indices[k] = indices[k+1]
indices[n1] = num
i -= 1
self.stopped = True
if self.started:
raise OperationError(space.w_StopIteration, space.w_None)
else:
self.started = True
return w_result
def descr_reduce(self, space):
if self.raised_stop_iteration:
pool_w = []
else:
pool_w = self.pool_w
result_w = [
space.type(self),
space.newtuple([
space.newtuple(pool_w), space.newint(self.r)
])]
if not self.raised_stop_iteration:
# we must pickle the indices and use them for setstate
result_w = result_w + [
space.newtuple([
space.newtuple([
space.newint(index) for index in self.indices]),
space.newtuple([
space.newint(num) for num in self.cycles]),
space.newbool(self.started)
])]
return space.newtuple(result_w)
def descr_setstate(self, space, w_state):
state = space.unpackiterable(w_state)
if len(state) == 3:
w_indices, w_cycles, w_started = state
indices_w = space.unpackiterable(w_indices)
cycles_w = space.unpackiterable(w_cycles)
self.started = space.bool_w(w_started)
else:
raise oefmt(space.w_ValueError, "invalid arguments")
if len(indices_w) != len(self.pool_w) or len(cycles_w) != self.r:
raise oefmt(space.w_ValueError, "inavalid arguments")
n = len(self.pool_w)
for i in range(n):
index = space.int_w(indices_w[i])
if index < 0:
index = 0
elif index > n-1:
index = n-1
self.indices[i] = index
for i in range(self.r):
index = space.int_w(cycles_w[i])
if index < 1:
index = 1
elif index > n-i:
index = n-i
self.cycles[i] = index
def W_Permutations__new__(space, w_subtype, w_iterable, w_r=None):
pool_w = space.fixedview(w_iterable)
if space.is_none(w_r):
r = len(pool_w)
else:
r = space.gateway_nonnegint_w(w_r)
res = space.allocate_instance(W_Permutations, w_subtype)
res.__init__(space, pool_w, r)
return res
W_Permutations.typedef = TypeDef("itertools.permutations",
__new__ = interp2app(W_Permutations__new__),
__iter__ = interp2app(W_Permutations.descr__iter__),
__next__ = interp2app(W_Permutations.descr_next),
__reduce__ = interp2app(W_Permutations.descr_reduce),
__setstate__ = interp2app(W_Permutations.descr_setstate),
__doc__ = """\
permutations(iterable[, r]) --> permutations object
Return successive r-length permutations of elements in the iterable.
permutations(range(3), 2) --> (0,1), (0,2), (1,0), (1,2), (2,0), (2,1)""",
)
class W_Accumulate(W_Root):
'Return series of accumulated sums (or other binary function results).'
def __init__(self, space, w_iterable, w_func, w_initial):
self.space = space
self.w_iterable = w_iterable
self.w_func = w_func if not space.is_w(w_func, space.w_None) else None
self.w_total = None
self.w_initial = w_initial
def iter_w(self):
return self
def next_w(self):
space = self.space
if not space.is_w(self.w_initial, space.w_None):
w_res = self.w_total = self.w_initial
self.w_initial = space.w_None
return w_res
w_value = space.next(self.w_iterable)
if self.w_total is None:
self.w_total = w_value
return w_value
if self.w_func is None:
self.w_total = space.add(self.w_total, w_value)
else:
self.w_total = space.call_function(self.w_func, self.w_total, w_value)
return self.w_total
def reduce_w(self):
space = self.space
w_func = space.w_None if self.w_func is None else self.w_func
if not space.is_w(self.w_initial, space.w_None):
w_it = W_Chain(space, space.iter(space.newlist([
space.newtuple([self.w_initial]),
self.w_iterable])))
return space.newtuple([space.gettypefor(W_Accumulate),
space.newtuple([w_it, w_func]),
space.w_None])
if self.w_total is space.w_None: # :-(
w_it = W_Chain(space, space.iter(space.newlist([
space.newtuple([self.w_total]),
self.w_iterable])))
w_it = space.call_function(space.type(self),
w_it, w_func)
return space.newtuple([space.gettypefor(W_ISlice),
space.newtuple([w_it, space.newint(1),
space.w_None])])
w_total = space.w_None if self.w_total is None else self.w_total
return space.newtuple([space.gettypefor(W_Accumulate),
space.newtuple([self.w_iterable, w_func]), w_total])
def setstate_w(self, space, w_state):
self.w_total = w_state if not space.is_w(w_state, space.w_None) else None
@unwrap_spec(w_initial=WrappedDefault(None))
def W_Accumulate__new__(space, w_subtype, w_iterable, w_func=None, __kwonly__=None, w_initial=None):
r = space.allocate_instance(W_Accumulate, w_subtype)
r.__init__(space, space.iter(w_iterable), w_func, w_initial)
return r
W_Accumulate.typedef = TypeDef("itertools.accumulate",
__new__ = interp2app(W_Accumulate__new__),
__iter__ = interp2app(W_Accumulate.iter_w),
__next__ = interp2app(W_Accumulate.next_w),
__reduce__ = interp2app(W_Accumulate.reduce_w),
__setstate__ = interp2app(W_Accumulate.setstate_w),
__doc__ = """\
"accumulate(iterable) --> accumulate object
Return series of accumulated sums.""")
class W_Pairwise(W_Root):
'Return series of accumulated sums (or other binary function results).'
def __init__(self, space, w_iterator):
self.space = space
w_prev = None
self.w_iterator = w_iterator
self.w_prev = None
def iter_w(self):
return self
def next_w(self):
space = self.space
w_prev = self.w_prev
if w_prev is None:
w_prev = space.next(self.w_iterator)
w_next = space.next(self.w_iterator)
w_res = space.newtuple2(w_prev, w_next)
self.w_prev = w_next
return w_res
def W_Pairwise__new__(space, w_subtype, w_iterable, __posonly__=None):
r = space.allocate_instance(W_Pairwise, w_subtype)
r.__init__(space, space.iter(w_iterable))
return r
W_Pairwise.typedef = TypeDef("itertools.pairwise",
__new__ = interp2app(W_Pairwise__new__),
__iter__ = interp2app(W_Pairwise.iter_w),
__next__ = interp2app(W_Pairwise.next_w),
__doc__ = """\
Return an iterator of overlapping pairs taken from the input iterator.
s -> (s0, s1), (s1, s2), (s2, s3), ...
""")
|