File: interp_math.py

package info (click to toggle)
pypy3 7.3.19%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 212,236 kB
  • sloc: python: 2,098,316; ansic: 540,565; sh: 21,462; asm: 14,419; cpp: 4,451; makefile: 4,209; objc: 761; xml: 530; exp: 499; javascript: 314; pascal: 244; lisp: 45; csh: 12; awk: 4
file content (796 lines) | stat: -rw-r--r-- 25,775 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
import math
import sys

from rpython.rlib import rfloat
from rpython.rlib.objectmodel import specialize
from pypy.interpreter.error import OperationError, oefmt
from pypy.interpreter.gateway import unwrap_spec, WrappedDefault

class State:
    def __init__(self, space):
        self.w_e = space.newfloat(math.e)
        self.w_pi = space.newfloat(math.pi)
        self.w_tau = space.newfloat(math.pi * 2.0)
        self.w_inf = space.newfloat(rfloat.INFINITY)
        self.w_nan = space.newfloat(rfloat.NAN)
def get(space):
    return space.fromcache(State)

def _get_double(space, w_x):
    if space.is_w(space.type(w_x), space.w_float):
        return space.float_w(w_x)
    else:
        return space.float_w(space.float(w_x))

@specialize.arg(1)
def math1(space, f, w_x):
    x = _get_double(space, w_x)
    try:
        y = f(x)
    except OverflowError:
        raise oefmt(space.w_OverflowError, "math range error")
    except ValueError:
        raise oefmt(space.w_ValueError, "math domain error")
    return space.newfloat(y)

@specialize.arg(1)
def math1_w(space, f, w_x):
    x = _get_double(space, w_x)
    try:
        r = f(x)
    except OverflowError:
        raise oefmt(space.w_OverflowError, "math range error")
    except ValueError:
        raise oefmt(space.w_ValueError, "math domain error")
    return r

@specialize.arg(1)
def math2(space, f, w_x, w_snd):
    x = _get_double(space, w_x)
    snd = _get_double(space, w_snd)
    try:
        r = f(x, snd)
    except OverflowError:
        raise oefmt(space.w_OverflowError, "math range error")
    except ValueError:
        raise oefmt(space.w_ValueError, "math domain error")
    return space.newfloat(r)

def trunc(space, w_x):
    """Truncate x."""
    w_descr = space.lookup(w_x, '__trunc__')
    if w_descr is not None:
        return space.get_and_call_function(w_descr, w_x)
    return space.trunc(w_x)

def copysign(space, w_x, w_y):
    """Return x with the sign of y."""
    # No exceptions possible.
    x = _get_double(space, w_x)
    y = _get_double(space, w_y)
    return space.newfloat(math.copysign(x, y))

def isinf(space, w_x):
    """Return True if x is infinity."""
    return space.newbool(math.isinf(_get_double(space, w_x)))

def isnan(space, w_x):
    """Return True if x is not a number."""
    return space.newbool(math.isnan(_get_double(space, w_x)))

def isfinite(space, w_x):
    """isfinite(x) -> bool

    Return True if x is neither an infinity nor a NaN, and False otherwise."""
    return space.newbool(rfloat.isfinite(_get_double(space, w_x)))

def pow(space, w_x, w_y):
    """pow(x,y)

       Return x**y (x to the power of y).
    """
    x = _get_double(space, w_x)
    y = _get_double(space, w_y)
    try:
        r = math.pow(x, y)
    except OverflowError:
        raise oefmt(space.w_OverflowError, "math range error")
    except ValueError:
        if x == 0.0 and math.isinf(y) and y < 0:
            return space.newfloat(rfloat.INFINITY)
        raise oefmt(space.w_ValueError, "math domain error")
    return space.newfloat(r)

def cosh(space, w_x):
    """cosh(x)

       Return the hyperbolic cosine of x.
    """
    return math1(space, math.cosh, w_x)

def ldexp(space, w_x,  w_i):
    """ldexp(x, i) -> x * (2**i)
    """
    x = _get_double(space, w_x)
    if space.isinstance_w(w_i, space.w_int):
        try:
            exp = space.int_w(w_i)
        except OperationError as e:
            if not e.match(space, space.w_OverflowError):
                raise
            if space.is_true(space.lt(w_i, space.newint(0))):
                exp = -sys.maxint
            else:
                exp = sys.maxint
    else:
        raise oefmt(space.w_TypeError, "integer required for second argument")
    try:
        r = math.ldexp(x, exp)
    except OverflowError:
        raise oefmt(space.w_OverflowError, "math range error")
    except ValueError:
        raise oefmt(space.w_ValueError, "math domain error")
    return space.newfloat(r)

def hypot(space, args_w):
    """
    Multidimensional Euclidean distance from the origin to a point.

    Roughly equivalent to:
        sqrt(sum(x**2 for x in args))

    For a two dimensional point (x, y), gives the hypotenuse
    using the Pythagorean theorem:  sqrt(x*x + y*y).

    For example, the hypotenuse of a 3/4/5 right triangle is:

        >>> hypot(3.0, 4.0)
        5.0
    """
    vec = [0.0] * len(args_w)
    found_nan = False
    max = 0.0
    for i in range(len(args_w)):
        w_x = args_w[i]
        x = math.fabs(_get_double(space, w_x))
        found_nan = math.isnan(x) or found_nan
        if x > max:
            max = x
        vec[i] = x
    result = _vector_norm(vec, max, found_nan)
    return space.newfloat(result)

def dist(space, w_p, w_q, __posonly__=None):
    """
    Return the Euclidean distance between two points p and q.

    The points should be specified as sequences (or iterables) of
    coordinates.  Both inputs must have the same dimension.

    Roughly equivalent to:
        sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
    """
    p_w = space.unpackiterable(w_p)
    q_w = space.unpackiterable(w_q)
    if len(p_w) != len(q_w):
        raise oefmt(space.w_ValueError, "both points must have the same number of dimensions")

    vec = [0.0] * len(p_w)
    found_nan = False
    max = 0.0
    for i in range(len(p_w)):
        px = _get_double(space, p_w[i])
        qx = _get_double(space, q_w[i])
        x = math.fabs(px - qx)
        found_nan = math.isnan(x) or found_nan
        if x > max:
            max = x
        vec[i] = x
    result = _vector_norm(vec, max, found_nan)
    return space.newfloat(result)


def _vector_norm(vec, max, found_nan):
    # code and comment from CPython's vector_norm

    # Given a *vec* of values, compute the vector norm:

    #   sqrt(sum(x ** 2 for x in vec))

    # The *max* variable should be equal to the largest fabs(x).
    # The *n* variable is the length of *vec*.
    # If n==0, then *max* should be 0.0.
    # If an infinity is present in the vec, *max* should be INF.
    # The *found_nan* variable indicates whether some member of
    # the *vec* is a NaN.

    # To avoid overflow/underflow and to achieve high accuracy giving results
    # that are almost always correctly rounded, four techniques are used:

    # * lossless scaling using a power-of-two scaling factor
    # * accurate squaring using Veltkamp-Dekker splitting [1]
    # * compensated summation using a variant of the Neumaier algorithm [2]
    # * differential correction of the square root [3]

    # The usual presentation of the Neumaier summation algorithm has an
    # expensive branch depending on which operand has the larger
    # magnitude.  We avoid this cost by arranging the calculation so that
    # fabs(csum) is always as large as fabs(x).

    # To establish the invariant, *csum* is initialized to 1.0 which is
    # always larger than x**2 after scaling or after division by *max*.
    # After the loop is finished, the initial 1.0 is subtracted out for a
    # net zero effect on the final sum.  Since *csum* will be greater than
    # 1.0, the subtraction of 1.0 will not cause fractional digits to be
    # dropped from *csum*.

    # To get the full benefit from compensated summation, the largest
    # addend should be in the range: 0.5 <= |x| <= 1.0.  Accordingly,
    # scaling or division by *max* should not be skipped even if not
    # otherwise needed to prevent overflow or loss of precision.

    # The assertion that hi*hi <= 1.0 is a bit subtle.  Each vector element
    # gets scaled to a magnitude below 1.0.  The Veltkamp-Dekker splitting
    # algorithm gives a *hi* value that is correctly rounded to half
    # precision.  When a value at or below 1.0 is correctly rounded, it
    # never goes above 1.0.  And when values at or below 1.0 are squared,
    # they remain at or below 1.0, thus preserving the summation invariant.

    # Another interesting assertion is that csum+lo*lo == csum. In the loop,
    # each scaled vector element has a magnitude less than 1.0.  After the
    # Veltkamp split, *lo* has a maximum value of 2**-27.  So the maximum
    # value of *lo* squared is 2**-54.  The value of ulp(1.0)/2.0 is 2**-53.
    # Given that csum >= 1.0, we have:
    #     lo**2 <= 2**-54 < 2**-53 == 1/2*ulp(1.0) <= ulp(csum)/2
    # Since lo**2 is less than 1/2 ulp(csum), we have csum+lo*lo == csum.

    # To minimize loss of information during the accumulation of fractional
    # values, each term has a separate accumulator.  This also breaks up
    # sequential dependencies in the inner loop so the CPU can maximize
    # floating point throughput. [4]  On a 2.6 GHz Haswell, adding one
    # dimension has an incremental cost of only 5ns -- for example when
    # moving from hypot(x,y) to hypot(x,y,z).

    # The square root differential correction is needed because a
    # correctly rounded square root of a correctly rounded sum of
    # squares can still be off by as much as one ulp.

    # The differential correction starts with a value *x* that is
    # the difference between the square of *h*, the possibly inaccurately
    # rounded square root, and the accurately computed sum of squares.
    # The correction is the first order term of the Maclaurin series
    # expansion of sqrt(h**2 + x) == h + x/(2*h) + O(x**2). [5]

    # Essentially, this differential correction is equivalent to one
    # refinement step in Newton's divide-and-average square root
    # algorithm, effectively doubling the number of accurate bits.
    # This technique is used in Dekker's SQRT2 algorithm and again in
    # Borges' ALGORITHM 4 and 5.

    # Without proof for all cases, hypot() cannot claim to be always
    # correctly rounded.  However for n <= 1000, prior to the final addition
    # that rounds the overall result, the internal accuracy of "h" together
    # with its correction of "x / (2.0 * h)" is at least 100 bits. [6]
    # Also, hypot() was tested against a Decimal implementation with
    # prec=300.  After 100 million trials, no incorrectly rounded examples
    # were found.  In addition, perfect commutativity (all permutations are
    # exactly equal) was verified for 1 billion random inputs with n=5. [7]

    # References:

    # 1. Veltkamp-Dekker splitting: http://csclub.uwaterloo.ca/~pbarfuss/dekker1971.pdf
    # 2. Compensated summation:  http://www.ti3.tu-harburg.de/paper/rump/Ru08b.pdf
    # 3. Square root differential correction:  https://arxiv.org/pdf/1904.09481.pdf
    # 4. Data dependency graph:  https://bugs.python.org/file49439/hypot.png
    # 5. https://www.wolframalpha.com/input/?i=Maclaurin+series+sqrt%28h**2+%2B+x%29+at+x%3D0
    # 6. Analysis of internal accuracy:  https://bugs.python.org/file49484/best_frac.py
    # 7. Commutativity test:  https://bugs.python.org/file49448/test_hypot_commutativity.py

    T27 = 134217729.0  # ldexp(1.0, 27) + 1.0)
    x = scale = oldcsum = csum = 1.0
    frac1 = frac2 = frac3 = 0.0
    if math.isinf(max):
        return max
    if found_nan:
        return rfloat.NAN
    if max == 0.0 or len(vec) <= 1:
        return max
    _, max_e = math.frexp(max)
    if max_e >= -1023:
        # normal case
        scale = math.ldexp(1.0, -max_e)
        assert(max * scale >= 0.5)
        assert(max * scale < 1.0)
        for x in vec:
            assert(rfloat.isfinite(x) and math.fabs(x) <= max)
            x *= scale
            assert(math.fabs(x) < 1.0)
            t = x * T27
            hi = t - (t - x)
            lo = x - hi
            assert(hi + lo == x)

            x = hi * hi
            assert(x <= 1.0)
            assert(math.fabs(csum) >= math.fabs(x))
            oldcsum = csum
            csum += x
            frac1 += (oldcsum - csum) + x

            x = 2.0 * hi * lo
            assert(math.fabs(csum) >= math.fabs(x))
            oldcsum = csum
            csum += x
            frac2 += (oldcsum - csum) + x

            assert(csum + lo * lo == csum)
            frac3 += lo * lo
        h = math.sqrt(csum - 1.0 + (frac1 + frac2 + frac3))

        x = h
        t = x * T27
        hi = t - (t - x)
        lo = x - hi
        assert(hi + lo == x)

        x = -hi * hi
        assert(math.fabs(csum) >= math.fabs(x));
        oldcsum = csum;
        csum += x;
        frac1 += (oldcsum - csum) + x;

        x = -2.0 * hi * lo;
        assert(math.fabs(csum) >= math.fabs(x));
        oldcsum = csum;
        csum += x;
        frac2 += (oldcsum - csum) + x;

        x = -lo * lo;
        assert(math.fabs(csum) >= math.fabs(x));
        oldcsum = csum;
        csum += x;
        frac3 += (oldcsum - csum) + x;

        x = csum - 1.0 + (frac1 + frac2 + frac3);
        return (h + x / (2.0 * h)) / scale;

    else:
        # When max_e < -1023, ldexp(1.0, -max_e) overflows.
        # So instead of multiplying by a scale, we just divide by *max*.
        for x in vec:
            assert(not math.isinf(x) and not math.isnan(x) and math.fabs(x) <= max);
            x /= max;
            x = x * x;
            assert(x <= 1.0);
            assert(math.fabs(csum) >= math.fabs(x));
            oldcsum = csum;
            csum += x;
            frac1 += (oldcsum - csum) + x;
        return max * math.sqrt(csum - 1.0 + frac1);


def tan(space, w_x):
    """tan(x)

       Return the tangent of x (measured in radians).
    """
    return math1(space, math.tan, w_x)

def asin(space, w_x):
    """asin(x)

       Return the arc sine (measured in radians) of x.
    """
    return math1(space, math.asin, w_x)

def fabs(space, w_x):
    """fabs(x)

       Return the absolute value of the float x.
    """
    return math1(space, math.fabs, w_x)

def floor(space, w_x):
    """floor(x)

       Return the floor of x as an int.
       This is the largest integral value <= x.
    """
    from pypy.objspace.std.floatobject import newint_from_float
    w_descr = space.lookup(w_x, '__floor__')
    if w_descr is not None:
        return space.get_and_call_function(w_descr, w_x)
    x = _get_double(space, w_x)
    return newint_from_float(space, math.floor(x))

def sqrt(space, w_x):
    """sqrt(x)

       Return the square root of x.
    """
    return math1(space, math.sqrt, w_x)

def frexp(space, w_x):
    """frexp(x)

       Return the mantissa and exponent of x, as pair (m, e).
       m is a float and e is an int, such that x = m * 2.**e.
       If x is 0, m and e are both 0.  Else 0.5 <= abs(m) < 1.0.
    """
    mant, expo = math1_w(space, math.frexp, w_x)
    return space.newtuple2(space.newfloat(mant), space.newint(expo))

degToRad = math.pi / 180.0

def degrees(space, w_x):
    """degrees(x) -> converts angle x from radians to degrees
    """
    return space.newfloat(_get_double(space, w_x) / degToRad)

def _log_any(space, w_x, base):
    # base is supposed to be positive or 0.0, which means we use e
    try:
        try:
            x = _get_double(space, w_x)
        except OperationError as e:
            if not e.match(space, space.w_OverflowError):
                raise
            if not space.isinstance_w(w_x, space.w_int):
                raise
            # special case to support log(extremely-large-long)
            num = space.bigint_w(w_x)
            result = num.log(base)
        else:
            if base == 10.0:
                result = math.log10(x)
            elif base == 2.0:
                result = rfloat.log2(x)
            else:
                result = math.log(x)
                if base != 0.0:
                    den = math.log(base)
                    result /= den
    except OverflowError:
        raise oefmt(space.w_OverflowError, "math range error")
    except ValueError:
        raise oefmt(space.w_ValueError, "math domain error")
    return space.newfloat(result)

def log(space, w_x, w_base=None):
    """log(x[, base]) -> the logarithm of x to the given base.
       If the base not specified, returns the natural logarithm (base e) of x.
    """
    if w_base is None:
        base = 0.0
    else:
        base = _get_double(space, w_base)
        if base <= 0.0:
            # just for raising the proper errors
            return math1(space, math.log, w_base)
    return _log_any(space, w_x, base)

def log2(space, w_x):
    """log2(x) -> the base 2 logarithm of x.
    """
    return _log_any(space, w_x, 2.0)

def log10(space, w_x):
    """log10(x) -> the base 10 logarithm of x.
    """
    return _log_any(space, w_x, 10.0)

def fmod(space, w_x, w_y):
    """fmod(x,y)

       Return fmod(x, y), according to platform C.  x % y may differ.
    """
    return math2(space, math.fmod, w_x, w_y)

def atan(space, w_x):
    """atan(x)

       Return the arc tangent (measured in radians) of x.
    """
    return math1(space, math.atan, w_x)

def ceil(space, w_x):
    """ceil(x)

       Return the ceiling of x as an int.
       This is the smallest integral value >= x.
    """
    from pypy.objspace.std.floatobject import newint_from_float
    w_descr = space.lookup(w_x, '__ceil__')
    if w_descr is not None:
        return space.get_and_call_function(w_descr, w_x)
    return newint_from_float(space, math1_w(space, math.ceil, w_x))

def sinh(space, w_x):
    """sinh(x)

       Return the hyperbolic sine of x.
    """
    return math1(space, math.sinh, w_x)

def cos(space, w_x):
    """cos(x)

       Return the cosine of x (measured in radians).
    """
    return math1(space, math.cos, w_x)

def tanh(space, w_x):
    """tanh(x)

       Return the hyperbolic tangent of x.
    """
    return math1(space, math.tanh, w_x)

def radians(space, w_x):
    """radians(x) -> converts angle x from degrees to radians
    """
    return space.newfloat(_get_double(space, w_x) * degToRad)

def sin(space, w_x):
    """sin(x)

       Return the sine of x (measured in radians).
    """
    return math1(space, math.sin, w_x)

def atan2(space, w_y, w_x):
    """atan2(y, x)

       Return the arc tangent (measured in radians) of y/x.
       Unlike atan(y/x), the signs of both x and y are considered.
    """
    return math2(space, math.atan2, w_y,  w_x)

def modf(space, w_x):
    """modf(x)

       Return the fractional and integer parts of x.  Both results carry the sign
       of x.  The integer part is returned as a real.
    """
    frac, intpart = math1_w(space, math.modf, w_x)
    return space.newtuple2(space.newfloat(frac), space.newfloat(intpart))

def exp(space, w_x):
    """exp(x)

       Return e raised to the power of x.
    """
    return math1(space, math.exp, w_x)

def acos(space, w_x):
    """acos(x)

       Return the arc cosine (measured in radians) of x.
    """
    return math1(space, math.acos, w_x)

def fsum(space, w_iterable):
    """Sum an iterable of floats, trying to keep precision."""
    w_iter = space.iter(w_iterable)
    inf_sum = special_sum = 0.0
    partials = []
    while True:
        try:
            w_value = space.next(w_iter)
        except OperationError as e:
            if not e.match(space, space.w_StopIteration):
                raise
            break
        v = _get_double(space, w_value)
        original = v
        added = 0
        for y in partials:
            if abs(v) < abs(y):
                v, y = y, v
            hi = v + y
            yr = hi - v
            lo = y - yr
            if lo != 0.0:
                partials[added] = lo
                added += 1
            v = hi
        del partials[added:]
        if v != 0.0:
            if not rfloat.isfinite(v):
                if rfloat.isfinite(original):
                    raise oefmt(space.w_OverflowError, "intermediate overflow")
                if math.isinf(original):
                    inf_sum += original
                special_sum += original
                del partials[:]
            else:
                partials.append(v)
    if special_sum != 0.0:
        if math.isnan(inf_sum):
            raise oefmt(space.w_ValueError, "-inf + inf")
        return space.newfloat(special_sum)
    hi = 0.0
    if partials:
        hi = partials[-1]
        j = 0
        lo = 0
        for j in range(len(partials) - 2, -1, -1):
            v = hi
            y = partials[j]
            assert abs(y) < abs(v)
            hi = v + y
            yr = hi - v
            lo = y - yr
            if lo != 0.0:
                break
        if j > 0 and (lo < 0.0 and partials[j - 1] < 0.0 or
                      lo > 0.0 and partials[j - 1] > 0.0):
            y = lo * 2.0
            v = hi + y
            yr = v - hi
            if y == yr:
                hi = v
    return space.newfloat(hi)

def log1p(space, w_x):
    """Find log(x + 1)."""
    try:
        return math1(space, rfloat.log1p, w_x)
    except OperationError as e:
        # Python 2.x (and thus ll_math) raises a OverflowError improperly.
        if not e.match(space, space.w_OverflowError):
            raise
        raise oefmt(space.w_ValueError, "math domain error")

def acosh(space, w_x):
    """Inverse hyperbolic cosine"""
    return math1(space, rfloat.acosh, w_x)

def asinh(space, w_x):
    """Inverse hyperbolic sine"""
    return math1(space, rfloat.asinh, w_x)

def atanh(space, w_x):
    """Inverse hyperbolic tangent"""
    return math1(space, rfloat.atanh, w_x)

def expm1(space, w_x):
    """exp(x) - 1"""
    return math1(space, rfloat.expm1, w_x)

def erf(space, w_x):
    """The error function"""
    return math1(space, rfloat.erf, w_x)

def erfc(space, w_x):
    """The complementary error function"""
    return math1(space, rfloat.erfc, w_x)

def gamma(space, w_x):
    """Compute the gamma function for x."""
    return math1(space, rfloat.gamma, w_x)

def lgamma(space, w_x):
    """Compute the natural logarithm of the gamma function for x."""
    return math1(space, rfloat.lgamma, w_x)

@unwrap_spec(w_rel_tol=WrappedDefault(1e-09), w_abs_tol=WrappedDefault(0.0))
def isclose(space, w_a, w_b, __kwonly__, w_rel_tol, w_abs_tol):
    """isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0) -> bool

Determine whether two floating point numbers are close in value.

   rel_tol
       maximum difference for being considered "close", relative to the
       magnitude of the input values
   abs_tol
       maximum difference for being considered "close", regardless of the
       magnitude of the input values

Return True if a is close in value to b, and False otherwise.

For the values to be considered close, the difference between them
must be smaller than at least one of the tolerances.

-inf, inf and NaN behave similarly to the IEEE 754 Standard.  That
is, NaN is not close to anything, even itself.  inf and -inf are
only close to themselves."""
    a = _get_double(space, w_a)
    b = _get_double(space, w_b)
    rel_tol = _get_double(space, w_rel_tol)
    abs_tol = _get_double(space, w_abs_tol)
    #
    # sanity check on the inputs
    if rel_tol < 0.0 or abs_tol < 0.0:
        raise oefmt(space.w_ValueError, "tolerances must be non-negative")
    #
    # short circuit exact equality -- needed to catch two infinities of
    # the same sign. And perhaps speeds things up a bit sometimes.
    if a == b:
        return space.w_True
    #
    # This catches the case of two infinities of opposite sign, or
    # one infinity and one finite number. Two infinities of opposite
    # sign would otherwise have an infinite relative tolerance.
    # Two infinities of the same sign are caught by the equality check
    # above.
    if math.isinf(a) or math.isinf(b):
        return space.w_False
    #
    # now do the regular computation
    # this is essentially the "weak" test from the Boost library
    diff = math.fabs(b - a)
    result = ((diff <= math.fabs(rel_tol * b) or
               diff <= math.fabs(rel_tol * a)) or
              diff <= abs_tol)
    return space.newbool(result)

def gcd(space, args_w):
    """greatest common divisor"""
    if len(args_w) == 0:
        return space.newint(0)
    if len(args_w) == 1:
        space.index(args_w[0]) # for the error
        return space.abs(args_w[0])
    if len(args_w) == 2:
        return gcd_two(space, args_w[0], args_w[1])
    return _gcd_many(space, args_w)

def _gcd_many(space, args_w):
    w_res = args_w[0]
    # could jit this, but do we care?
    for i in range(1, len(args_w)):
        w_res = gcd_two(space, w_res, args_w[i])
    return w_res


def gcd_two(space, w_a, w_b):
    from rpython.rlib import rbigint
    w_a = space.abs(space.index(w_a))
    w_b = space.abs(space.index(w_b))
    try:
        a = space.int_w(w_a)
        b = space.int_w(w_b)
    except OperationError as e:
        if not e.match(space, space.w_OverflowError):
            raise

        a = space.bigint_w(w_a)
        b = space.bigint_w(w_b)
        g = a.gcd(b)
        return space.newlong_from_rbigint(g)
    else:
        g = rbigint.gcd_binary(a, b)
        return space.newint(g)

def nextafter(space, w_a, w_b):
    """ Return the next floating-point value after x towards y. """
    a = _get_double(space, w_a)
    b = _get_double(space, w_b)
    return space.newfloat(rfloat.nextafter(a, b))

def ulp(space, w_x):
    """Return the value of the least significant bit of the
    float x.
    """
    x = _get_double(space, w_x)
    if math.isnan(x):
        return w_x
    x = math.fabs(float(x))
    if math.isinf(x):
        return space.newfloat(x)

    x2 = rfloat.nextafter(x, rfloat.INFINITY)
    if math.isinf(x2):
        # special case: x is the largest positive representable float
        x2 = rfloat.nextafter(x, -rfloat.INFINITY)
        return space.newfloat(x - x2)
    return space.newfloat(x2 - x)

def exp2(space, w_x):
    'Return 2 raised to the power of x.'
    return math1(space, rfloat.exp2, w_x)

def cbrt(space, w_x):
    'Return the cube root of x.'
    return math1(space, rfloat.cbrt, w_x)