1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
|
import py
import sys
from pypy.interpreter.function import Function
from pypy.interpreter.gateway import BuiltinCode
from pypy.module.math.test import test_direct
from rpython.rlib.rfloat import INFINITY, NAN
class AppTestMath:
spaceconfig = {
"usemodules": ['math', 'struct', 'itertools', 'time', 'binascii'],
}
def setup_class(cls):
from rpython.rtyper.lltypesystem.module.test import math_cases
filename = math_cases.__file__
if filename.endswith('.pyc'):
filename = filename[:-1]
space = cls.space
cls.w_math_cases = space.wrap(filename)
cls.w_maxint = space.wrap(sys.maxint)
@classmethod
def make_callable_wrapper(cls, func):
def f(space, w_x):
return space.wrap(func(space.unwrap(w_x)))
return Function(cls.space, BuiltinCode(f))
def w_ftest(self, actual, expected):
assert abs(actual - expected) < 10E-5
def w_cases(self):
with open(self.math_cases) as f:
mod = compile(f.read(), "math_cases.py", "exec")
ns = {}
eval(mod, ns)
TESTCASES = ns['MathTests'].TESTCASES
INFINITY = ns['INFINITY']
NAN = ns['NAN']
for fnname, args, expected in TESTCASES:
# marked as OverflowError to match 2.x/ll_math in
# test_direct, but this is a ValueError on 3.x
if (fnname, args, expected) == ('log1p', (-1.0,), OverflowError):
expected = ValueError
# 3.x ceil/floor differ from 2.x
if fnname in ('ceil', 'floor'):
if args[0] in (INFINITY, -INFINITY):
expected = OverflowError
elif args[0] is NAN:
expected = ValueError
yield fnname, args, expected
def test_all_cases(self):
import math
for fnname, args, expected in self.cases():
fn = getattr(math, fnname)
print(fn, args, expected)
try:
got = fn(*args)
except ValueError:
assert expected == ValueError
except OverflowError:
assert expected == OverflowError
else:
if type(expected) is type(Exception):
ok = False
elif callable(expected):
ok = expected(got)
else:
gotsign = expectedsign = 1
if got < 0.0: gotsign = -gotsign
if expected < 0.0: expectedsign = -expectedsign
ok = got == expected and gotsign == expectedsign
if not ok:
raise AssertionError("%s(%s): got %s" % (
fnname, ', '.join(map(str, args)), got))
def test_ldexp(self):
import math
assert math.ldexp(float("inf"), -10**20) == float("inf")
def test_fsum(self):
import math
# detect evidence of double-rounding: fsum is not always correctly
# rounded on machines that suffer from double rounding.
# It is a known problem with IA32 floating-point arithmetic.
# It should work fine e.g. with x86-64.
x, y = 1e16, 2.9999 # use temporary values to defeat peephole optimizer
HAVE_DOUBLE_ROUNDING = (x + y == 1e16 + 4)
if HAVE_DOUBLE_ROUNDING:
skip("fsum is not exact on machines with double rounding")
test_values = [
([], 0.0),
([0.0], 0.0),
([1e100, 1.0, -1e100, 1e-100, 1e50, -1.0, -1e50], 1e-100),
([2.0**53, -0.5, -2.0**-54], 2.0**53-1.0),
([2.0**53, 1.0, 2.0**-100], 2.0**53+2.0),
([2.0**53+10.0, 1.0, 2.0**-100], 2.0**53+12.0),
([2.0**53-4.0, 0.5, 2.0**-54], 2.0**53-3.0),
([1./n for n in range(1, 1001)],
float.fromhex('0x1.df11f45f4e61ap+2')),
([(-1.)**n/n for n in range(1, 1001)],
float.fromhex('-0x1.62a2af1bd3624p-1')),
([1.7**(i+1)-1.7**i for i in range(1000)] + [-1.7**1000], -1.0),
([1e16, 1., 1e-16], 10000000000000002.0),
([1e16-2., 1.-2.**-53, -(1e16-2.), -(1.-2.**-53)], 0.0),
# exercise code for resizing partials array
([2.**n - 2.**(n+50) + 2.**(n+52) for n in range(-1074, 972, 2)] +
[-2.**1022],
float.fromhex('0x1.5555555555555p+970')),
# infinity and nans
([float("inf")], float("inf")),
([float("-inf")], float("-inf")),
([float("nan")], float("nan")),
]
for i, (vals, expected) in enumerate(test_values):
try:
actual = math.fsum(vals)
except OverflowError:
py.test.fail("test %d failed: got OverflowError, expected %r "
"for math.fsum(%.100r)" % (i, expected, vals))
except ValueError:
py.test.fail("test %d failed: got ValueError, expected %r "
"for math.fsum(%.100r)" % (i, expected, vals))
assert actual == expected or (
math.isnan(actual) and math.isnan(expected))
def test_factorial(self):
import math, sys
assert math.factorial(0) == 1
assert math.factorial(1) == 1
assert math.factorial(2) == 2
assert math.factorial(5) == 120
raises(TypeError, math.factorial, 5.0)
raises(ValueError, math.factorial, -1)
raises(TypeError, math.factorial, -1.0)
raises(TypeError, math.factorial, 1.1)
raises(OverflowError, math.factorial, sys.maxsize+1)
def test_log1p(self):
import math
self.ftest(math.log1p(1/math.e-1), -1)
self.ftest(math.log1p(0), 0)
self.ftest(math.log1p(math.e-1), 1)
self.ftest(math.log1p(1), math.log(2))
raises(ValueError, math.log1p, -1)
raises(ValueError, math.log1p, -100)
def test_log2(self):
import math
self.ftest(math.log2(0.125), -3)
self.ftest(math.log2(0.5), -1)
self.ftest(math.log2(4), 2)
def test_log10(self):
import math
self.ftest(math.log10(0.1), -1)
self.ftest(math.log10(10), 1)
self.ftest(math.log10(100), 2)
self.ftest(math.log10(0.01), -2)
def test_log_largevalue(self):
import math
assert math.log2(2**1234) == 1234.0
def test_acosh(self):
import math
self.ftest(math.acosh(1), 0)
self.ftest(math.acosh(2), 1.3169578969248168)
assert math.isinf(math.asinh(float("inf")))
raises(ValueError, math.acosh, 0)
def test_asinh(self):
import math
self.ftest(math.asinh(0), 0)
self.ftest(math.asinh(1), 0.88137358701954305)
self.ftest(math.asinh(-1), -0.88137358701954305)
assert math.isinf(math.asinh(float("inf")))
def test_atanh(self):
import math
self.ftest(math.atanh(0), 0)
self.ftest(math.atanh(0.5), 0.54930614433405489)
self.ftest(math.atanh(-0.5), -0.54930614433405489)
raises(ValueError, math.atanh, 1.)
assert math.isnan(math.atanh(float("nan")))
def test_trunc(self):
import math
assert math.trunc(1.9) == 1.0
raises((AttributeError, TypeError), math.trunc, 1.9j)
class foo(object):
def __trunc__(self):
return "truncated"
assert math.trunc(foo()) == "truncated"
def test_copysign_nan(self):
skip('sign of nan is undefined')
import math
assert math.copysign(1.0, float('-nan')) == -1.0
def test_special_methods(self):
import math
class Z:
pass
for i, name in enumerate(('ceil', 'floor', 'trunc')):
setattr(Z, '__{}__'.format(name), lambda self: i)
func = getattr(math, name)
assert func(Z()) == i
def test_int_results(self):
import math
for func in math.ceil, math.floor:
assert type(func(0.5)) is int
raises(OverflowError, func, float('inf'))
raises(ValueError, func, float('nan'))
def test_ceil(self):
# adapted from the cpython test case
import math
raises(TypeError, math.ceil)
assert type(math.ceil(0.4)) is int
assert math.ceil(0.5) == 1
assert math.ceil(1.0) == 1
assert math.ceil(1.5) == 2
assert math.ceil(-0.5) == 0
assert math.ceil(-1.0) == -1
assert math.ceil(-1.5) == -1
class TestCeil:
def __ceil__(self):
return 42
class TestNoCeil:
pass
assert math.ceil(TestCeil()) == 42
raises(TypeError, math.ceil, TestNoCeil())
t = TestNoCeil()
t.__ceil__ = lambda *args: args
raises(TypeError, math.ceil, t)
raises(TypeError, math.ceil, t, 0)
# observed in a cpython interactive shell
raises(OverflowError, math.ceil, float("inf"))
raises(OverflowError, math.ceil, float("-inf"))
raises(ValueError, math.ceil, float("nan"))
class StrangeCeil:
def __ceil__(self):
return "this is a string"
assert math.ceil(StrangeCeil()) == "this is a string"
class CustomFloat:
def __float__(self):
return 99.9
assert math.ceil(CustomFloat()) == 100
def test_floor(self):
# adapted from the cpython test case
import math
raises(TypeError, math.floor)
assert type(math.floor(0.4)) is int
assert math.floor(0.5) == 0
assert math.floor(1.0) == 1
assert math.floor(1.5) == 1
assert math.floor(-0.5) == -1
assert math.floor(-1.0) == -1
assert math.floor(-1.5) == -2
assert math.floor(1.23e167) == int(1.23e167)
assert math.floor(-1.23e167) == int(-1.23e167)
class TestFloor:
def __floor__(self):
return 42
class TestNoFloor:
pass
assert math.floor(TestFloor()) == 42
raises(TypeError, math.floor, TestNoFloor())
t = TestNoFloor()
t.__floor__ = lambda *args: args
raises(TypeError, math.floor, t)
raises(TypeError, math.floor, t, 0)
# observed in a cpython interactive shell
raises(OverflowError, math.floor, float("inf"))
raises(OverflowError, math.floor, float("-inf"))
raises(ValueError, math.floor, float("nan"))
class StrangeCeil:
def __floor__(self):
return "this is a string"
assert math.floor(StrangeCeil()) == "this is a string"
assert math.floor(1.23e167) - 1.23e167 == 0.0
class CustomFloat:
def __float__(self):
return 99.9
assert math.floor(CustomFloat()) == 99
def test_erf(self):
import math
assert math.erf(100.0) == 1.0
assert math.erf(-1000.0) == -1.0
assert math.erf(float("inf")) == 1.0
assert math.erf(float("-inf")) == -1.0
assert math.isnan(math.erf(float("nan")))
# proper tests are in rpython/rlib/test/test_rfloat
assert round(math.erf(1.0), 9) == 0.842700793
def test_erfc(self):
import math
assert math.erfc(0.0) == 1.0
assert math.erfc(-0.0) == 1.0
assert math.erfc(float("inf")) == 0.0
assert math.erfc(float("-inf")) == 2.0
assert math.isnan(math.erf(float("nan")))
assert math.erfc(1e-308) == 1.0
def test_gamma(self):
import math
assert raises(ValueError, math.gamma, 0.0)
assert math.gamma(5.0) == 24.0
assert math.gamma(6.0) == 120.0
assert raises(ValueError, math.gamma, -1)
assert math.gamma(0.5) == math.pi ** 0.5
def test_lgamma(self):
import math
math.lgamma(1.0) == 0.0
math.lgamma(2.0) == 0.0
# proper tests are in rpython/rlib/test/test_rfloat
assert round(math.lgamma(5.0), 9) == round(math.log(24.0), 9)
assert round(math.lgamma(6.0), 9) == round(math.log(120.0), 9)
assert raises(ValueError, math.gamma, -1)
assert round(math.lgamma(0.5), 9) == round(math.log(math.pi ** 0.5), 9)
def test_isclose(self):
import math
assert math.isclose(0, 1) is False
assert math.isclose(0, 0.0) is True
assert math.isclose(1000.1, 1000.2, abs_tol=0.2) is True
assert math.isclose(1000.1, 1000.2, rel_tol=1e-3) is True
assert math.isclose(1000.1, 1000.2, abs_tol=0.02) is False
assert math.isclose(1000.1, 1000.2, rel_tol=1e-5) is False
assert math.isclose(float("inf"), float("inf")) is True
assert math.isclose(float("-inf"), float("-inf")) is True
assert math.isclose(float("inf"), float("-inf")) is False
assert math.isclose(float("-inf"), float("inf")) is False
assert math.isclose(float("-inf"), 12.34) is False
assert math.isclose(float("-inf"), float("nan")) is False
assert math.isclose(float("nan"), 12.34) is False
assert math.isclose(float("nan"), float("nan")) is False
#
raises(TypeError, math.isclose, 0, 1, rel_tol=None)
raises(TypeError, math.isclose, 0, 1, abs_tol=None)
def test_gcd(self):
import math
assert math.gcd(-4, -10) == 2
assert math.gcd(0, -10) == 10
assert math.gcd(0, 0) == 0
raises(TypeError, math.gcd, 0, 0.0)
raises(TypeError, math.gcd, 0.0)
assert math.gcd(-3**10*5**20*11**8, 2**5*3**5*7**20) == 3**5
assert math.gcd(64, 200) == 8
assert math.gcd(-self.maxint-1, 3) == 1
assert math.gcd(-self.maxint-1, -self.maxint-1) == self.maxint+1
assert math.gcd() == 0
assert math.gcd(2, 4, 6, 8) == 2
assert math.gcd(36) == 36
assert math.gcd(-36) == 36
def test_lcm(self):
import math
assert math.lcm() == 1
assert math.lcm(-5) == 5
assert math.lcm(5) == 5
assert math.lcm(6, 10) == 30
assert math.lcm(6, 10, 14) == 210
assert math.lcm(0, 0) == 0
assert math.lcm(0, 1) == 0
assert math.lcm(1, 0) == 0
assert math.lcm(3, 5, 7, 0) == 0
raises(TypeError, math.lcm, 12.0)
def test_inf_nan(self):
import math
assert math.isinf(math.inf)
assert math.inf > -math.inf
assert math.isnan(math.nan)
def test_pi_tau(self):
import math
assert math.tau == math.pi * 2.0
def test_remainder(self):
import math
assert math.remainder(3, math.pi) == 3 - math.pi
assert math.remainder(-3, math.pi) == math.pi - 3
assert math.remainder(3, -math.pi) == 3 - math.pi
assert math.remainder(4, math.pi) == 4 - math.pi
assert math.remainder(6, math.pi) == 6 - 2 * math.pi
assert math.remainder(3, math.inf) == 3
assert math.remainder(3, -math.inf) == 3
assert math.isnan(math.remainder(3, math.nan))
assert math.isnan(math.remainder(math.nan, 3))
raises(ValueError, math.remainder, 3, 0)
raises(ValueError, math.remainder, math.inf, 3)
raises(TypeError, math.remainder, "abc", 1)
def test_isqrt(self):
import math
x = math.isqrt(9)
assert x == 3
assert type(x) is int
test_values = list(range(10)) + [1 << 100 - 1]
for value in test_values:
s = math.isqrt(value)
assert type(s) is int
assert s*s <= value
assert value < (s+1)*(s+1)
with raises(ValueError):
math.isqrt(-1)
def test_pow_zero_ninf(self):
import math
assert math.pow(0.0, -float('inf')) == float('inf')
assert math.pow(-0.0, -float('inf')) == float('inf')
def test_exp2(self):
import math
from math import exp2
for i in range(-100, 100):
assert exp2(float(i)) == 2.0 ** i
assert exp2(float('inf')) == float('inf')
assert exp2(-float('inf')) == 0.0
assert math.isnan(exp2(-float('nan')))
with raises(OverflowError):
exp2(10000000)
def test_cbrt(self):
import math
from math import cbrt
assert cbrt(0.0) == 0.0
assert cbrt(1.0) == 1.0
assert cbrt(8.0) == 2.0
assert cbrt(0.0) == 0.0
assert cbrt(-1.0) == -1.0
assert cbrt(float('inf')) == float('inf')
assert cbrt(-float('inf')) == -float('inf')
assert math.isnan(cbrt(float('nan')))
|