1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
from pypy.interpreter.error import OperationError, oefmt
from pypy.interpreter.gateway import unwrap_spec
from pypy.module.micronumpy import loop, descriptor, support
from pypy.module.micronumpy import constants as NPY
from pypy.module.micronumpy.base import convert_to_array, W_NDimArray
from pypy.module.micronumpy.converters import clipmode_converter
from pypy.module.micronumpy.strides import (
Chunk, new_view, shape_agreement, shape_agreement_multiple)
from .casting import find_binop_result_dtype, find_result_type
def where(space, w_arr, w_x=None, w_y=None):
"""where(condition, [x, y])
Return elements, either from `x` or `y`, depending on `condition`.
If only `condition` is given, return ``condition.nonzero()``.
Parameters
----------
condition : array_like, bool
When True, yield `x`, otherwise yield `y`.
x, y : array_like, optional
Values from which to choose. `x` and `y` need to have the same
shape as `condition`.
Returns
-------
out : ndarray or tuple of ndarrays
If both `x` and `y` are specified, the output array contains
elements of `x` where `condition` is True, and elements from
`y` elsewhere.
If only `condition` is given, return the tuple
``condition.nonzero()``, the indices where `condition` is True.
See Also
--------
nonzero, choose
Notes
-----
If `x` and `y` are given and input arrays are 1-D, `where` is
equivalent to::
[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]
Examples
--------
>>> np.where([[True, False], [True, True]],
... [[1, 2], [3, 4]],
... [[9, 8], [7, 6]])
array([[1, 8],
[3, 4]])
>>> np.where([[0, 1], [1, 0]])
(array([0, 1]), array([1, 0]))
>>> x = np.arange(9.).reshape(3, 3)
>>> np.where( x > 5 )
(array([2, 2, 2]), array([0, 1, 2]))
>>> x[np.where( x > 3.0 )] # Note: result is 1D.
array([ 4., 5., 6., 7., 8.])
>>> np.where(x < 5, x, -1) # Note: broadcasting.
array([[ 0., 1., 2.],
[ 3., 4., -1.],
[-1., -1., -1.]])
NOTE: support for not passing x and y is unsupported
"""
if space.is_none(w_y):
if space.is_none(w_x):
arr = convert_to_array(space, w_arr)
return arr.descr_nonzero(space)
raise oefmt(space.w_ValueError,
"Where should be called with either 1 or 3 arguments")
if space.is_none(w_x):
raise oefmt(space.w_ValueError,
"Where should be called with either 1 or 3 arguments")
arr = convert_to_array(space, w_arr)
x = convert_to_array(space, w_x)
y = convert_to_array(space, w_y)
if x.is_scalar() and y.is_scalar() and arr.is_scalar():
if arr.get_dtype().itemtype.bool(arr.get_scalar_value()):
return x
return y
dtype = find_result_type(space, [x, y], [])
shape = shape_agreement(space, arr.get_shape(), x)
shape = shape_agreement(space, shape, y)
out = W_NDimArray.from_shape(space, shape, dtype)
return loop.where(space, out, shape, arr, x, y, dtype)
def dot(space, w_obj1, w_obj2, w_out=None):
w_arr = convert_to_array(space, w_obj1)
if w_arr.is_scalar():
return convert_to_array(space, w_obj2).descr_dot(space, w_arr, w_out)
return w_arr.descr_dot(space, w_obj2, w_out)
def concatenate(space, w_args, w_axis=None):
args_w = space.listview(w_args)
if len(args_w) == 0:
raise oefmt(space.w_ValueError, "need at least one array to concatenate")
args_w = [convert_to_array(space, w_arg) for w_arg in args_w]
if w_axis is None:
w_axis = space.newint(0)
if space.is_none(w_axis):
args_w = [w_arg.reshape(space,
space.newlist([w_arg.descr_get_size(space)]),
w_arg.get_order())
for w_arg in args_w]
w_axis = space.newint(0)
dtype = args_w[0].get_dtype()
shape = args_w[0].get_shape()[:]
ndim = len(shape)
if ndim == 0:
raise oefmt(space.w_ValueError,
"zero-dimensional arrays cannot be concatenated")
axis = space.int_w(w_axis)
orig_axis = axis
if axis < 0:
axis = ndim + axis
if ndim == 1 and axis != 0:
axis = 0
if axis < 0 or axis >= ndim:
raise oefmt(space.w_IndexError, "axis %d out of bounds [0, %d)",
orig_axis, ndim)
for arr in args_w[1:]:
if len(arr.get_shape()) != ndim:
raise oefmt(space.w_ValueError,
"all the input arrays must have same number of "
"dimensions")
for i, axis_size in enumerate(arr.get_shape()):
if i == axis:
shape[i] += axis_size
elif axis_size != shape[i]:
raise oefmt(space.w_ValueError,
"all the input array dimensions except for the "
"concatenation axis must match exactly")
dtype = find_result_type(space, args_w, [])
# concatenate does not handle ndarray subtypes, it always returns a ndarray
res = W_NDimArray.from_shape(space, shape, dtype, NPY.CORDER)
chunks = [Chunk(0, i, 1, i) for i in shape]
axis_start = 0
for arr in args_w:
if arr.get_shape()[axis] == 0:
continue
chunks[axis] = Chunk(axis_start, axis_start + arr.get_shape()[axis], 1,
arr.get_shape()[axis])
view = new_view(space, res, chunks)
view.implementation.setslice(space, arr)
axis_start += arr.get_shape()[axis]
return res
@unwrap_spec(repeats=int)
def repeat(space, w_arr, repeats, w_axis):
arr = convert_to_array(space, w_arr)
if space.is_none(w_axis):
arr = arr.descr_flatten(space)
orig_size = arr.get_shape()[0]
shape = [arr.get_shape()[0] * repeats]
w_res = W_NDimArray.from_shape(space, shape, arr.get_dtype(), w_instance=arr)
for i in range(repeats):
chunks = [Chunk(i, shape[0] - repeats + i, repeats, orig_size)]
view = new_view(space, w_res, chunks)
view.implementation.setslice(space, arr)
else:
axis = space.int_w(w_axis)
shape = arr.get_shape()[:]
chunks = [Chunk(0, i, 1, i) for i in shape]
orig_size = shape[axis]
shape[axis] *= repeats
w_res = W_NDimArray.from_shape(space, shape, arr.get_dtype(), w_instance=arr)
for i in range(repeats):
chunks[axis] = Chunk(i, shape[axis] - repeats + i, repeats,
orig_size)
view = new_view(space, w_res, chunks)
view.implementation.setslice(space, arr)
return w_res
def count_nonzero(space, w_obj):
return space.newint(loop.count_all_true(convert_to_array(space, w_obj)))
def choose(space, w_arr, w_choices, w_out, w_mode):
arr = convert_to_array(space, w_arr)
choices = [convert_to_array(space, w_item) for w_item
in space.listview(w_choices)]
if not choices:
raise oefmt(space.w_ValueError, "choices list cannot be empty")
if space.is_none(w_out):
w_out = None
elif not isinstance(w_out, W_NDimArray):
raise oefmt(space.w_TypeError, "return arrays must be of ArrayType")
shape = shape_agreement_multiple(space, choices + [w_out])
out = descriptor.dtype_agreement(space, choices, shape, w_out)
dtype = out.get_dtype()
mode = clipmode_converter(space, w_mode)
loop.choose(space, arr, choices, shape, dtype, out, mode)
return out
def put(space, w_arr, w_indices, w_values, w_mode):
arr = convert_to_array(space, w_arr)
mode = clipmode_converter(space, w_mode)
if not w_indices:
raise oefmt(space.w_ValueError, "indices list cannot be empty")
if not w_values:
raise oefmt(space.w_ValueError, "value list cannot be empty")
dtype = arr.get_dtype()
if space.isinstance_w(w_indices, space.w_list):
indices = space.listview(w_indices)
else:
indices = [w_indices]
if space.isinstance_w(w_values, space.w_list):
values = space.listview(w_values)
else:
values = [w_values]
v_idx = 0
for idx in indices:
index = support.index_w(space, idx)
if index < 0 or index >= arr.get_size():
if mode == NPY.RAISE:
raise oefmt(space.w_IndexError,
"index %d is out of bounds for axis 0 with size %d",
index, arr.get_size())
elif mode == NPY.WRAP:
index = index % arr.get_size()
elif mode == NPY.CLIP:
if index < 0:
index = 0
else:
index = arr.get_size() - 1
else:
assert False
value = values[v_idx]
if v_idx + 1 < len(values):
v_idx += 1
arr.setitem(space, [index], dtype.coerce(space, value))
def diagonal(space, arr, offset, axis1, axis2):
shape = arr.get_shape()
shapelen = len(shape)
if offset < 0:
offset = -offset
axis1, axis2 = axis2, axis1
size = min(shape[axis1], shape[axis2] - offset)
dtype = arr.dtype
if axis1 < axis2:
shape = (shape[:axis1] + shape[axis1 + 1:axis2] +
shape[axis2 + 1:] + [size])
else:
shape = (shape[:axis2] + shape[axis2 + 1:axis1] +
shape[axis1 + 1:] + [size])
out = W_NDimArray.from_shape(space, shape, dtype)
if size == 0:
return out
if shapelen == 2:
# simple case
loop.diagonal_simple(space, arr, out, offset, axis1, axis2, size)
else:
loop.diagonal_array(space, arr, out, offset, axis1, axis2, shape)
return out
|