File: arrayops.py

package info (click to toggle)
pypy3 7.3.19%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 212,236 kB
  • sloc: python: 2,098,316; ansic: 540,565; sh: 21,462; asm: 14,419; cpp: 4,451; makefile: 4,209; objc: 761; xml: 530; exp: 499; javascript: 314; pascal: 244; lisp: 45; csh: 12; awk: 4
file content (278 lines) | stat: -rw-r--r-- 9,913 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
from pypy.interpreter.error import OperationError, oefmt
from pypy.interpreter.gateway import unwrap_spec
from pypy.module.micronumpy import loop, descriptor, support
from pypy.module.micronumpy import constants as NPY
from pypy.module.micronumpy.base import convert_to_array, W_NDimArray
from pypy.module.micronumpy.converters import clipmode_converter
from pypy.module.micronumpy.strides import (
    Chunk, new_view, shape_agreement, shape_agreement_multiple)
from .casting import find_binop_result_dtype, find_result_type


def where(space, w_arr, w_x=None, w_y=None):
    """where(condition, [x, y])

    Return elements, either from `x` or `y`, depending on `condition`.

    If only `condition` is given, return ``condition.nonzero()``.

    Parameters
    ----------
    condition : array_like, bool
        When True, yield `x`, otherwise yield `y`.
    x, y : array_like, optional
        Values from which to choose. `x` and `y` need to have the same
        shape as `condition`.

    Returns
    -------
    out : ndarray or tuple of ndarrays
        If both `x` and `y` are specified, the output array contains
        elements of `x` where `condition` is True, and elements from
        `y` elsewhere.

        If only `condition` is given, return the tuple
        ``condition.nonzero()``, the indices where `condition` is True.

    See Also
    --------
    nonzero, choose

    Notes
    -----
    If `x` and `y` are given and input arrays are 1-D, `where` is
    equivalent to::

        [xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

    Examples
    --------
    >>> np.where([[True, False], [True, True]],
    ...          [[1, 2], [3, 4]],
    ...          [[9, 8], [7, 6]])
    array([[1, 8],
           [3, 4]])

    >>> np.where([[0, 1], [1, 0]])
    (array([0, 1]), array([1, 0]))

    >>> x = np.arange(9.).reshape(3, 3)
    >>> np.where( x > 5 )
    (array([2, 2, 2]), array([0, 1, 2]))
    >>> x[np.where( x > 3.0 )]               # Note: result is 1D.
    array([ 4.,  5.,  6.,  7.,  8.])
    >>> np.where(x < 5, x, -1)               # Note: broadcasting.
    array([[ 0.,  1.,  2.],
           [ 3.,  4., -1.],
           [-1., -1., -1.]])


    NOTE: support for not passing x and y is unsupported
    """
    if space.is_none(w_y):
        if space.is_none(w_x):
            arr = convert_to_array(space, w_arr)
            return arr.descr_nonzero(space)
        raise oefmt(space.w_ValueError,
                    "Where should be called with either 1 or 3 arguments")
    if space.is_none(w_x):
        raise oefmt(space.w_ValueError,
                    "Where should be called with either 1 or 3 arguments")
    arr = convert_to_array(space, w_arr)
    x = convert_to_array(space, w_x)
    y = convert_to_array(space, w_y)
    if x.is_scalar() and y.is_scalar() and arr.is_scalar():
        if arr.get_dtype().itemtype.bool(arr.get_scalar_value()):
            return x
        return y
    dtype = find_result_type(space, [x, y], [])
    shape = shape_agreement(space, arr.get_shape(), x)
    shape = shape_agreement(space, shape, y)
    out = W_NDimArray.from_shape(space, shape, dtype)
    return loop.where(space, out, shape, arr, x, y, dtype)


def dot(space, w_obj1, w_obj2, w_out=None):
    w_arr = convert_to_array(space, w_obj1)
    if w_arr.is_scalar():
        return convert_to_array(space, w_obj2).descr_dot(space, w_arr, w_out)
    return w_arr.descr_dot(space, w_obj2, w_out)


def concatenate(space, w_args, w_axis=None):
    args_w = space.listview(w_args)
    if len(args_w) == 0:
        raise oefmt(space.w_ValueError, "need at least one array to concatenate")
    args_w = [convert_to_array(space, w_arg) for w_arg in args_w]
    if w_axis is None:
        w_axis = space.newint(0)
    if space.is_none(w_axis):
        args_w = [w_arg.reshape(space,
                                space.newlist([w_arg.descr_get_size(space)]),
                                w_arg.get_order())
                  for w_arg in args_w]
        w_axis = space.newint(0)
    dtype = args_w[0].get_dtype()
    shape = args_w[0].get_shape()[:]
    ndim = len(shape)
    if ndim == 0:
        raise oefmt(space.w_ValueError,
                    "zero-dimensional arrays cannot be concatenated")
    axis = space.int_w(w_axis)
    orig_axis = axis
    if axis < 0:
        axis = ndim + axis
    if ndim == 1 and axis != 0:
        axis = 0
    if axis < 0 or axis >= ndim:
        raise oefmt(space.w_IndexError, "axis %d out of bounds [0, %d)",
                    orig_axis, ndim)
    for arr in args_w[1:]:
        if len(arr.get_shape()) != ndim:
            raise oefmt(space.w_ValueError,
                        "all the input arrays must have same number of "
                        "dimensions")
        for i, axis_size in enumerate(arr.get_shape()):
            if i == axis:
                shape[i] += axis_size
            elif axis_size != shape[i]:
                raise oefmt(space.w_ValueError,
                            "all the input array dimensions except for the "
                            "concatenation axis must match exactly")

    dtype = find_result_type(space, args_w, [])
    # concatenate does not handle ndarray subtypes, it always returns a ndarray
    res = W_NDimArray.from_shape(space, shape, dtype, NPY.CORDER)
    chunks = [Chunk(0, i, 1, i) for i in shape]
    axis_start = 0
    for arr in args_w:
        if arr.get_shape()[axis] == 0:
            continue
        chunks[axis] = Chunk(axis_start, axis_start + arr.get_shape()[axis], 1,
                             arr.get_shape()[axis])
        view = new_view(space, res, chunks)
        view.implementation.setslice(space, arr)
        axis_start += arr.get_shape()[axis]
    return res


@unwrap_spec(repeats=int)
def repeat(space, w_arr, repeats, w_axis):
    arr = convert_to_array(space, w_arr)
    if space.is_none(w_axis):
        arr = arr.descr_flatten(space)
        orig_size = arr.get_shape()[0]
        shape = [arr.get_shape()[0] * repeats]
        w_res = W_NDimArray.from_shape(space, shape, arr.get_dtype(), w_instance=arr)
        for i in range(repeats):
            chunks = [Chunk(i, shape[0] - repeats + i, repeats, orig_size)]
            view = new_view(space, w_res, chunks)
            view.implementation.setslice(space, arr)
    else:
        axis = space.int_w(w_axis)
        shape = arr.get_shape()[:]
        chunks = [Chunk(0, i, 1, i) for i in shape]
        orig_size = shape[axis]
        shape[axis] *= repeats
        w_res = W_NDimArray.from_shape(space, shape, arr.get_dtype(), w_instance=arr)
        for i in range(repeats):
            chunks[axis] = Chunk(i, shape[axis] - repeats + i, repeats,
                                 orig_size)
            view = new_view(space, w_res, chunks)
            view.implementation.setslice(space, arr)
    return w_res


def count_nonzero(space, w_obj):
    return space.newint(loop.count_all_true(convert_to_array(space, w_obj)))


def choose(space, w_arr, w_choices, w_out, w_mode):
    arr = convert_to_array(space, w_arr)
    choices = [convert_to_array(space, w_item) for w_item
               in space.listview(w_choices)]
    if not choices:
        raise oefmt(space.w_ValueError, "choices list cannot be empty")
    if space.is_none(w_out):
        w_out = None
    elif not isinstance(w_out, W_NDimArray):
        raise oefmt(space.w_TypeError, "return arrays must be of ArrayType")
    shape = shape_agreement_multiple(space, choices + [w_out])
    out = descriptor.dtype_agreement(space, choices, shape, w_out)
    dtype = out.get_dtype()
    mode = clipmode_converter(space, w_mode)
    loop.choose(space, arr, choices, shape, dtype, out, mode)
    return out


def put(space, w_arr, w_indices, w_values, w_mode):
    arr = convert_to_array(space, w_arr)
    mode = clipmode_converter(space, w_mode)

    if not w_indices:
        raise oefmt(space.w_ValueError, "indices list cannot be empty")
    if not w_values:
        raise oefmt(space.w_ValueError, "value list cannot be empty")

    dtype = arr.get_dtype()

    if space.isinstance_w(w_indices, space.w_list):
        indices = space.listview(w_indices)
    else:
        indices = [w_indices]

    if space.isinstance_w(w_values, space.w_list):
        values = space.listview(w_values)
    else:
        values = [w_values]

    v_idx = 0
    for idx in indices:
        index = support.index_w(space, idx)

        if index < 0 or index >= arr.get_size():
            if mode == NPY.RAISE:
                raise oefmt(space.w_IndexError,
                    "index %d is out of bounds for axis 0 with size %d",
                    index, arr.get_size())
            elif mode == NPY.WRAP:
                index = index % arr.get_size()
            elif mode == NPY.CLIP:
                if index < 0:
                    index = 0
                else:
                    index = arr.get_size() - 1
            else:
                assert False

        value = values[v_idx]

        if v_idx + 1 < len(values):
            v_idx += 1

        arr.setitem(space, [index], dtype.coerce(space, value))


def diagonal(space, arr, offset, axis1, axis2):
    shape = arr.get_shape()
    shapelen = len(shape)
    if offset < 0:
        offset = -offset
        axis1, axis2 = axis2, axis1
    size = min(shape[axis1], shape[axis2] - offset)
    dtype = arr.dtype
    if axis1 < axis2:
        shape = (shape[:axis1] + shape[axis1 + 1:axis2] +
                 shape[axis2 + 1:] + [size])
    else:
        shape = (shape[:axis2] + shape[axis2 + 1:axis1] +
                 shape[axis1 + 1:] + [size])
    out = W_NDimArray.from_shape(space, shape, dtype)
    if size == 0:
        return out
    if shapelen == 2:
        # simple case
        loop.diagonal_simple(space, arr, out, offset, axis1, axis2, size)
    else:
        loop.diagonal_array(space, arr, out, offset, axis1, axis2, shape)
    return out