File: base.py

package info (click to toggle)
pypy3 7.3.19%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 212,236 kB
  • sloc: python: 2,098,316; ansic: 540,565; sh: 21,462; asm: 14,419; cpp: 4,451; makefile: 4,209; objc: 761; xml: 530; exp: 499; javascript: 314; pascal: 244; lisp: 45; csh: 12; awk: 4
file content (174 lines) | stat: -rw-r--r-- 7,053 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from pypy.interpreter.baseobjspace import W_Root
from pypy.interpreter.error import oefmt
from rpython.tool.pairtype import extendabletype
from rpython.rlib.rarithmetic import ovfcheck
from pypy.module.micronumpy import support
from pypy.module.micronumpy import constants as NPY

def wrap_impl(space, w_cls, w_instance, impl):
    if w_cls is None or space.is_w(w_cls, space.gettypefor(W_NDimArray)):
        w_ret = W_NDimArray(impl)
    else:
        w_ret = space.allocate_instance(W_NDimArray, w_cls)
        W_NDimArray.__init__(w_ret, impl)
        assert isinstance(w_ret, W_NDimArray)
        space.call_method(w_ret, '__array_finalize__', w_instance)
    return w_ret


class ArrayArgumentException(Exception):
    pass


class W_NumpyObject(W_Root):
    """Base class for ndarrays and scalars (aka boxes)."""
    _attrs_ = []

    def get_flags(self):
        return 0


class W_NDimArray(W_NumpyObject):
    __metaclass__ = extendabletype

    def __init__(self, implementation):
        from pypy.module.micronumpy.concrete import BaseConcreteArray
        assert isinstance(implementation, BaseConcreteArray)
        assert isinstance(self, W_NDimArray)
        self.implementation = implementation

    @staticmethod
    def from_shape(space, shape, dtype, order=NPY.CORDER,
                   w_instance=None, zero=True):
        from pypy.module.micronumpy import concrete, descriptor, boxes
        from pypy.module.micronumpy.strides import calc_strides
        if len(shape) > NPY.MAXDIMS:
            raise oefmt(space.w_ValueError,
                "sequence too large; cannot be greater than %d", NPY.MAXDIMS)
        try:
            ovfcheck(support.product_check(shape) * dtype.elsize)
        except OverflowError as e:
            raise oefmt(space.w_ValueError, "array is too big.")
        strides, backstrides = calc_strides(shape, dtype.base, order)
        impl = concrete.ConcreteArray(shape, dtype.base, order, strides,
                                      backstrides, zero=zero)
        if dtype == descriptor.get_dtype_cache(space).w_objectdtype:
            impl.fill(space, boxes.W_ObjectBox(space.w_None))
        if w_instance:
            return wrap_impl(space, space.type(w_instance), w_instance, impl)
        return W_NDimArray(impl)

    @staticmethod
    def from_shape_and_storage(space, shape, storage, dtype, storage_bytes=-1,
                               order=NPY.CORDER, owning=False, w_subtype=None,
                               w_base=None, writable=True, strides=None,
                               start=0):
        from pypy.module.micronumpy import concrete
        from pypy.module.micronumpy.strides import (calc_strides,
                                                    calc_backstrides)
        isize = dtype.elsize
        if len(shape) > NPY.MAXDIMS:
            raise oefmt(space.w_ValueError,
                "sequence too large; cannot be greater than %d", NPY.MAXDIMS)
        try:
            totalsize = ovfcheck(support.product_check(shape) * isize)
        except OverflowError as e:
            raise oefmt(space.w_ValueError, "array is too big.")
        if storage_bytes > 0 :
            if totalsize > storage_bytes:
                raise oefmt(space.w_TypeError,
                            "buffer is too small for requested array")
        else:
            storage_bytes = totalsize
        if strides is None:
            strides, backstrides = calc_strides(shape, dtype, order)
        else:
            if len(strides) != len(shape):
                raise oefmt(space.w_ValueError,
                    'strides, if given, must be the same length as shape')
            last = 0
            for i in range(len(strides)):
                last += (shape[i] - 1) * strides[i]
            if last > storage_bytes or start < 0 or \
                    start + dtype.elsize > storage_bytes:
                raise oefmt(space.w_ValueError,
                    'strides is incompatible with shape of requested '
                    'array and size of buffer')
            backstrides = calc_backstrides(strides, shape)
        if w_base is not None:
            if owning:
                raise oefmt(space.w_ValueError,
                            "Cannot have owning=True when specifying a buffer")
            if writable:
                impl = concrete.ConcreteArrayWithBase(shape, dtype, order,
                                    strides, backstrides, storage, w_base,
                                    start=start)
            else:
                impl = concrete.ConcreteNonWritableArrayWithBase(shape, dtype, order,
                                                                 strides, backstrides,
                                                                 storage, w_base)
        elif owning:
            # Will free storage when GCd
            impl = concrete.ConcreteArray(shape, dtype, order, strides,
                                          backstrides, storage=storage)
        else:
            impl = concrete.ConcreteArrayNotOwning(shape, dtype, order, strides,
                                                   backstrides, storage)
        if w_subtype:
            w_ret = space.allocate_instance(W_NDimArray, w_subtype)
            W_NDimArray.__init__(w_ret, impl)
            space.call_method(w_ret, '__array_finalize__', w_subtype)
            return w_ret
        return W_NDimArray(impl)

    @staticmethod
    def new_slice(space, offset, strides, backstrides, shape, parent, w_arr, dtype=None):
        from pypy.module.micronumpy import concrete
        w_base = w_arr
        if w_arr.implementation.base() is not None:
            w_base = w_arr.implementation.base()
        impl = concrete.SliceArray(offset, strides, backstrides, shape, parent,
                                   w_base, dtype)
        return wrap_impl(space, space.type(w_arr), w_arr, impl)

    @staticmethod
    def new_scalar(space, dtype, w_val=None):
        if w_val is not None:
            w_val = dtype.coerce(space, w_val)
        else:
            w_val = dtype.coerce(space, space.newint(0))
        return convert_to_array(space, w_val)

    @staticmethod
    def from_scalar(space, w_scalar):
        """Convert a scalar into a 0-dim array"""
        dtype = w_scalar.get_dtype(space)
        w_arr = W_NDimArray.from_shape(space, [], dtype)
        w_arr.set_scalar_value(w_scalar)
        return w_arr

    def get_shape(self):
        return self.implementation.get_shape()

    def get_dtype(self, space=None):
        return self.implementation.dtype

    def get_order(self):
        return self.implementation.order

    def get_start(self):
        return self.implementation.start

    def get_flags(self):
        return self.implementation.flags

    def ndims(self):
        return len(self.get_shape())
    ndims._always_inline_ = True


def convert_to_array(space, w_obj):
    from pypy.module.micronumpy.ctors import array
    if isinstance(w_obj, W_NDimArray):
        return w_obj
    return array(space, w_obj)