File: concrete.py

package info (click to toggle)
pypy3 7.3.19%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 212,236 kB
  • sloc: python: 2,098,316; ansic: 540,565; sh: 21,462; asm: 14,419; cpp: 4,451; makefile: 4,209; objc: 761; xml: 530; exp: 499; javascript: 314; pascal: 244; lisp: 45; csh: 12; awk: 4
file content (768 lines) | stat: -rw-r--r-- 31,589 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
from pypy.interpreter.buffer import BufferView
from pypy.interpreter.error import oefmt
from rpython.rlib import jit, rgc
from rpython.rlib.rarithmetic import ovfcheck
from rpython.rlib.listsort import make_timsort_class
from rpython.rlib.buffer import RawBuffer
from rpython.rlib.debug import make_sure_not_resized
from rpython.rlib.rstring import StringBuilder
from rpython.rlib.rawstorage import alloc_raw_storage, free_raw_storage, \
    raw_storage_getitem, raw_storage_setitem, RAW_STORAGE
from rpython.rtyper.lltypesystem import rffi, lltype, llmemory
from pypy.module.micronumpy import support, loop, constants as NPY
from pypy.module.micronumpy.base import convert_to_array, W_NDimArray, \
    ArrayArgumentException, W_NumpyObject
from pypy.module.micronumpy.iterators import ArrayIter
from pypy.module.micronumpy.strides import (
    IntegerChunk, SliceChunk, NewAxisChunk, EllipsisChunk, BooleanChunk,
    new_view, calc_strides, calc_new_strides, shape_agreement,
    calculate_broadcast_strides, calc_backstrides, calc_start, is_c_contiguous,
    is_f_contiguous)
from rpython.rlib.objectmodel import keepalive_until_here

TimSort = make_timsort_class()
class StrideSort(TimSort):
    '''
    argsort (return the indices to sort) a list of strides
    '''
    def __init__(self, rangelist, strides, order):
        self.strides = strides
        self.order = order
        TimSort.__init__(self, rangelist)

    def lt(self, a, b):
        if self.order == NPY.CORDER:
            return self.strides[a] <= self.strides[b]
        return self.strides[a] < self.strides[b]


class BaseConcreteArray(object):
    _immutable_fields_ = ['dtype?', 'storage', 'start', 'size', 'shape[*]',
                          'strides[*]', 'backstrides[*]', 'order', 'gcstruct',
                          'flags']
    start = 0
    parent = None
    flags = 0

    # JIT hints that length of all those arrays is a constant

    def get_shape(self):
        shape = self.shape
        jit.hint(len(shape), promote=True)
        return shape

    def get_strides(self):
        strides = self.strides
        jit.hint(len(strides), promote=True)
        return strides

    def get_backstrides(self):
        backstrides = self.backstrides
        jit.hint(len(backstrides), promote=True)
        return backstrides

    def get_flags(self):
        return self.flags

    def getitem(self, index):
        return self.dtype.read(self, index, 0)

    def getitem_bool(self, index):
        return self.dtype.read_bool(self, index, 0)

    def setitem(self, index, value):
        self.dtype.store(self, index, 0, value)

    @jit.unroll_safe
    def setslice(self, space, arr):
        if arr.get_size() == 1:
            # we can always set self[:] = scalar
            pass
        elif len(arr.get_shape()) >  len(self.get_shape()):
            # record arrays get one extra dimension
            if not self.dtype.is_record() or \
                    len(arr.get_shape()) > len(self.get_shape()) + 1:
                raise oefmt(space.w_ValueError,
                    "could not broadcast input array from shape "
                    "(%s) into shape (%s)",
                    ','.join([str(x) for x in arr.get_shape()]),
                    ','.join([str(x) for x in self.get_shape()]),
                    )
        shape = shape_agreement(space, self.get_shape(), arr)
        impl = arr.implementation
        if impl.storage == self.storage:
            impl = impl.copy(space)
        loop.setslice(space, shape, self, impl)

    def get_size(self):
        return self.size // self.dtype.elsize

    def get_storage_size(self):
        return self.size

    def reshape(self, orig_array, new_shape, order=NPY.ANYORDER):
        # Since we got to here, prod(new_shape) == self.size
        order = support.get_order_as_CF(self.order, order)
        new_strides = None
        if self.size == 0:
            new_strides, _ = calc_strides(new_shape, self.dtype, order)
        else:
            if len(self.get_shape()) == 0:
                new_strides = [self.dtype.elsize] * len(new_shape)
            else:
                new_strides = calc_new_strides(new_shape, self.get_shape(),
                                               self.get_strides(), order)
                if new_strides is None or len(new_strides) != len(new_shape):
                    return None
        if new_strides is not None:
            # We can create a view, strides somehow match up.
            new_backstrides = calc_backstrides(new_strides, new_shape)
            assert isinstance(orig_array, W_NDimArray) or orig_array is None
            return SliceArray(self.start, new_strides, new_backstrides,
                              new_shape, self, orig_array)
        return None

    def get_view(self, space, orig_array, dtype, new_shape, strides=None, backstrides=None):
        if not strides:
            strides, backstrides = calc_strides(new_shape, dtype,
                                                    self.order)
        return SliceArray(self.start, strides, backstrides, new_shape,
                          self, orig_array, dtype=dtype)

    def get_real(self, space, orig_array):
        strides = self.get_strides()
        backstrides = self.get_backstrides()
        if self.dtype.is_complex():
            dtype = self.dtype.get_float_dtype(space)
            return SliceArray(self.start, strides, backstrides,
                              self.get_shape(), self, orig_array, dtype=dtype)
        return SliceArray(self.start, strides, backstrides,
                          self.get_shape(), self, orig_array)

    def set_real(self, space, orig_array, w_value):
        tmp = self.get_real(space, orig_array)
        tmp.setslice(space, convert_to_array(space, w_value))

    def get_imag(self, space, orig_array):
        strides = self.get_strides()
        backstrides = self.get_backstrides()
        if self.dtype.is_complex():
            dtype = self.dtype.get_float_dtype(space)
            return SliceArray(self.start + dtype.elsize, strides, backstrides,
                              self.get_shape(), self, orig_array, dtype=dtype)
        impl = NonWritableArray(self.get_shape(), self.dtype, self.order,
                                strides, backstrides)
        if not self.dtype.is_flexible():
            impl.fill(space, self.dtype.box(0))
        return impl

    def set_imag(self, space, orig_array, w_value):
        tmp = self.get_imag(space, orig_array)
        tmp.setslice(space, convert_to_array(space, w_value))

    # -------------------- applevel get/setitem -----------------------

    @jit.unroll_safe
    def _lookup_by_index(self, space, view_w):
        item = self.start
        strides = self.get_strides()
        for i, w_index in enumerate(view_w):
            if space.isinstance_w(w_index, space.w_slice):
                raise IndexError
            idx = support.index_w(space, w_index)
            if idx < 0:
                idx = self.get_shape()[i] + idx
            if idx < 0 or idx >= self.get_shape()[i]:
                raise oefmt(space.w_IndexError,
                            "index %d is out of bounds for axis %d with size "
                            "%d", idx, i, self.get_shape()[i])
            item += idx * strides[i]
        return item

    @jit.unroll_safe
    def _lookup_by_unwrapped_index(self, space, lst):
        item = self.start
        shape = self.get_shape()
        strides = self.get_strides()
        assert len(lst) == len(shape)
        for i, idx in enumerate(lst):
            if idx < 0:
                idx = shape[i] + idx
            if idx < 0 or idx >= shape[i]:
                raise oefmt(space.w_IndexError,
                            "index %d is out of bounds for axis %d with size "
                            "%d", idx, i, self.get_shape()[i])
            item += idx * strides[i]
        return item

    def getitem_index(self, space, index):
        return self.getitem(self._lookup_by_unwrapped_index(space, index))

    def setitem_index(self, space, index, value):
        self.setitem(self._lookup_by_unwrapped_index(space, index), value)

    @jit.unroll_safe
    def _single_item_index(self, space, w_idx):
        """ Return an index of single item if possible, otherwise raises
        IndexError
        """
        if (space.isinstance_w(w_idx, space.w_text) or
            space.isinstance_w(w_idx, space.w_slice) or
            space.is_w(w_idx, space.w_None)):
            raise IndexError
        if isinstance(w_idx, W_NDimArray) and not w_idx.is_scalar():
            raise ArrayArgumentException
        shape = self.get_shape()
        shape_len = len(shape)
        view_w = None
        if space.isinstance_w(w_idx, space.w_list):
            raise ArrayArgumentException
        if space.isinstance_w(w_idx, space.w_tuple):
            view_w = space.fixedview(w_idx)
            if len(view_w) != shape_len:
                raise IndexError
            # check for arrays
            for w_item in view_w:
                if (isinstance(w_item, W_NDimArray) or
                    space.isinstance_w(w_item, space.w_list)):
                    raise ArrayArgumentException
                elif space.is_w(w_item, space.w_Ellipsis):
                    raise IndexError
            return self._lookup_by_index(space, view_w)
        if shape_len == 0:
            raise oefmt(space.w_IndexError, "too many indices for array")
        elif shape_len > 1:
            raise IndexError
        idx = support.index_w(space, w_idx)
        return self._lookup_by_index(space, [space.newint(idx)])

    @jit.unroll_safe
    def _prepare_slice_args(self, space, w_idx):
        from pypy.module.micronumpy import boxes
        if space.isinstance_w(w_idx, space.w_text):
            raise oefmt(space.w_IndexError, "only integers, slices (`:`), "
                "ellipsis (`...`), numpy.newaxis (`None`) and integer or "
                "boolean arrays are valid indices")
        if space.isinstance_w(w_idx, space.w_slice):
            if len(self.get_shape()) == 0:
                raise oefmt(space.w_ValueError, "cannot slice a 0-d array")
            return [SliceChunk(w_idx), EllipsisChunk()]
        elif space.isinstance_w(w_idx, space.w_int):
            return [IntegerChunk(w_idx), EllipsisChunk()]
        elif isinstance(w_idx, W_NDimArray) and w_idx.is_scalar():
            w_idx = w_idx.get_scalar_value().item(space)
            if not space.isinstance_w(w_idx, space.w_int) and \
                    not space.isinstance_w(w_idx, space.w_bool):
                raise oefmt(space.w_IndexError,
                            "arrays used as indices must be of integer (or "
                            "boolean) type")
            return [IntegerChunk(w_idx), EllipsisChunk()]
        elif space.is_w(w_idx, space.w_None):
            return [NewAxisChunk(), EllipsisChunk()]
        result = []
        has_ellipsis = False
        has_filter = False
        for w_item in space.fixedview(w_idx):
            if space.is_w(w_item, space.w_Ellipsis):
                if has_ellipsis:
                    # in CNumPy, this is only a deprecation warning
                    raise oefmt(space.w_ValueError,
                        "an index can only have a single Ellipsis (`...`); "
                        "replace all but one with slices (`:`).")
                result.append(EllipsisChunk())
                has_ellipsis = True
            elif space.is_w(w_item, space.w_None):
                result.append(NewAxisChunk())
            elif space.isinstance_w(w_item, space.w_slice):
                result.append(SliceChunk(w_item))
            elif isinstance(w_item, W_NDimArray) and w_item.get_dtype().is_bool():
                if has_filter:
                    # in CNumPy, the support for this is incomplete
                    raise oefmt(space.w_ValueError,
                        "an index can only have a single boolean mask; "
                        "use np.take or create a sinlge mask array")
                has_filter = True
                result.append(BooleanChunk(w_item))
            elif isinstance(w_item, boxes.W_GenericBox):
                result.append(IntegerChunk(w_item.descr_int(space)))
            else:
                result.append(IntegerChunk(w_item))
        if not has_ellipsis:
            result.append(EllipsisChunk())
        return result

    def descr_getitem(self, space, orig_arr, w_index):
        try:
            item = self._single_item_index(space, w_index)
            return self.getitem(item)
        except IndexError:
            # not a single result
            chunks = self._prepare_slice_args(space, w_index)
            copy = False
            if isinstance(chunks[0], BooleanChunk):
                # numpy compatibility
                copy = True
            w_ret = new_view(space, orig_arr, chunks)
            if copy:
                w_ret = w_ret.descr_copy(space, space.newint(w_ret.get_order()))
            return w_ret

    def descr_setitem(self, space, orig_arr, w_index, w_value):
        try:
            item = self._single_item_index(space, w_index)
            self.setitem(item, self.dtype.coerce(space, w_value))
        except IndexError:
            w_value = convert_to_array(space, w_value)
            chunks = self._prepare_slice_args(space, w_index)
            view = new_view(space, orig_arr, chunks)
            view.implementation.setslice(space, w_value)

    def transpose(self, orig_array, axes=None):
        if len(self.get_shape()) < 2:
            return self
        strides = []
        backstrides = []
        shape = []
        if axes is None:
            axes = range(len(self.get_shape()) - 1, -1, -1)
        for i in axes:
            strides.append(self.get_strides()[i])
            backstrides.append(self.get_backstrides()[i])
            shape.append(self.get_shape()[i])
        return SliceArray(self.start, strides,
                          backstrides, shape, self, orig_array)

    def copy(self, space, order=NPY.ANYORDER):
        if order == NPY.ANYORDER:
            order = NPY.KEEPORDER
        return self.astype(space, self.dtype, order, copy=True)

    def create_iter(self, shape=None, backward_broadcast=False):
        if shape is not None and \
                support.product(shape) > support.product(self.get_shape()):
            r = calculate_broadcast_strides(self.get_strides(),
                                            self.get_backstrides(),
                                            self.get_shape(), shape,
                                            backward_broadcast)
            i = ArrayIter(self, support.product(shape), shape, r[0], r[1])
        else:
            i = ArrayIter(self, self.get_size(), self.shape,
                          self.strides, self.backstrides)
        return i, i.reset()

    def swapaxes(self, space, orig_arr, axis1, axis2):
        shape = self.get_shape()[:]
        strides = self.get_strides()[:]
        backstrides = self.get_backstrides()[:]
        shape[axis1], shape[axis2] = shape[axis2], shape[axis1]
        strides[axis1], strides[axis2] = strides[axis2], strides[axis1]
        backstrides[axis1], backstrides[axis2] = backstrides[axis2], backstrides[axis1]
        return W_NDimArray.new_slice(space, self.start, strides,
                                     backstrides, shape, self, orig_arr)

    def nonzero(self, space, index_type):
        s = loop.count_all_true_concrete(self)
        box = index_type.itemtype.box
        nd = len(self.get_shape()) or 1
        w_res = W_NDimArray.from_shape(space, [s, nd], index_type)
        loop.nonzero(w_res, self, box)
        w_res = w_res.implementation.swapaxes(space, w_res, 0, 1)
        l_w = [w_res.descr_getitem(space, space.newint(d)) for d in range(nd)]
        return space.newtuple(l_w)

    ##def get_storage(self):
    ##    return self.storage
    ## use a safer context manager
    def __enter__(self):
        return self.storage

    def __exit__(self, typ, value, traceback):
        keepalive_until_here(self)

    def get_buffer(self, space, flags):
        errtype = space.w_ValueError # should be BufferError, numpy does this instead
        if ((flags & space.BUF_C_CONTIGUOUS) == space.BUF_C_CONTIGUOUS and
                not self.flags & NPY.ARRAY_C_CONTIGUOUS):
           raise oefmt(errtype, "ndarray is not C-contiguous")
        if ((flags & space.BUF_F_CONTIGUOUS) == space.BUF_F_CONTIGUOUS and
                not self.flags & NPY.ARRAY_F_CONTIGUOUS):
           raise oefmt(errtype, "ndarray is not Fortran contiguous")
        if ((flags & space.BUF_ANY_CONTIGUOUS) == space.BUF_ANY_CONTIGUOUS and
                not (self.flags & NPY.ARRAY_F_CONTIGUOUS or
                     self.flags & NPY.ARRAY_C_CONTIGUOUS)):
           raise oefmt(errtype, "ndarray is not contiguous")
        if ((flags & space.BUF_STRIDES) != space.BUF_STRIDES and
                not self.flags & NPY.ARRAY_C_CONTIGUOUS):
           raise oefmt(errtype, "ndarray is not C-contiguous")
        if ((flags & space.BUF_WRITABLE) == space.BUF_WRITABLE and
            not self.flags & NPY.ARRAY_WRITEABLE):
           raise oefmt(errtype, "buffer source array is read-only")
        readonly = not (flags & space.BUF_WRITABLE) == space.BUF_WRITABLE
        return ArrayView(self, readonly)

    def astype(self, space, dtype, order, copy=True):
        # copy the general pattern of the strides
        # but make the array storage contiguous in memory
        shape = self.get_shape()
        strides = self.get_strides()
        if order not in (NPY.KEEPORDER, NPY.FORTRANORDER, NPY.CORDER):
            raise oefmt(space.w_ValueError, "Unknown order %d in astype", order)
        if len(strides) == 0:
            t_strides = []
            backstrides = []
        elif order in (NPY.FORTRANORDER, NPY.CORDER):
            t_strides, backstrides = calc_strides(shape, dtype, order)
        else:
            indx_array = range(len(strides))
            list_sorter = StrideSort(indx_array, strides, self.order)
            list_sorter.sort()
            t_elsize = dtype.elsize
            t_strides = strides[:]
            base = dtype.elsize
            for i in indx_array:
                t_strides[i] = base
                base *= shape[i]
            backstrides = calc_backstrides(t_strides, shape)
        order = support.get_order_as_CF(self.order, order)
        impl = ConcreteArray(shape, dtype, order, t_strides, backstrides)
        if copy:
            loop.setslice(space, impl.get_shape(), impl, self)
        return impl

OBJECTSTORE = lltype.GcStruct('ObjectStore',
                              ('length', lltype.Signed),
                              ('step', lltype.Signed),
                              ('storage', llmemory.Address),
                              rtti=True)
offset_of_storage = llmemory.offsetof(OBJECTSTORE, 'storage')
offset_of_length = llmemory.offsetof(OBJECTSTORE, 'length')
offset_of_step = llmemory.offsetof(OBJECTSTORE, 'step')

V_OBJECTSTORE = lltype.nullptr(OBJECTSTORE)

def customtrace(gc, obj, callback, arg1, arg2):
    #debug_print('in customtrace w/obj', obj)
    length = (obj + offset_of_length).signed[0]
    step = (obj + offset_of_step).signed[0]
    storage = (obj + offset_of_storage).address[0]
    #debug_print('tracing', length, 'objects in ndarray.storage')
    i = 0
    while i < length:
        gc._trace_callback(callback, arg1, arg2, storage)
        storage += step
        i += 1

lambda_customtrace = lambda: customtrace

def _setup():
    rgc.register_custom_trace_hook(OBJECTSTORE, lambda_customtrace)

@jit.dont_look_inside
def _create_objectstore(storage, length, elsize):
    gcstruct = lltype.malloc(OBJECTSTORE)
    # JIT does not support cast_ptr_to_adr
    gcstruct.storage = llmemory.cast_ptr_to_adr(storage)
    #print 'create gcstruct',gcstruct,'with storage',storage,'as',gcstruct.storage
    gcstruct.length = length
    gcstruct.step = elsize
    return gcstruct


class ConcreteArrayNotOwning(BaseConcreteArray):
    def __init__(self, shape, dtype, order, strides, backstrides, storage, start=0):
        make_sure_not_resized(shape)
        make_sure_not_resized(strides)
        make_sure_not_resized(backstrides)
        self.shape = shape
        # already tested for overflow in from_shape_and_storage
        self.size = support.product(shape) * dtype.elsize
        if order not in (NPY.CORDER, NPY.FORTRANORDER):
            raise oefmt(dtype.itemtype.space.w_ValueError, "ConcreteArrayNotOwning but order is not 0,1 rather %d", order)
        self.order = order
        self.dtype = dtype
        self.strides = strides
        self.backstrides = backstrides
        self.storage = storage
        self.start = start
        self.gcstruct = V_OBJECTSTORE

    def fill(self, space, box):
        self.dtype.itemtype.fill(
            self.storage, self.dtype.elsize, self.dtype.is_native(),
            box, 0, self.size, 0, self.gcstruct)

    def set_shape(self, space, orig_array, new_shape):
        if len(new_shape) > NPY.MAXDIMS:
            raise oefmt(space.w_ValueError,
                "sequence too large; cannot be greater than %d", NPY.MAXDIMS)
        try:
            ovfcheck(support.product_check(new_shape) * self.dtype.elsize)
        except OverflowError as e:
            raise oefmt(space.w_ValueError, "array is too big.")
        strides, backstrides = calc_strides(new_shape, self.dtype,
                                                    self.order)
        return SliceArray(self.start, strides, backstrides, new_shape, self,
                          orig_array)

    def set_dtype(self, space, dtype):
        # size/shape/strides shouldn't change
        assert dtype.elsize == self.dtype.elsize
        self.dtype = dtype

    def argsort(self, space, w_axis):
        from .selection import argsort_array
        return argsort_array(self, space, w_axis)

    def sort(self, space, w_axis, w_order):
        from .selection import sort_array
        return sort_array(self, space, w_axis, w_order)

    def base(self):
        return None

class ConcreteArray(ConcreteArrayNotOwning):
    def __init__(self, shape, dtype, order, strides, backstrides,
                 storage=lltype.nullptr(RAW_STORAGE), zero=True):
        gcstruct = V_OBJECTSTORE
        flags = NPY.ARRAY_ALIGNED | NPY.ARRAY_WRITEABLE
        try:
            length = support.product_check(shape)
            self.size = ovfcheck(length * dtype.elsize)
        except OverflowError:
            raise oefmt(dtype.itemtype.space.w_ValueError, "array is too big.")
        if storage == lltype.nullptr(RAW_STORAGE):
            if dtype.num == NPY.OBJECT:
                storage = dtype.itemtype.malloc(length * dtype.elsize, zero=True)
                gcstruct = _create_objectstore(storage, length, dtype.elsize)
            else:
                storage = dtype.itemtype.malloc(length * dtype.elsize, zero=zero)
            flags |= NPY.ARRAY_OWNDATA
        start = calc_start(shape, strides)
        ConcreteArrayNotOwning.__init__(self, shape, dtype, order, strides, backstrides,
                                        storage, start=start)
        self.gcstruct = gcstruct
        if is_c_contiguous(self):
            flags |= NPY.ARRAY_C_CONTIGUOUS
        if is_f_contiguous(self):
            flags |= NPY.ARRAY_F_CONTIGUOUS
        self.flags = flags

    def __del__(self):
        if self.gcstruct:
            self.gcstruct.length = 0
        free_raw_storage(self.storage, track_allocation=False)


class ConcreteArrayWithBase(ConcreteArrayNotOwning):
    def __init__(self, shape, dtype, order, strides, backstrides, storage,
                 orig_base, start=0):
        ConcreteArrayNotOwning.__init__(self, shape, dtype, order,
                                        strides, backstrides, storage, start)
        self.orig_base = orig_base
        if isinstance(orig_base, W_NumpyObject):
            flags = orig_base.get_flags() & NPY.ARRAY_ALIGNED
            flags |=  orig_base.get_flags() & NPY.ARRAY_WRITEABLE
        else:
            flags = 0
        if is_c_contiguous(self):
            flags |= NPY.ARRAY_C_CONTIGUOUS
        if is_f_contiguous(self):
            flags |= NPY.ARRAY_F_CONTIGUOUS
        self.flags = flags

    def base(self):
        return self.orig_base


class ConcreteNonWritableArrayWithBase(ConcreteArrayWithBase):
    def __init__(self, shape, dtype, order, strides, backstrides, storage,
                 orig_base, start=0):
        ConcreteArrayWithBase.__init__(self, shape, dtype, order, strides,
                backstrides, storage, orig_base, start)
        self.flags &= ~ NPY.ARRAY_WRITEABLE

    def descr_setitem(self, space, orig_array, w_index, w_value):
        raise oefmt(space.w_ValueError, "assignment destination is read-only")


class NonWritableArray(ConcreteArray):
    def __init__(self, shape, dtype, order, strides, backstrides,
                 storage=lltype.nullptr(RAW_STORAGE), zero=True):
        ConcreteArray.__init__(self, shape, dtype, order, strides, backstrides,
                    storage, zero)
        self.flags &= ~ NPY.ARRAY_WRITEABLE

    def descr_setitem(self, space, orig_array, w_index, w_value):
        raise oefmt(space.w_ValueError, "assignment destination is read-only")


class SliceArray(BaseConcreteArray):
    def __init__(self, start, strides, backstrides, shape, parent, orig_arr,
                 dtype=None):
        self.strides = strides
        self.backstrides = backstrides
        self.shape = shape
        if dtype is None:
            dtype = parent.dtype
        if isinstance(parent, SliceArray):
            parent = parent.parent # one level only
        self.parent = parent
        self.storage = parent.storage
        self.gcstruct = parent.gcstruct
        if parent.order not in (NPY.CORDER, NPY.FORTRANORDER):
            raise oefmt(dtype.itemtype.space.w_ValueError, "SliceArray but parent order is not 0,1 rather %d", parent.order)
        self.order = parent.order
        self.dtype = dtype
        try:
            self.size = ovfcheck(support.product_check(shape) * self.dtype.elsize)
        except OverflowError:
            raise oefmt(dtype.itemtype.space.w_ValueError, "array is too big.")
        self.start = start
        self.orig_arr = orig_arr
        flags = parent.flags & NPY.ARRAY_ALIGNED
        flags |= parent.flags & NPY.ARRAY_WRITEABLE
        if is_c_contiguous(self):
            flags |= NPY.ARRAY_C_CONTIGUOUS
        if is_f_contiguous(self):
            flags |= NPY.ARRAY_F_CONTIGUOUS
        self.flags = flags

    def base(self):
        return self.orig_arr

    def fill(self, space, box):
        loop.fill(self, box.convert_to(space, self.dtype))

    def set_shape(self, space, orig_array, new_shape):
        if len(new_shape) > NPY.MAXDIMS:
            raise oefmt(space.w_ValueError,
                "sequence too large; cannot be greater than %d", NPY.MAXDIMS)
        try:
            ovfcheck(support.product_check(new_shape) * self.dtype.elsize)
        except OverflowError as e:
            raise oefmt(space.w_ValueError, "array is too big.")
        if len(self.get_shape()) < 2 or self.size == 0:
            # TODO: this code could be refactored into calc_strides
            # but then calc_strides would have to accept a stepping factor
            strides = []
            backstrides = []
            dtype = self.dtype
            try:
                s = self.get_strides()[0] // dtype.elsize
            except IndexError:
                s = 1
            if self.order != NPY.FORTRANORDER:
                new_shape.reverse()
            for sh in new_shape:
                strides.append(s * dtype.elsize)
                backstrides.append(s * (sh - 1) * dtype.elsize)
                s *= max(1, sh)
            if self.order != NPY.FORTRANORDER:
                strides.reverse()
                backstrides.reverse()
                new_shape.reverse()
            return self.__class__(self.start, strides, backstrides, new_shape,
                              self, orig_array)
        new_strides = calc_new_strides(new_shape, self.get_shape(),
                                       self.get_strides(),
                                       self.order)
        if new_strides is None or len(new_strides) != len(new_shape):
            raise oefmt(space.w_AttributeError,
                "incompatible shape for a non-contiguous array")
        new_backstrides = [0] * len(new_shape)
        for nd in range(len(new_shape)):
            new_backstrides[nd] = (new_shape[nd] - 1) * new_strides[nd]
        return self.__class__(self.start, new_strides, new_backstrides, new_shape,
                          self, orig_array)

    def sort(self, space, w_axis, w_order):
        from .selection import sort_array
        return sort_array(self, space, w_axis, w_order)

class NonWritableSliceArray(SliceArray):
    def __init__(self, start, strides, backstrides, shape, parent, orig_arr,
                 dtype=None):
        SliceArray.__init__(self, start, strides, backstrides, shape, parent,
                        orig_arr, dtype)
        self.flags &= ~NPY.ARRAY_WRITEABLE

    def descr_setitem(self, space, orig_array, w_index, w_value):
        raise oefmt(space.w_ValueError, "assignment destination is read-only")


class VoidBoxStorage(BaseConcreteArray):
    def __init__(self, size, dtype):
        self.storage = alloc_raw_storage(size)
        self.gcstruct = V_OBJECTSTORE
        self.dtype = dtype
        self.size = size
        self.flags = (NPY.ARRAY_C_CONTIGUOUS | NPY.ARRAY_F_CONTIGUOUS |
                     NPY.ARRAY_WRITEABLE | NPY.ARRAY_ALIGNED)

    def __del__(self):
        free_raw_storage(self.storage)


class ArrayData(RawBuffer):
    _immutable_ = True
    def __init__(self, impl, readonly):
        self.impl = impl
        self.readonly = readonly

    def getitem(self, index):
        return raw_storage_getitem(lltype.Char, self.impl.storage,
                 index + self.impl.start)

    def setitem(self, index, v):
        # XXX what if self.readonly?
        raw_storage_setitem(self.impl.storage, index + self.impl.start,
                            rffi.cast(lltype.Char, v))

    def getlength(self):
        return self.impl.size - self.impl.start

    def get_raw_address(self):
        from rpython.rtyper.lltypesystem import rffi
        return rffi.ptradd(self.impl.storage, self.impl.start)


class ArrayView(BufferView):
    _immutable_ = True

    def __init__(self, impl, readonly):
        self.impl = impl
        self.readonly = readonly
        self.data = ArrayData(impl, readonly)

    def getlength(self):
        return self.data.getlength()

    def getbytes(self, start, size):
        return self.data[start:start + size]

    def as_readbuf(self):
        return ArrayData(self.impl, readonly=True)

    def as_writebuf(self):
        assert not self.readonly
        return ArrayData(self.impl, readonly=False)

    def getformat(self):
        sb = StringBuilder()
        self.impl.dtype.getformat(sb)
        return sb.build()

    def getitemsize(self):
        return self.impl.dtype.elsize

    def getndim(self):
        return len(self.impl.shape)

    def getshape(self):
        return self.impl.shape

    def getstrides(self):
        return self.impl.strides

    def get_raw_address(self):
        return self.data.get_raw_address()