1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
|
from pypy.interpreter.error import OperationError, oefmt
from pypy.interpreter.baseobjspace import BufferInterfaceNotFound
from pypy.interpreter.gateway import unwrap_spec, WrappedDefault
from pypy.interpreter.buffer import SubBuffer
from rpython.rlib.rstring import strip_spaces
from rpython.rlib.rawstorage import RAW_STORAGE_PTR
from rpython.rtyper.lltypesystem import lltype, rffi
from pypy.module.micronumpy import descriptor, loop, support
from pypy.module.micronumpy.base import (wrap_impl,
W_NDimArray, convert_to_array, W_NumpyObject)
from pypy.module.micronumpy.converters import shape_converter, order_converter
import pypy.module.micronumpy.constants as NPY
from .casting import scalar2dtype
def build_scalar(space, w_dtype, w_state):
if not isinstance(w_dtype, descriptor.W_Dtype):
raise oefmt(space.w_TypeError,
"argument 1 must be numpy.dtype, not %T", w_dtype)
if w_dtype.elsize == 0:
raise oefmt(space.w_TypeError, "Empty data-type")
if not space.isinstance_w(w_state, space.w_bytes): # py3 accepts unicode here too
raise oefmt(space.w_TypeError, "initializing object must be a string")
if space.len_w(w_state) != w_dtype.elsize:
raise oefmt(space.w_ValueError, "initialization string is too small")
state = rffi.str2charp(space.text_w(w_state))
box = w_dtype.itemtype.box_raw_data(state)
lltype.free(state, flavor="raw")
return box
def try_array_method(space, w_object, w_dtype=None):
w___array__ = space.lookup(w_object, "__array__")
if w___array__ is None:
return None
if w_dtype is None:
w_dtype = space.w_None
w_array = space.get_and_call_function(w___array__, w_object, w_dtype)
if isinstance(w_array, W_NDimArray):
return w_array
else:
raise oefmt(space.w_ValueError,
"object __array__ method not producing an array")
def try_interface_method(space, w_object, copy):
try:
w_interface = space.getattr(w_object, space.newtext("__array_interface__"))
if w_interface is None:
return None, False
version_w = space.finditem(w_interface, space.newtext("version"))
if version_w is None:
raise oefmt(space.w_ValueError, "__array_interface__ found without"
" 'version' key")
if not space.isinstance_w(version_w, space.w_int):
raise oefmt(space.w_ValueError, "__array_interface__ found with"
" non-int 'version' key")
version = space.int_w(version_w)
if version < 3:
raise oefmt(space.w_ValueError,
"__array_interface__ version %d not supported", version)
# make a view into the data
w_shape = space.finditem(w_interface, space.newtext('shape'))
w_dtype = space.finditem(w_interface, space.newtext('typestr'))
w_descr = space.finditem(w_interface, space.newtext('descr'))
w_data = space.finditem(w_interface, space.newtext('data'))
w_strides = space.finditem(w_interface, space.newtext('strides'))
if w_shape is None or w_dtype is None:
raise oefmt(space.w_ValueError,
"__array_interface__ missing one or more required keys: shape, typestr"
)
if w_descr is not None:
raise oefmt(space.w_NotImplementedError,
"__array_interface__ descr not supported yet")
if w_strides is None or space.is_w(w_strides, space.w_None):
strides = None
else:
strides = [space.int_w(i) for i in space.listview(w_strides)]
shape = [space.int_w(i) for i in space.listview(w_shape)]
dtype = descriptor.decode_w_dtype(space, w_dtype)
if dtype is None:
raise oefmt(space.w_ValueError,
"__array_interface__ could not decode dtype %R", w_dtype
)
if w_data is not None and (space.isinstance_w(w_data, space.w_tuple) or
space.isinstance_w(w_data, space.w_list)):
data_w = space.listview(w_data)
w_data = rffi.cast(RAW_STORAGE_PTR, space.int_w(data_w[0]))
read_only = space.is_true(data_w[1]) or copy
offset = 0
w_base = w_object
if read_only:
w_base = None
return W_NDimArray.from_shape_and_storage(space, shape, w_data,
dtype, w_base=w_base, strides=strides,
start=offset), read_only
if w_data is None:
w_data = w_object
w_offset = space.finditem(w_interface, space.newtext('offset'))
if w_offset is None:
offset = 0
else:
offset = space.int_w(w_offset)
#print 'create view from shape',shape,'dtype',dtype,'data',data
if strides is not None:
raise oefmt(space.w_NotImplementedError,
"__array_interface__ strides not fully supported yet")
arr = frombuffer(space, w_data, dtype, support.product(shape), offset)
new_impl = arr.implementation.reshape(arr, shape)
return W_NDimArray(new_impl), False
except OperationError as e:
if e.match(space, space.w_AttributeError):
return None, False
raise
def _descriptor_from_pep3118_format(space, c_format):
descr = descriptor.decode_w_dtype(space, space.newtext(c_format))
if descr:
return descr
msg = "invalid PEP 3118 format string: '%s'" % c_format
space.warn(space.newtext(msg), space.w_RuntimeWarning)
return None
def _array_from_buffer_3118(space, w_object, dtype):
try:
w_buf = space.call_method(space.builtin, "memoryview", w_object)
except OperationError as e:
if e.match(space, space.w_TypeError):
# object does not have buffer interface
return w_object
raise
format = space.getattr(w_buf, space.newtext('format'))
if format:
descr = _descriptor_from_pep3118_format(space, space.text_w(format))
if not descr:
return w_object
if dtype and descr:
raise oefmt(space.w_NotImplementedError,
"creating an array from a memoryview while specifying dtype "
"not supported")
if descr.elsize != space.int_w(space.getattr(w_buf, space.newbytes('itemsize'))):
msg = ("Item size computed from the PEP 3118 buffer format "
"string does not match the actual item size.")
space.warn(space.newtext(msg), space.w_RuntimeWarning)
return w_object
dtype = descr
elif not dtype:
dtype = descriptor.get_dtype_cache(space).w_stringdtype
dtype.elsize = space.int_w(space.getattr(w_buf, space.newbytes('itemsize')))
nd = space.int_w(space.getattr(w_buf, space.newbytes('ndim')))
shape = [space.int_w(d) for d in space.listview(
space.getattr(w_buf, space.newbytes('shape')))]
strides = []
buflen = space.len_w(w_buf) * dtype.elsize
if shape:
strides = [space.int_w(d) for d in space.listview(
space.getattr(w_buf, space.newbytes('strides')))]
if not strides:
d = buflen
strides = [0] * nd
for k in range(nd):
if shape[k] > 0:
d /= shape[k]
strides[k] = d
else:
if nd == 1:
shape = [buflen / dtype.elsize, ]
strides = [dtype.elsize, ]
elif nd > 1:
msg = ("ndim computed from the PEP 3118 buffer format "
"is greater than 1, but shape is NULL.")
space.warn(space.newtext(msg), space.w_RuntimeWarning)
return w_object
try:
w_data = rffi.cast(RAW_STORAGE_PTR, space.int_w(space.call_method(w_buf, '_pypy_raw_address')))
except OperationError as e:
if e.match(space, space.w_ValueError):
return w_object
else:
raise e
writable = not space.bool_w(space.getattr(w_buf, space.newbytes('readonly')))
w_ret = W_NDimArray.from_shape_and_storage(space, shape, w_data,
storage_bytes=buflen, dtype=dtype, w_base=w_object,
writable=writable, strides=strides)
if w_ret:
return w_ret
return w_object
@unwrap_spec(ndmin=int, copy=bool, subok=bool)
def array(space, w_object, w_dtype=None, copy=True, w_order=None, subok=False,
ndmin=0):
w_res = _array(space, w_object, w_dtype, copy, w_order, subok)
shape = w_res.get_shape()
if len(shape) < ndmin:
shape = [1] * (ndmin - len(shape)) + shape
impl = w_res.implementation.set_shape(space, w_res, shape)
if w_res is w_object:
return W_NDimArray(impl)
else:
w_res.implementation = impl
return w_res
def _array(space, w_object, w_dtype=None, copy=True, w_order=None, subok=False):
from pypy.module.micronumpy.boxes import W_GenericBox
# numpy testing calls array(type(array([]))) and expects a ValueError
if space.isinstance_w(w_object, space.w_type):
raise oefmt(space.w_ValueError, "cannot create ndarray from type instance")
# for anything that isn't already an array, try __array__ method first
dtype = descriptor.decode_w_dtype(space, w_dtype)
if not isinstance(w_object, W_NDimArray):
w_array = try_array_method(space, w_object, w_dtype)
if w_array is None:
if ( not space.isinstance_w(w_object, space.w_bytes) and
not space.isinstance_w(w_object, space.w_unicode) and
not isinstance(w_object, W_GenericBox)):
# use buffer interface
w_object = _array_from_buffer_3118(space, w_object, dtype)
else:
# continue with w_array, but do further operations in place
w_object = w_array
copy = False
dtype = w_object.get_dtype()
if not isinstance(w_object, W_NDimArray):
w_array, _copy = try_interface_method(space, w_object, copy)
if w_array is not None:
w_object = w_array
copy = _copy
dtype = w_object.get_dtype()
if isinstance(w_object, W_NDimArray):
npy_order = order_converter(space, w_order, NPY.ANYORDER)
if (dtype is None or w_object.get_dtype() is dtype) and (subok or
type(w_object) is W_NDimArray):
flags = w_object.get_flags()
must_copy = copy
must_copy |= (npy_order == NPY.CORDER and not flags & NPY.ARRAY_C_CONTIGUOUS)
must_copy |= (npy_order == NPY.FORTRANORDER and not flags & NPY.ARRAY_F_CONTIGUOUS)
if must_copy:
return w_object.descr_copy(space, space.newint(npy_order))
else:
return w_object
if subok and not type(w_object) is W_NDimArray:
raise oefmt(space.w_NotImplementedError,
"array(..., subok=True) only partially implemented")
# we have a ndarray, but need to copy or change dtype
if dtype is None:
dtype = w_object.get_dtype()
if dtype != w_object.get_dtype():
# silently reject the copy value
copy = True
if copy:
shape = w_object.get_shape()
order = support.get_order_as_CF(w_object.get_order(), npy_order)
w_arr = W_NDimArray.from_shape(space, shape, dtype, order=order)
if support.product(shape) == 1:
w_arr.set_scalar_value(dtype.coerce(space,
w_object.implementation.getitem(0)))
else:
loop.setslice(space, shape, w_arr.implementation, w_object.implementation)
return w_arr
else:
imp = w_object.implementation
w_base = w_object
sz = w_base.get_size() * dtype.elsize
if imp.base() is not None:
w_base = imp.base()
if type(w_base) is W_NDimArray:
sz = w_base.get_size() * dtype.elsize
else:
# this must succeed (mmap, buffer, ...)
sz = space.int_w(space.call_method(w_base, 'size'))
with imp as storage:
return W_NDimArray.from_shape_and_storage(space,
w_object.get_shape(), storage, dtype, storage_bytes=sz,
w_base=w_base, strides=imp.strides, start=imp.start)
else:
# not an array
npy_order = order_converter(space, w_order, NPY.CORDER)
shape, elems_w = find_shape_and_elems(space, w_object, dtype)
if dtype is None and space.isinstance_w(w_object, space.w_memoryview):
dtype = descriptor.get_dtype_cache(space).w_uint8dtype
if dtype is None or (dtype.is_str_or_unicode() and dtype.elsize < 1):
dtype = find_dtype_for_seq(space, elems_w, dtype)
w_arr = W_NDimArray.from_shape(space, shape, dtype, order=npy_order)
if support.product(shape) == 1: # safe from overflow since from_shape checks
w_arr.set_scalar_value(dtype.coerce(space, elems_w[0]))
else:
loop.assign(space, w_arr, elems_w)
return w_arr
def numpify(space, w_object):
"""Convert the object to a W_NumpyObject"""
# XXX: code duplication with _array()
if isinstance(w_object, W_NumpyObject):
return w_object
# for anything that isn't already an array, try __array__ method first
w_array = try_array_method(space, w_object)
if w_array is not None:
return w_array
if is_scalar_like(space, w_object, dtype=None):
dtype = scalar2dtype(space, w_object)
if dtype.is_str_or_unicode() and dtype.elsize < 1:
# promote S0 -> S1, U0 -> U1
dtype = descriptor.variable_dtype(space, dtype.char + '1')
return dtype.coerce(space, w_object)
shape, elems_w = _find_shape_and_elems(space, w_object)
dtype = find_dtype_for_seq(space, elems_w, None)
w_arr = W_NDimArray.from_shape(space, shape, dtype)
loop.assign(space, w_arr, elems_w)
return w_arr
def find_shape_and_elems(space, w_iterable, dtype):
if is_scalar_like(space, w_iterable, dtype):
return [], [w_iterable]
is_rec_type = dtype is not None and dtype.is_record()
return _find_shape_and_elems(space, w_iterable, is_rec_type)
def is_scalar_like(space, w_obj, dtype):
isstr = space.isinstance_w(w_obj, space.w_bytes)
if not support.issequence_w(space, w_obj) or isstr:
if dtype is None or dtype.char != NPY.CHARLTR:
return True
is_rec_type = dtype is not None and dtype.is_record()
if is_rec_type and is_single_elem(space, w_obj, is_rec_type):
return True
if isinstance(w_obj, W_NDimArray) and w_obj.is_scalar():
return True
return False
def _find_shape_and_elems(space, w_iterable, is_rec_type=False):
from pypy.objspace.std.bufferobject import W_Buffer
shape = [space.len_w(w_iterable)]
if space.isinstance_w(w_iterable, space.w_buffer):
batch = [space.newint(0)] * shape[0]
for i in range(shape[0]):
batch[i] = space.ord(space.getitem(w_iterable, space.newint(i)))
else:
batch = space.listview(w_iterable)
while True:
if not batch:
return shape[:], []
if is_single_elem(space, batch[0], is_rec_type):
for w_elem in batch:
if not is_single_elem(space, w_elem, is_rec_type):
raise oefmt(space.w_ValueError,
"setting an array element with a sequence")
return shape[:], batch
new_batch = []
size = space.len_w(batch[0])
for w_elem in batch:
if (is_single_elem(space, w_elem, is_rec_type) or
space.len_w(w_elem) != size):
raise oefmt(space.w_ValueError,
"setting an array element with a sequence")
w_array = space.lookup(w_elem, '__array__')
if w_array is not None:
# Make sure we call the array implementation of listview,
# since for some ndarray subclasses (matrix, for instance)
# listview does not reduce but rather returns the same class
w_elem = space.get_and_call_function(w_array, w_elem, space.w_None)
new_batch += space.listview(w_elem)
shape.append(size)
batch = new_batch
def is_single_elem(space, w_elem, is_rec_type):
if (is_rec_type and space.isinstance_w(w_elem, space.w_tuple)):
return True
if (space.isinstance_w(w_elem, space.w_tuple) or
space.isinstance_w(w_elem, space.w_list)):
return False
if isinstance(w_elem, W_NDimArray) and not w_elem.is_scalar():
return False
return True
def _dtype_guess(space, dtype, w_elem):
from .casting import scalar2dtype, find_binop_result_dtype
if isinstance(w_elem, W_NDimArray) and w_elem.is_scalar():
w_elem = w_elem.get_scalar_value()
elem_dtype = scalar2dtype(space, w_elem)
return find_binop_result_dtype(space, elem_dtype, dtype)
def find_dtype_for_seq(space, elems_w, dtype):
if len(elems_w) == 1:
w_elem = elems_w[0]
return _dtype_guess(space, dtype, w_elem)
for w_elem in elems_w:
dtype = _dtype_guess(space, dtype, w_elem)
if dtype is None:
dtype = descriptor.get_dtype_cache(space).w_float64dtype
elif dtype.is_str_or_unicode() and dtype.elsize < 1:
# promote S0 -> S1, U0 -> U1
dtype = descriptor.variable_dtype(space, dtype.char + '1')
return dtype
def _zeros_or_empty(space, w_shape, w_dtype, w_order, zero):
# w_order can be None, str, or boolean
order = order_converter(space, w_order, NPY.CORDER)
dtype = space.interp_w(descriptor.W_Dtype,
space.call_function(space.gettypefor(descriptor.W_Dtype), w_dtype))
if dtype.is_str_or_unicode() and dtype.elsize < 1:
dtype = descriptor.variable_dtype(space, dtype.char + '1')
shape = shape_converter(space, w_shape, dtype)
for dim in shape:
if dim < 0:
raise oefmt(space.w_ValueError,
"negative dimensions are not allowed")
try:
support.product_check(shape)
except OverflowError:
raise oefmt(space.w_ValueError, "array is too big.")
return W_NDimArray.from_shape(space, shape, dtype, order, zero=zero)
def empty(space, w_shape, w_dtype=None, w_order=None):
return _zeros_or_empty(space, w_shape, w_dtype, w_order, zero=False)
def zeros(space, w_shape, w_dtype=None, w_order=None):
return _zeros_or_empty(space, w_shape, w_dtype, w_order, zero=True)
@unwrap_spec(subok=bool)
def empty_like(space, w_a, w_dtype=None, w_order=None, subok=True):
w_a = convert_to_array(space, w_a)
npy_order = order_converter(space, w_order, w_a.get_order())
if space.is_none(w_dtype):
dtype = w_a.get_dtype()
else:
dtype = space.interp_w(descriptor.W_Dtype,
space.call_function(space.gettypefor(descriptor.W_Dtype), w_dtype))
if dtype.is_str_or_unicode() and dtype.elsize < 1:
dtype = descriptor.variable_dtype(space, dtype.char + '1')
if npy_order in (NPY.KEEPORDER, NPY.ANYORDER):
# Try to copy the stride pattern
impl = w_a.implementation.astype(space, dtype, NPY.KEEPORDER)
if subok:
w_type = space.type(w_a)
else:
w_type = None
return wrap_impl(space, w_type, w_a, impl)
return W_NDimArray.from_shape(space, w_a.get_shape(), dtype=dtype,
order=npy_order,
w_instance=w_a if subok else None,
zero=False)
def _fromstring_text(space, s, count, sep, length, dtype):
sep_stripped = strip_spaces(sep)
skip_bad_vals = len(sep_stripped) == 0
items = []
num_items = 0
idx = 0
while (num_items < count or count == -1) and idx < len(s):
nextidx = s.find(sep, idx)
if nextidx < 0:
nextidx = length
piece = strip_spaces(s[idx:nextidx])
if len(piece) > 0 or not skip_bad_vals:
if len(piece) == 0 and not skip_bad_vals:
val = dtype.itemtype.default_fromstring(space)
else:
try:
val = dtype.coerce(space, space.newtext(piece))
except OperationError as e:
if not e.match(space, space.w_ValueError):
raise
gotit = False
while not gotit and len(piece) > 0:
piece = piece[:-1]
try:
val = dtype.coerce(space, space.newtext(piece))
gotit = True
except OperationError as e:
if not e.match(space, space.w_ValueError):
raise
if not gotit:
val = dtype.itemtype.default_fromstring(space)
nextidx = length
items.append(val)
num_items += 1
idx = nextidx + 1
if count > num_items:
raise oefmt(space.w_ValueError,
"string is smaller than requested size")
a = W_NDimArray.from_shape(space, [num_items], dtype=dtype)
ai, state = a.create_iter()
for val in items:
ai.setitem(state, val)
state = ai.next(state)
return a
def _fromstring_bin(space, s, count, length, dtype):
itemsize = dtype.elsize
assert itemsize >= 0
if count == -1:
count = length / itemsize
if length % itemsize != 0:
raise oefmt(space.w_ValueError,
"string length %d not divisable by item size %d",
length, itemsize)
if count * itemsize > length:
raise oefmt(space.w_ValueError,
"string is smaller than requested size")
a = W_NDimArray.from_shape(space, [count], dtype=dtype)
loop.fromstring_loop(space, a, dtype, itemsize, s)
return a
@unwrap_spec(s='text', count=int, sep='text', w_dtype=WrappedDefault(None))
def fromstring(space, s, w_dtype=None, count=-1, sep=''):
dtype = space.interp_w(descriptor.W_Dtype,
space.call_function(space.gettypefor(descriptor.W_Dtype), w_dtype))
length = len(s)
if sep == '':
return _fromstring_bin(space, s, count, length, dtype)
else:
return _fromstring_text(space, s, count, sep, length, dtype)
def _getbuffer(space, w_buffer):
try:
return space.writebuf_w(w_buffer)
except OperationError as e:
if not e.match(space, space.w_TypeError):
raise
return space.readbuf_w(w_buffer)
@unwrap_spec(count=int, offset=int)
def frombuffer(space, w_buffer, w_dtype=None, count=-1, offset=0):
dtype = space.interp_w(descriptor.W_Dtype,
space.call_function(space.gettypefor(descriptor.W_Dtype), w_dtype))
if dtype.elsize == 0:
raise oefmt(space.w_ValueError, "itemsize cannot be zero in type")
try:
buf = _getbuffer(space, w_buffer)
except OperationError as e:
if not e.match(space, space.w_TypeError):
raise
w_buffer = space.call_method(w_buffer, '__buffer__',
space.newint(space.BUF_FULL_RO))
buf = _getbuffer(space, w_buffer)
ts = buf.getlength()
if offset < 0 or offset > ts:
raise oefmt(space.w_ValueError,
"offset must be non-negative and no greater than "
"buffer length (%d)", ts)
s = ts - offset
if offset:
buf = SubBuffer(buf, offset, s)
n = count
itemsize = dtype.elsize
assert itemsize > 0
if n < 0:
if s % itemsize != 0:
raise oefmt(space.w_ValueError,
"buffer size must be a multiple of element size")
n = s / itemsize
else:
if s < n * itemsize:
raise oefmt(space.w_ValueError,
"buffer is smaller than requested size")
try:
storage = buf.get_raw_address()
except ValueError:
a = W_NDimArray.from_shape(space, [n], dtype=dtype)
loop.fromstring_loop(space, a, dtype, itemsize, buf.as_str())
return a
else:
writable = not buf.readonly
return W_NDimArray.from_shape_and_storage(space, [n], storage, storage_bytes=s,
dtype=dtype, w_base=w_buffer, writable=writable)
|