File: loop.py

package info (click to toggle)
pypy3 7.3.19%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 212,236 kB
  • sloc: python: 2,098,316; ansic: 540,565; sh: 21,462; asm: 14,419; cpp: 4,451; makefile: 4,209; objc: 761; xml: 530; exp: 499; javascript: 314; pascal: 244; lisp: 45; csh: 12; awk: 4
file content (1041 lines) | stat: -rw-r--r-- 42,985 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
""" This file is the main run loop as well as evaluation loops for various
operations. This is the place to look for all the computations that iterate
over all the array elements.
"""
import py
from pypy.interpreter.error import oefmt
from rpython.rlib import jit
from rpython.rlib.rstring import StringBuilder
from rpython.rtyper.lltypesystem import lltype, rffi
from pypy.module.micronumpy import support, constants as NPY
from pypy.module.micronumpy.base import W_NDimArray, convert_to_array
from pypy.module.micronumpy.iterators import PureShapeIter, AxisIter, \
    AllButAxisIter, ArrayIter
from pypy.interpreter.argument import Arguments


def call2(space, shape, func, calc_dtype, w_lhs, w_rhs, out):
    if w_lhs.get_size() == 1:
        w_left = w_lhs.get_scalar_value().convert_to(space, calc_dtype)
        left_iter = left_state = None
    else:
        w_left = None
        left_iter, left_state = w_lhs.create_iter(shape)
        left_iter.track_index = False

    if w_rhs.get_size() == 1:
        w_right = w_rhs.get_scalar_value().convert_to(space, calc_dtype)
        right_iter = right_state = None
    else:
        w_right = None
        right_iter, right_state = w_rhs.create_iter(shape)
        right_iter.track_index = False

    out_iter, out_state = out.create_iter(shape)
    shapelen = len(shape)
    res_dtype = out.get_dtype()
    call2_func = try_to_share_iterators_call2(left_iter, right_iter,
            left_state, right_state, out_state)
    params = (space, shapelen, func, calc_dtype, res_dtype, out,
              w_left, w_right, left_iter, right_iter, out_iter,
              left_state, right_state, out_state)
    return call2_func(*params)

def try_to_share_iterators_call2(left_iter, right_iter, left_state, right_state, out_state):
    # these are all possible iterator sharing combinations
    # left == right == out
    # left == right
    # left == out
    # right == out
    right_out_equal = False
    if right_iter:
        # rhs is not a scalar
        if out_state.same(right_state):
            right_out_equal = True
    #
    if not left_iter:
        # lhs is a scalar
        if right_out_equal:
            return call2_advance_out_left
        else:
            # worst case, nothing can be shared and lhs is a scalar
            return call2_advance_out_left_right
    else:
        # lhs is NOT a scalar
        if out_state.same(left_state):
            # (2) out and left are the same -> remove left
            if right_out_equal:
                # the best case
                return call2_advance_out
            else:
                return call2_advance_out_right
        else:
            if right_out_equal:
                # right and out are equal, only advance left and out
                return call2_advance_out_left
            else:
                if right_iter and right_state.same(left_state):
                    # left and right are equal, but still need to advance out
                    return call2_advance_out_left_eq_right
                else:
                    # worst case, nothing can be shared
                    return call2_advance_out_left_right

    assert 0, "logical problem with the selection of the call2 case"

def generate_call2_cases(name, left_state, right_state):
    call2_driver = jit.JitDriver(name='numpy_call2_' + name,
        greens=['shapelen', 'func', 'calc_dtype', 'res_dtype'],
        reds='auto', vectorize=True)
    #
    advance_left_state = left_state == "left_state"
    advance_right_state = right_state == "right_state"
    code = """
    def method(space, shapelen, func, calc_dtype, res_dtype, out,
               w_left, w_right, left_iter, right_iter, out_iter,
               left_state, right_state, out_state):
        while not out_iter.done(out_state):
            call2_driver.jit_merge_point(shapelen=shapelen, func=func,
                    calc_dtype=calc_dtype, res_dtype=res_dtype)
            if left_iter:
                w_left = left_iter.getitem({left_state}).convert_to(space, calc_dtype)
            if right_iter:
                w_right = right_iter.getitem({right_state}).convert_to(space, calc_dtype)
            w_out = func(calc_dtype, w_left, w_right)
            out_iter.setitem(out_state, w_out.convert_to(space, res_dtype))
            out_state = out_iter.next(out_state)
            if advance_left_state and left_iter:
                left_state = left_iter.next(left_state)
            if advance_right_state and right_iter:
                right_state = right_iter.next(right_state)
            #
            # if not set to None, the values will be loop carried
            # (for the var,var case), forcing the vectorization to unpack
            # the vector registers at the end of the loop
            if left_iter:
                w_left = None
            if right_iter:
                w_right = None
        return out
    """
    exec(py.code.Source(code.format(left_state=left_state,right_state=right_state)).compile(), locals())
    method.__name__ = "call2_" + name
    return method

call2_advance_out = generate_call2_cases("inc_out", "out_state", "out_state")
call2_advance_out_left = generate_call2_cases("inc_out_left", "left_state", "out_state")
call2_advance_out_right = generate_call2_cases("inc_out_right", "out_state", "right_state")
call2_advance_out_left_eq_right = generate_call2_cases("inc_out_left_eq_right", "left_state", "left_state")
call2_advance_out_left_right = generate_call2_cases("inc_out_left_right", "left_state", "right_state")

call1_driver = jit.JitDriver(
    name='numpy_call1',
    greens=['shapelen', 'share_iterator', 'func', 'calc_dtype', 'res_dtype'],
    reds='auto', vectorize=True)

def call1(space, shape, func, calc_dtype, w_obj, w_ret):
    obj_iter, obj_state = w_obj.create_iter(shape)
    obj_iter.track_index = False
    out_iter, out_state = w_ret.create_iter(shape)
    shapelen = len(shape)
    res_dtype = w_ret.get_dtype()
    share_iterator = out_state.same(obj_state)
    while not out_iter.done(out_state):
        call1_driver.jit_merge_point(shapelen=shapelen, func=func,
                                     share_iterator=share_iterator,
                                     calc_dtype=calc_dtype, res_dtype=res_dtype)
        if share_iterator:
            # use out state as param to getitem
            elem = obj_iter.getitem(out_state).convert_to(space, calc_dtype)
        else:
            elem = obj_iter.getitem(obj_state).convert_to(space, calc_dtype)
        out_iter.setitem(out_state, func(calc_dtype, elem).convert_to(space, res_dtype))
        if share_iterator:
            # only advance out, they share the same iteration space
            out_state = out_iter.next(out_state)
        else:
            out_state = out_iter.next(out_state)
            obj_state = obj_iter.next(obj_state)
        elem = None
    return w_ret

call_many_to_one_driver = jit.JitDriver(
    name='numpy_call_many_to_one',
    greens=['shapelen', 'nin', 'func', 'in_dtypes', 'res_dtype'],
    reds='auto')

def call_many_to_one(space, shape, func, in_dtypes, res_dtype, in_args, out):
    # out must hav been built. func needs no calc_type, is usually an
    # external ufunc
    nin = len(in_args)
    in_iters = [None] * nin
    in_states = [None] * nin
    for i in range(nin):
        in_i = in_args[i]
        assert isinstance(in_i, W_NDimArray)
        in_iter, in_state = in_i.create_iter(shape)
        in_iters[i] = in_iter
        in_states[i] = in_state
    shapelen = len(shape)
    assert isinstance(out, W_NDimArray)
    out_iter, out_state = out.create_iter(shape)
    vals = [None] * nin
    while not out_iter.done(out_state):
        call_many_to_one_driver.jit_merge_point(shapelen=shapelen, func=func,
                        in_dtypes=in_dtypes, res_dtype=res_dtype, nin=nin)
        for i in range(nin):
            vals[i] = in_dtypes[i].coerce(space, in_iters[i].getitem(in_states[i]))
        w_arglist = space.newlist(vals)
        w_out_val = space.call_args(func, Arguments.frompacked(space, w_arglist))
        out_iter.setitem(out_state, res_dtype.coerce(space, w_out_val))
        for i in range(nin):
            in_states[i] = in_iters[i].next(in_states[i])
        out_state = out_iter.next(out_state)
    return out

call_many_to_many_driver = jit.JitDriver(
    name='numpy_call_many_to_many',
    greens=['shapelen', 'nin', 'nout', 'func', 'in_dtypes', 'out_dtypes'],
    reds='auto')

def call_many_to_many(space, shape, func, in_dtypes, out_dtypes, in_args, out_args):
    # out must have been built. func needs no calc_type, is usually an
    # external ufunc
    nin = len(in_args)
    in_iters = [None] * nin
    in_states = [None] * nin
    nout = len(out_args)
    out_iters = [None] * nout
    out_states = [None] * nout
    for i in range(nin):
        in_i = in_args[i]
        assert isinstance(in_i, W_NDimArray)
        in_iter, in_state = in_i.create_iter(shape)
        in_iters[i] = in_iter
        in_states[i] = in_state
    for i in range(nout):
        out_i = out_args[i]
        assert isinstance(out_i, W_NDimArray)
        out_iter, out_state = out_i.create_iter(shape)
        out_iters[i] = out_iter
        out_states[i] = out_state
    shapelen = len(shape)
    vals = [None] * nin
    test_iter, test_state = in_iters[-1], in_states[-1]
    if nout > 0:
        test_iter, test_state = out_iters[0], out_states[0]
    while not test_iter.done(test_state):
        call_many_to_many_driver.jit_merge_point(shapelen=shapelen, func=func,
                             in_dtypes=in_dtypes, out_dtypes=out_dtypes,
                             nin=nin, nout=nout)
        for i in range(nin):
            vals[i] = in_dtypes[i].coerce(space, in_iters[i].getitem(in_states[i]))
        w_arglist = space.newlist(vals)
        w_outvals = space.call_args(func, Arguments.frompacked(space, w_arglist))
        # w_outvals should be a tuple, but func can return a single value as well 
        if space.isinstance_w(w_outvals, space.w_tuple):
            batch = space.listview(w_outvals)
            for i in range(len(batch)):
                out_iters[i].setitem(out_states[i], out_dtypes[i].coerce(space, batch[i]))
                out_states[i] = out_iters[i].next(out_states[i])
        elif nout > 0:
            out_iters[0].setitem(out_states[0], out_dtypes[0].coerce(space, w_outvals))
            out_states[0] = out_iters[0].next(out_states[0])
        for i in range(nin):
            in_states[i] = in_iters[i].next(in_states[i])
        test_state = test_iter.next(test_state)
    return space.newtuple([convert_to_array(space, o) for o in out_args])

setslice_driver = jit.JitDriver(name='numpy_setslice',
                                greens = ['shapelen', 'dtype'],
                                reds = 'auto', vectorize=True)

def setslice(space, shape, target, source):
    if not shape:
        dtype = target.dtype
        val = source.getitem(source.start)
        if dtype.is_str_or_unicode():
            val = dtype.coerce(space, val)
        else:
            val = val.convert_to(space, dtype)
        target.setitem(target.start, val)
        return target
    return _setslice(space, shape, target, source)

def _setslice(space, shape, target, source):
    # note that unlike everything else, target and source here are
    # array implementations, not arrays
    target_iter, target_state = target.create_iter(shape)
    source_iter, source_state = source.create_iter(shape)
    source_iter.track_index = False
    dtype = target.dtype
    shapelen = len(shape)
    while not target_iter.done(target_state):
        setslice_driver.jit_merge_point(shapelen=shapelen, dtype=dtype)
        val = source_iter.getitem(source_state)
        if dtype.is_str_or_unicode() or dtype.is_record():
            val = dtype.coerce(space, val)
        else:
            val = val.convert_to(space, dtype)
        target_iter.setitem(target_state, val)
        target_state = target_iter.next(target_state)
        source_state = source_iter.next(source_state)
    return target


def split_iter(arr, axis_flags):
    """Prepare 2 iterators for nested iteration over `arr`.

    Arguments:
        arr: instance of BaseConcreteArray
        axis_flags: list of bools, one for each dimension of `arr`.The inner
        iterator operates over the dimensions for which the flag is True
    """
    shape = arr.get_shape()
    strides = arr.get_strides()
    backstrides = arr.get_backstrides()
    shapelen = len(shape)
    assert len(axis_flags) == shapelen
    inner_shape = [-1] * shapelen
    inner_strides = [-1] * shapelen
    inner_backstrides = [-1] * shapelen
    outer_shape = [-1] * shapelen
    outer_strides = [-1] * shapelen
    outer_backstrides = [-1] * shapelen
    for i in range(len(shape)):
        if axis_flags[i]:
            inner_shape[i] = shape[i]
            inner_strides[i] = strides[i]
            inner_backstrides[i] = backstrides[i]
            outer_shape[i] = 1
            outer_strides[i] = 0
            outer_backstrides[i] = 0
        else:
            outer_shape[i] = shape[i]
            outer_strides[i] = strides[i]
            outer_backstrides[i] = backstrides[i]
            inner_shape[i] = 1
            inner_strides[i] = 0
            inner_backstrides[i] = 0
    inner_iter = ArrayIter(arr, support.product(inner_shape),
                           inner_shape, inner_strides, inner_backstrides)
    outer_iter = ArrayIter(arr, support.product(outer_shape),
                           outer_shape, outer_strides, outer_backstrides)
    return inner_iter, outer_iter


reduce_flat_driver = jit.JitDriver(
    name='numpy_reduce_flat',
    greens = ['shapelen', 'func', 'done_func', 'calc_dtype'], reds = 'auto',
    vectorize = True)

def reduce_flat(space, func, w_arr, calc_dtype, done_func, identity):
    obj_iter, obj_state = w_arr.create_iter()
    if identity is None:
        cur_value = obj_iter.getitem(obj_state).convert_to(space, calc_dtype)
        obj_state = obj_iter.next(obj_state)
    else:
        cur_value = identity.convert_to(space, calc_dtype)
    shapelen = len(w_arr.get_shape())
    while not obj_iter.done(obj_state):
        reduce_flat_driver.jit_merge_point(
            shapelen=shapelen, func=func,
            done_func=done_func, calc_dtype=calc_dtype)
        rval = obj_iter.getitem(obj_state).convert_to(space, calc_dtype)
        if done_func is not None and done_func(calc_dtype, rval):
            return rval
        cur_value = func(calc_dtype, cur_value, rval)
        obj_state = obj_iter.next(obj_state)
    return cur_value

reduce_driver = jit.JitDriver(
    name='numpy_reduce',
    greens=['shapelen', 'func', 'dtype'], reds='auto',
    vectorize=True)

def reduce(space, func, w_arr, axis_flags, dtype, out, identity):
    out_iter, out_state = out.create_iter()
    out_iter.track_index = False
    shape = w_arr.get_shape()
    shapelen = len(shape)
    inner_iter, outer_iter = split_iter(w_arr.implementation, axis_flags)
    assert outer_iter.size == out_iter.size

    if identity is not None:
        identity = identity.convert_to(space, dtype)
    outer_state = outer_iter.reset()
    while not outer_iter.done(outer_state):
        inner_state = inner_iter.reset()
        inner_state.offset = outer_state.offset
        if identity is not None:
            w_val = identity
        else:
            w_val = inner_iter.getitem(inner_state).convert_to(space, dtype)
            inner_state = inner_iter.next(inner_state)
        while not inner_iter.done(inner_state):
            reduce_driver.jit_merge_point(
                shapelen=shapelen, func=func, dtype=dtype)
            w_item = inner_iter.getitem(inner_state).convert_to(space, dtype)
            w_val = func(dtype, w_item, w_val)
            inner_state = inner_iter.next(inner_state)
        out_iter.setitem(out_state, w_val)
        out_state = out_iter.next(out_state)
        outer_state = outer_iter.next(outer_state)
    return out

accumulate_flat_driver = jit.JitDriver(
    name='numpy_accumulate_flat',
    greens=['shapelen', 'func', 'dtype', 'out_dtype'],
    reds='auto', vectorize=True)

def accumulate_flat(space, func, w_arr, calc_dtype, w_out, identity):
    arr_iter, arr_state = w_arr.create_iter()
    out_iter, out_state = w_out.create_iter()
    out_iter.track_index = False
    if identity is None:
        cur_value = arr_iter.getitem(arr_state).convert_to(space, calc_dtype)
        out_iter.setitem(out_state, cur_value)
        out_state = out_iter.next(out_state)
        arr_state = arr_iter.next(arr_state)
    else:
        cur_value = identity.convert_to(space, calc_dtype)
    shapelen = len(w_arr.get_shape())
    out_dtype = w_out.get_dtype()
    while not arr_iter.done(arr_state):
        accumulate_flat_driver.jit_merge_point(
            shapelen=shapelen, func=func, dtype=calc_dtype,
            out_dtype=out_dtype)
        w_item = arr_iter.getitem(arr_state).convert_to(space, calc_dtype)
        cur_value = func(calc_dtype, cur_value, w_item)
        out_iter.setitem(out_state, out_dtype.coerce(space, cur_value))
        out_state = out_iter.next(out_state)
        arr_state = arr_iter.next(arr_state)

accumulate_driver = jit.JitDriver(
    name='numpy_accumulate',
    greens=['shapelen', 'func', 'calc_dtype'],
    reds='auto',
    vectorize=True)


def accumulate(space, func, w_arr, axis, calc_dtype, w_out, identity):
    out_iter, out_state = w_out.create_iter()
    arr_shape = w_arr.get_shape()
    temp_shape = arr_shape[:axis] + arr_shape[axis + 1:]
    temp = W_NDimArray.from_shape(space, temp_shape, calc_dtype, w_instance=w_arr)
    temp_iter = AxisIter(temp.implementation, w_arr.get_shape(), axis)
    temp_state = temp_iter.reset()
    arr_iter, arr_state = w_arr.create_iter()
    arr_iter.track_index = False
    if identity is not None:
        identity = identity.convert_to(space, calc_dtype)
    shapelen = len(arr_shape)
    while not out_iter.done(out_state):
        accumulate_driver.jit_merge_point(shapelen=shapelen, func=func,
                                          calc_dtype=calc_dtype)
        w_item = arr_iter.getitem(arr_state).convert_to(space, calc_dtype)
        arr_state = arr_iter.next(arr_state)

        out_indices = out_iter.indices(out_state)
        if out_indices[axis] == 0:
            if identity is not None:
                w_item = func(calc_dtype, identity, w_item)
        else:
            cur_value = temp_iter.getitem(temp_state)
            w_item = func(calc_dtype, cur_value, w_item)

        out_iter.setitem(out_state, w_item)
        out_state = out_iter.next(out_state)
        temp_iter.setitem(temp_state, w_item)
        temp_state = temp_iter.next(temp_state)
    return w_out

def fill(arr, box):
    arr_iter, arr_state = arr.create_iter()
    while not arr_iter.done(arr_state):
        arr_iter.setitem(arr_state, box)
        arr_state = arr_iter.next(arr_state)

def assign(space, arr, seq):
    arr_iter, arr_state = arr.create_iter()
    arr_dtype = arr.get_dtype()
    for item in seq:
        arr_iter.setitem(arr_state, arr_dtype.coerce(space, item))
        arr_state = arr_iter.next(arr_state)

where_driver = jit.JitDriver(name='numpy_where',
                             greens = ['shapelen', 'dtype', 'arr_dtype'],
                             reds = 'auto',
                             vectorize=True)

def where(space, out, shape, arr, x, y, dtype):
    out_iter, out_state = out.create_iter(shape)
    arr_iter, arr_state = arr.create_iter(shape)
    arr_dtype = arr.get_dtype()
    x_iter, x_state = x.create_iter(shape)
    y_iter, y_state = y.create_iter(shape)
    if x.is_scalar():
        if y.is_scalar():
            iter, state = arr_iter, arr_state
        else:
            iter, state = y_iter, y_state
    else:
        iter, state = x_iter, x_state
    out_iter.track_index = x_iter.track_index = False
    arr_iter.track_index = y_iter.track_index = False
    iter.track_index = True
    shapelen = len(shape)
    while not iter.done(state):
        where_driver.jit_merge_point(shapelen=shapelen, dtype=dtype,
                                        arr_dtype=arr_dtype)
        w_cond = arr_iter.getitem(arr_state)
        if arr_dtype.itemtype.bool(w_cond):
            w_val = x_iter.getitem(x_state).convert_to(space, dtype)
        else:
            w_val = y_iter.getitem(y_state).convert_to(space, dtype)
        out_iter.setitem(out_state, w_val)
        out_state = out_iter.next(out_state)
        arr_state = arr_iter.next(arr_state)
        x_state = x_iter.next(x_state)
        y_state = y_iter.next(y_state)
        if x.is_scalar():
            if y.is_scalar():
                state = arr_state
            else:
                state = y_state
        else:
            state = x_state
    return out

def _new_argmin_argmax(op_name):
    arg_driver = jit.JitDriver(name='numpy_' + op_name,
                               greens = ['shapelen', 'dtype'],
                               reds = 'auto')
    arg_flat_driver = jit.JitDriver(name='numpy_flat_' + op_name,
                                    greens = ['shapelen', 'dtype'],
                                    reds = 'auto')

    def argmin_argmax(space, w_arr, w_out, axis):
        from pypy.module.micronumpy.descriptor import get_dtype_cache
        dtype = w_arr.get_dtype()
        shapelen = len(w_arr.get_shape())
        axis_flags = [False] * shapelen
        axis_flags[axis] = True
        inner_iter, outer_iter = split_iter(w_arr.implementation, axis_flags)
        outer_state = outer_iter.reset()
        out_iter, out_state = w_out.create_iter()
        while not outer_iter.done(outer_state):
            inner_state = inner_iter.reset()
            inner_state.offset = outer_state.offset
            cur_best = inner_iter.getitem(inner_state)
            inner_state = inner_iter.next(inner_state)
            result = 0
            idx = 1
            while not inner_iter.done(inner_state):
                arg_driver.jit_merge_point(shapelen=shapelen, dtype=dtype)
                w_val = inner_iter.getitem(inner_state)
                old_best = getattr(dtype.itemtype, op_name)(cur_best, w_val)
                if not old_best:
                    result = idx
                    cur_best = w_val
                inner_state = inner_iter.next(inner_state)
                idx += 1
            result = get_dtype_cache(space).w_longdtype.box(result)
            out_iter.setitem(out_state, result)
            out_state = out_iter.next(out_state)
            outer_state = outer_iter.next(outer_state)
        return w_out

    def argmin_argmax_flat(w_arr):
        result = 0
        idx = 1
        dtype = w_arr.get_dtype()
        iter, state = w_arr.create_iter()
        cur_best = iter.getitem(state)
        state = iter.next(state)
        shapelen = len(w_arr.get_shape())
        while not iter.done(state):
            arg_flat_driver.jit_merge_point(shapelen=shapelen, dtype=dtype)
            w_val = iter.getitem(state)
            old_best = getattr(dtype.itemtype, op_name)(cur_best, w_val)
            if not old_best:
                result = idx
                cur_best = w_val
            state = iter.next(state)
            idx += 1
        return result

    return argmin_argmax, argmin_argmax_flat
argmin, argmin_flat = _new_argmin_argmax('argmin')
argmax, argmax_flat = _new_argmin_argmax('argmax')

dot_driver = jit.JitDriver(name = 'numpy_dot',
                           greens = ['dtype'],
                           reds = 'auto',
                           vectorize=True)

def multidim_dot(space, left, right, result, dtype, right_critical_dim):
    ''' assumes left, right are concrete arrays
    given left.shape == [3, 5, 7],
          right.shape == [2, 7, 4]
    then
     result.shape == [3, 5, 2, 4]
     broadcast shape should be [3, 5, 2, 7, 4]
     result should skip dims 3 which is len(result_shape) - 1
        (note that if right is 1d, result should
                  skip len(result_shape))
     left should skip 2, 4 which is a.ndims-1 + range(right.ndims)
          except where it==(right.ndims-2)
     right should skip 0, 1
    '''
    left_shape = left.get_shape()
    right_shape = right.get_shape()
    left_impl = left.implementation
    right_impl = right.implementation
    assert left_shape[-1] == right_shape[right_critical_dim]
    assert result.get_dtype() == dtype
    outi, outs = result.create_iter()
    outi.track_index = False
    lefti = AllButAxisIter(left_impl, len(left_shape) - 1)
    righti = AllButAxisIter(right_impl, right_critical_dim)
    lefts = lefti.reset()
    rights = righti.reset()
    n = left_impl.shape[-1]
    s1 = left_impl.strides[-1]
    s2 = right_impl.strides[right_critical_dim]
    while not lefti.done(lefts):
        while not righti.done(rights):
            oval = outi.getitem(outs)
            i1 = lefts.offset
            i2 = rights.offset
            i = 0
            while i < n:
                i += 1
                dot_driver.jit_merge_point(dtype=dtype)
                lval = left_impl.getitem(i1).convert_to(space, dtype)
                rval = right_impl.getitem(i2).convert_to(space, dtype)
                oval = dtype.itemtype.add(oval, dtype.itemtype.mul(lval, rval))
                i1 += jit.promote(s1)
                i2 += jit.promote(s2)
            outi.setitem(outs, oval)
            outs = outi.next(outs)
            rights = righti.next(rights)
        rights = righti.reset(rights)
        lefts = lefti.next(lefts)
    return result

count_all_true_driver = jit.JitDriver(name = 'numpy_count',
                                      greens = ['shapelen', 'dtype'],
                                      reds = 'auto',
                                      vectorize=True)

def count_all_true_concrete(impl):
    s = 0
    iter, state = impl.create_iter()
    shapelen = len(impl.shape)
    dtype = impl.dtype
    while not iter.done(state):
        count_all_true_driver.jit_merge_point(shapelen=shapelen, dtype=dtype)
        s += iter.getitem_bool(state)
        state = iter.next(state)
    return s

def count_all_true(arr):
    if arr.is_scalar():
        return arr.get_dtype().itemtype.bool(arr.get_scalar_value())
    else:
        return count_all_true_concrete(arr.implementation)

nonzero_driver = jit.JitDriver(name = 'numpy_nonzero',
                               greens = ['shapelen', 'dims', 'dtype'],
                               reds = 'auto',
                               vectorize=True)

def nonzero(res, arr, box):
    res_iter, res_state = res.create_iter()
    arr_iter, arr_state = arr.create_iter()
    shapelen = len(arr.shape)
    dtype = arr.dtype
    dims = range(shapelen)
    while not arr_iter.done(arr_state):
        nonzero_driver.jit_merge_point(shapelen=shapelen, dims=dims, dtype=dtype)
        if arr_iter.getitem_bool(arr_state):
            arr_indices = arr_iter.indices(arr_state)
            for d in dims:
                res_iter.setitem(res_state, box(arr_indices[d]))
                res_state = res_iter.next(res_state)
        arr_state = arr_iter.next(arr_state)
    return res


getitem_filter_driver = jit.JitDriver(name = 'numpy_getitem_bool',
                                      greens = ['shapelen', 'arr_dtype',
                                                'index_dtype'],
                                      reds = 'auto',
                                      vectorize=True)

def getitem_filter(res, arr, index):
    res_iter, res_state = res.create_iter()
    shapelen = len(arr.get_shape())
    if shapelen > 1 and len(index.get_shape()) < 2:
        index_iter, index_state = index.create_iter(arr.get_shape(), backward_broadcast=True)
    else:
        index_iter, index_state = index.create_iter()
    arr_iter, arr_state = arr.create_iter()
    arr_dtype = arr.get_dtype()
    index_dtype = index.get_dtype()
    # support the deprecated form where arr([True]) will return arr[0, ...]
    # by iterating over res_iter, not index_iter
    while not res_iter.done(res_state):
        getitem_filter_driver.jit_merge_point(shapelen=shapelen,
                                              index_dtype=index_dtype,
                                              arr_dtype=arr_dtype,
                                              )
        if index_iter.getitem_bool(index_state):
            res_iter.setitem(res_state, arr_iter.getitem(arr_state))
            res_state = res_iter.next(res_state)
        index_state = index_iter.next(index_state)
        arr_state = arr_iter.next(arr_state)
    return res

setitem_filter_driver = jit.JitDriver(name = 'numpy_setitem_bool',
                                      greens = ['shapelen', 'arr_dtype',
                                                'index_dtype'],
                                      reds = 'auto',
                                      vectorize=True)

def setitem_filter(space, arr, index, value):
    arr_iter, arr_state = arr.create_iter()
    shapelen = len(arr.get_shape())
    if shapelen > 1 and len(index.get_shape()) < 2:
        index_iter, index_state = index.create_iter(arr.get_shape(), backward_broadcast=True)
    else:
        index_iter, index_state = index.create_iter()
    if value.get_size() == 1:
        value_iter, value_state = value.create_iter(arr.get_shape())
    else:
        value_iter, value_state = value.create_iter()
    index_dtype = index.get_dtype()
    arr_dtype = arr.get_dtype()
    while not index_iter.done(index_state):
        setitem_filter_driver.jit_merge_point(shapelen=shapelen,
                                              index_dtype=index_dtype,
                                              arr_dtype=arr_dtype,
                                             )
        if index_iter.getitem_bool(index_state):
            val = arr_dtype.coerce(space, value_iter.getitem(value_state))
            value_state = value_iter.next(value_state)
            arr_iter.setitem(arr_state, val)
        arr_state = arr_iter.next(arr_state)
        index_state = index_iter.next(index_state)

flatiter_getitem_driver = jit.JitDriver(name = 'numpy_flatiter_getitem',
                                        greens = ['dtype'],
                                        reds = 'auto',
                                        vectorize=True)

def flatiter_getitem(res, base_iter, base_state, step):
    ri, rs = res.create_iter()
    dtype = res.get_dtype()
    while not ri.done(rs):
        flatiter_getitem_driver.jit_merge_point(dtype=dtype)
        ri.setitem(rs, base_iter.getitem(base_state))
        base_state = base_iter.goto(base_state.index + step)
        rs = ri.next(rs)
    return res

flatiter_setitem_driver = jit.JitDriver(name = 'numpy_flatiter_setitem',
                                        greens = ['dtype'],
                                        reds = 'auto',
                                        vectorize=True)

def flatiter_setitem(space, dtype, val, arr_iter, arr_state, step, length):
    val_iter, val_state = val.create_iter()
    while length > 0:
        flatiter_setitem_driver.jit_merge_point(dtype=dtype)
        val = val_iter.getitem(val_state)
        if dtype.is_str_or_unicode():
            val = dtype.coerce(space, val)
        else:
            val = val.convert_to(space, dtype)
        arr_iter.setitem(arr_state, val)
        arr_state = arr_iter.goto(arr_state.index + step)
        val_state = val_iter.next(val_state)
        if val_iter.done(val_state):
            val_state = val_iter.reset(val_state)
        length -= 1

fromstring_driver = jit.JitDriver(name = 'numpy_fromstring',
                                  greens = ['itemsize', 'dtype'],
                                  reds = 'auto')

def fromstring_loop(space, a, dtype, itemsize, s):
    i = 0
    ai, state = a.create_iter()
    while not ai.done(state):
        fromstring_driver.jit_merge_point(dtype=dtype, itemsize=itemsize)
        sub = s[i*itemsize:i*itemsize + itemsize]
        val = dtype.runpack_str(space, sub)
        ai.setitem(state, val)
        state = ai.next(state)
        i += 1

def tostring(space, arr):
    builder = StringBuilder()
    iter, state = arr.create_iter()
    w_res_str = W_NDimArray.from_shape(space, [1], arr.get_dtype())
    itemsize = arr.get_dtype().elsize
    with w_res_str.implementation as storage:
        res_str_casted = rffi.cast(rffi.CArrayPtr(lltype.Char),
                               support.get_storage_as_int(storage))
        while not iter.done(state):
            w_res_str.implementation.setitem(0, iter.getitem(state))
            for i in range(itemsize):
                builder.append(res_str_casted[i])
            state = iter.next(state)
        return builder.build()

getitem_int_driver = jit.JitDriver(name = 'numpy_getitem_int',
                                   greens = ['shapelen', 'indexlen',
                                             'prefixlen', 'dtype'],
                                   reds = 'auto')

def getitem_array_int(space, arr, res, iter_shape, indexes_w, prefix_w):
    shapelen = len(iter_shape)
    prefixlen = len(prefix_w)
    indexlen = len(indexes_w)
    dtype = arr.get_dtype()
    iter = PureShapeIter(iter_shape, indexes_w)
    while not iter.done():
        getitem_int_driver.jit_merge_point(shapelen=shapelen, indexlen=indexlen,
                                           dtype=dtype, prefixlen=prefixlen)
        # prepare the index
        index_w = [None] * indexlen
        for i in range(indexlen):
            if iter.idx_w_i[i] is not None:
                index_w[i] = iter.idx_w_i[i].getitem(iter.idx_w_s[i])
            else:
                index_w[i] = indexes_w[i]
        res.descr_setitem(space, space.newtuple(prefix_w[:prefixlen] +
                                            iter.get_index(space, shapelen)),
                          arr.descr_getitem(space, space.newtuple(index_w)))
        iter.next()
    return res

setitem_int_driver = jit.JitDriver(name = 'numpy_setitem_int',
                                   greens = ['shapelen', 'indexlen',
                                             'prefixlen', 'dtype'],
                                   reds = 'auto')

def setitem_array_int(space, arr, iter_shape, indexes_w, val_arr,
                      prefix_w):
    shapelen = len(iter_shape)
    indexlen = len(indexes_w)
    prefixlen = len(prefix_w)
    dtype = arr.get_dtype()
    iter = PureShapeIter(iter_shape, indexes_w)
    while not iter.done():
        setitem_int_driver.jit_merge_point(shapelen=shapelen, indexlen=indexlen,
                                           dtype=dtype, prefixlen=prefixlen)
        # prepare the index
        index_w = [None] * indexlen
        for i in range(indexlen):
            if iter.idx_w_i[i] is not None:
                index_w[i] = iter.idx_w_i[i].getitem(iter.idx_w_s[i])
            else:
                index_w[i] = indexes_w[i]
        w_idx = space.newtuple(prefix_w[:prefixlen] + iter.get_index(space,
                                                                  shapelen))
        if val_arr.is_scalar():
            w_value = val_arr.get_scalar_value()
        else:
            w_value = val_arr.descr_getitem(space, w_idx)
        arr.descr_setitem(space, space.newtuple(index_w), w_value)
        iter.next()

byteswap_driver = jit.JitDriver(name='numpy_byteswap_driver',
                                greens = ['dtype'],
                                reds = 'auto',
                                vectorize=True)

def byteswap(from_, to):
    dtype = from_.dtype
    from_iter, from_state = from_.create_iter()
    to_iter, to_state = to.create_iter()
    while not from_iter.done(from_state):
        byteswap_driver.jit_merge_point(dtype=dtype)
        val = dtype.itemtype.byteswap(from_iter.getitem(from_state))
        to_iter.setitem(to_state, val)
        to_state = to_iter.next(to_state)
        from_state = from_iter.next(from_state)

choose_driver = jit.JitDriver(name='numpy_choose_driver',
                              greens = ['shapelen', 'mode', 'dtype'],
                              reds = 'auto',
                              vectorize=True)

def choose(space, arr, choices, shape, dtype, out, mode):
    shapelen = len(shape)
    pairs = [a.create_iter(shape) for a in choices]
    iterators = [i[0] for i in pairs]
    states = [i[1] for i in pairs]
    arr_iter, arr_state = arr.create_iter(shape)
    out_iter, out_state = out.create_iter(shape)
    while not arr_iter.done(arr_state):
        choose_driver.jit_merge_point(shapelen=shapelen, dtype=dtype,
                                      mode=mode)
        index = support.index_w(space, arr_iter.getitem(arr_state))
        if index < 0 or index >= len(iterators):
            if mode == NPY.RAISE:
                raise oefmt(space.w_ValueError,
                            "invalid entry in choice array")
            elif mode == NPY.WRAP:
                index = index % (len(iterators))
            else:
                assert mode == NPY.CLIP
                if index < 0:
                    index = 0
                else:
                    index = len(iterators) - 1
        val = iterators[index].getitem(states[index]).convert_to(space, dtype)
        out_iter.setitem(out_state, val)
        for i in range(len(iterators)):
            states[i] = iterators[i].next(states[i])
        out_state = out_iter.next(out_state)
        arr_state = arr_iter.next(arr_state)

clip_driver = jit.JitDriver(name='numpy_clip_driver',
                            greens = ['shapelen', 'dtype'],
                            reds = 'auto',
                            vectorize=True)

def clip(space, arr, shape, min, max, out):
    assert min or max
    arr_iter, arr_state = arr.create_iter(shape)
    if min is not None:
        min_iter, min_state = min.create_iter(shape)
    else:
        min_iter, min_state = None, None
    if max is not None:
        max_iter, max_state = max.create_iter(shape)
    else:
        max_iter, max_state = None, None
    out_iter, out_state = out.create_iter(shape)
    shapelen = len(shape)
    dtype = out.get_dtype()
    while not arr_iter.done(arr_state):
        clip_driver.jit_merge_point(shapelen=shapelen, dtype=dtype)
        w_v = arr_iter.getitem(arr_state).convert_to(space, dtype)
        arr_state = arr_iter.next(arr_state)
        if min_iter is not None:
            w_min = min_iter.getitem(min_state).convert_to(space, dtype)
            if dtype.itemtype.lt(w_v, w_min):
                w_v = w_min
            min_state = min_iter.next(min_state)
        if max_iter is not None:
            w_max = max_iter.getitem(max_state).convert_to(space, dtype)
            if dtype.itemtype.gt(w_v, w_max):
                w_v = w_max
            max_state = max_iter.next(max_state)
        out_iter.setitem(out_state, w_v)
        out_state = out_iter.next(out_state)

round_driver = jit.JitDriver(name='numpy_round_driver',
                             greens = ['shapelen', 'dtype'],
                             reds = 'auto',
                             vectorize=True)

def round(space, arr, dtype, shape, decimals, out):
    arr_iter, arr_state = arr.create_iter(shape)
    out_iter, out_state = out.create_iter(shape)
    shapelen = len(shape)
    while not arr_iter.done(arr_state):
        round_driver.jit_merge_point(shapelen=shapelen, dtype=dtype)
        w_v = arr_iter.getitem(arr_state).convert_to(space, dtype)
        w_v = dtype.itemtype.round(w_v, decimals)
        out_iter.setitem(out_state, w_v)
        arr_state = arr_iter.next(arr_state)
        out_state = out_iter.next(out_state)

diagonal_simple_driver = jit.JitDriver(name='numpy_diagonal_simple_driver',
                                       greens = ['axis1', 'axis2'],
                                       reds = 'auto')

def diagonal_simple(space, arr, out, offset, axis1, axis2, size):
    out_iter, out_state = out.create_iter()
    i = 0
    index = [0] * 2
    while i < size:
        diagonal_simple_driver.jit_merge_point(axis1=axis1, axis2=axis2)
        index[axis1] = i
        index[axis2] = i + offset
        out_iter.setitem(out_state, arr.getitem_index(space, index))
        i += 1
        out_state = out_iter.next(out_state)

def diagonal_array(space, arr, out, offset, axis1, axis2, shape):
    out_iter, out_state = out.create_iter()
    iter = PureShapeIter(shape, [])
    shapelen_minus_1 = len(shape) - 1
    assert shapelen_minus_1 >= 0
    if axis1 < axis2:
        a = axis1
        b = axis2 - 1
    else:
        a = axis2
        b = axis1 - 1
    assert a >= 0
    assert b >= 0
    while not iter.done():
        last_index = iter.indexes[-1]
        if axis1 < axis2:
            indexes = (iter.indexes[:a] + [last_index] +
                       iter.indexes[a:b] + [last_index + offset] +
                       iter.indexes[b:shapelen_minus_1])
        else:
            indexes = (iter.indexes[:a] + [last_index + offset] +
                       iter.indexes[a:b] + [last_index] +
                       iter.indexes[b:shapelen_minus_1])
        out_iter.setitem(out_state, arr.getitem_index(space, indexes))
        iter.next()
        out_state = out_iter.next(out_state)

def _new_binsearch(side, op_name):
    binsearch_driver = jit.JitDriver(name='numpy_binsearch_' + side,
                                     greens=['dtype'],
                                     reds='auto')

    def binsearch(space, arr, key, ret):
        assert len(arr.get_shape()) == 1
        dtype = key.get_dtype()
        op = getattr(dtype.itemtype, op_name)
        key_iter, key_state = key.create_iter()
        ret_iter, ret_state = ret.create_iter()
        ret_iter.track_index = False
        size = arr.get_size()
        min_idx = 0
        max_idx = size
        last_key_val = key_iter.getitem(key_state)
        while not key_iter.done(key_state):
            key_val = key_iter.getitem(key_state)
            if dtype.itemtype.lt(last_key_val, key_val):
                max_idx = size
            else:
                min_idx = 0
                max_idx = max_idx + 1 if max_idx < size else size
            last_key_val = key_val
            while min_idx < max_idx:
                binsearch_driver.jit_merge_point(dtype=dtype)
                mid_idx = min_idx + ((max_idx - min_idx) >> 1)
                mid_val = arr.getitem(space, [mid_idx]).convert_to(space, dtype)
                if op(mid_val, key_val):
                    min_idx = mid_idx + 1
                else:
                    max_idx = mid_idx
            ret_iter.setitem(ret_state, ret.get_dtype().box(min_idx))
            ret_state = ret_iter.next(ret_state)
            key_state = key_iter.next(key_state)
    return binsearch

binsearch_left = _new_binsearch('left', 'lt')
binsearch_right = _new_binsearch('right', 'le')