1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
|
""" This file is the main run loop as well as evaluation loops for various
operations. This is the place to look for all the computations that iterate
over all the array elements.
"""
import py
from pypy.interpreter.error import oefmt
from rpython.rlib import jit
from rpython.rlib.rstring import StringBuilder
from rpython.rtyper.lltypesystem import lltype, rffi
from pypy.module.micronumpy import support, constants as NPY
from pypy.module.micronumpy.base import W_NDimArray, convert_to_array
from pypy.module.micronumpy.iterators import PureShapeIter, AxisIter, \
AllButAxisIter, ArrayIter
from pypy.interpreter.argument import Arguments
def call2(space, shape, func, calc_dtype, w_lhs, w_rhs, out):
if w_lhs.get_size() == 1:
w_left = w_lhs.get_scalar_value().convert_to(space, calc_dtype)
left_iter = left_state = None
else:
w_left = None
left_iter, left_state = w_lhs.create_iter(shape)
left_iter.track_index = False
if w_rhs.get_size() == 1:
w_right = w_rhs.get_scalar_value().convert_to(space, calc_dtype)
right_iter = right_state = None
else:
w_right = None
right_iter, right_state = w_rhs.create_iter(shape)
right_iter.track_index = False
out_iter, out_state = out.create_iter(shape)
shapelen = len(shape)
res_dtype = out.get_dtype()
call2_func = try_to_share_iterators_call2(left_iter, right_iter,
left_state, right_state, out_state)
params = (space, shapelen, func, calc_dtype, res_dtype, out,
w_left, w_right, left_iter, right_iter, out_iter,
left_state, right_state, out_state)
return call2_func(*params)
def try_to_share_iterators_call2(left_iter, right_iter, left_state, right_state, out_state):
# these are all possible iterator sharing combinations
# left == right == out
# left == right
# left == out
# right == out
right_out_equal = False
if right_iter:
# rhs is not a scalar
if out_state.same(right_state):
right_out_equal = True
#
if not left_iter:
# lhs is a scalar
if right_out_equal:
return call2_advance_out_left
else:
# worst case, nothing can be shared and lhs is a scalar
return call2_advance_out_left_right
else:
# lhs is NOT a scalar
if out_state.same(left_state):
# (2) out and left are the same -> remove left
if right_out_equal:
# the best case
return call2_advance_out
else:
return call2_advance_out_right
else:
if right_out_equal:
# right and out are equal, only advance left and out
return call2_advance_out_left
else:
if right_iter and right_state.same(left_state):
# left and right are equal, but still need to advance out
return call2_advance_out_left_eq_right
else:
# worst case, nothing can be shared
return call2_advance_out_left_right
assert 0, "logical problem with the selection of the call2 case"
def generate_call2_cases(name, left_state, right_state):
call2_driver = jit.JitDriver(name='numpy_call2_' + name,
greens=['shapelen', 'func', 'calc_dtype', 'res_dtype'],
reds='auto', vectorize=True)
#
advance_left_state = left_state == "left_state"
advance_right_state = right_state == "right_state"
code = """
def method(space, shapelen, func, calc_dtype, res_dtype, out,
w_left, w_right, left_iter, right_iter, out_iter,
left_state, right_state, out_state):
while not out_iter.done(out_state):
call2_driver.jit_merge_point(shapelen=shapelen, func=func,
calc_dtype=calc_dtype, res_dtype=res_dtype)
if left_iter:
w_left = left_iter.getitem({left_state}).convert_to(space, calc_dtype)
if right_iter:
w_right = right_iter.getitem({right_state}).convert_to(space, calc_dtype)
w_out = func(calc_dtype, w_left, w_right)
out_iter.setitem(out_state, w_out.convert_to(space, res_dtype))
out_state = out_iter.next(out_state)
if advance_left_state and left_iter:
left_state = left_iter.next(left_state)
if advance_right_state and right_iter:
right_state = right_iter.next(right_state)
#
# if not set to None, the values will be loop carried
# (for the var,var case), forcing the vectorization to unpack
# the vector registers at the end of the loop
if left_iter:
w_left = None
if right_iter:
w_right = None
return out
"""
exec(py.code.Source(code.format(left_state=left_state,right_state=right_state)).compile(), locals())
method.__name__ = "call2_" + name
return method
call2_advance_out = generate_call2_cases("inc_out", "out_state", "out_state")
call2_advance_out_left = generate_call2_cases("inc_out_left", "left_state", "out_state")
call2_advance_out_right = generate_call2_cases("inc_out_right", "out_state", "right_state")
call2_advance_out_left_eq_right = generate_call2_cases("inc_out_left_eq_right", "left_state", "left_state")
call2_advance_out_left_right = generate_call2_cases("inc_out_left_right", "left_state", "right_state")
call1_driver = jit.JitDriver(
name='numpy_call1',
greens=['shapelen', 'share_iterator', 'func', 'calc_dtype', 'res_dtype'],
reds='auto', vectorize=True)
def call1(space, shape, func, calc_dtype, w_obj, w_ret):
obj_iter, obj_state = w_obj.create_iter(shape)
obj_iter.track_index = False
out_iter, out_state = w_ret.create_iter(shape)
shapelen = len(shape)
res_dtype = w_ret.get_dtype()
share_iterator = out_state.same(obj_state)
while not out_iter.done(out_state):
call1_driver.jit_merge_point(shapelen=shapelen, func=func,
share_iterator=share_iterator,
calc_dtype=calc_dtype, res_dtype=res_dtype)
if share_iterator:
# use out state as param to getitem
elem = obj_iter.getitem(out_state).convert_to(space, calc_dtype)
else:
elem = obj_iter.getitem(obj_state).convert_to(space, calc_dtype)
out_iter.setitem(out_state, func(calc_dtype, elem).convert_to(space, res_dtype))
if share_iterator:
# only advance out, they share the same iteration space
out_state = out_iter.next(out_state)
else:
out_state = out_iter.next(out_state)
obj_state = obj_iter.next(obj_state)
elem = None
return w_ret
call_many_to_one_driver = jit.JitDriver(
name='numpy_call_many_to_one',
greens=['shapelen', 'nin', 'func', 'in_dtypes', 'res_dtype'],
reds='auto')
def call_many_to_one(space, shape, func, in_dtypes, res_dtype, in_args, out):
# out must hav been built. func needs no calc_type, is usually an
# external ufunc
nin = len(in_args)
in_iters = [None] * nin
in_states = [None] * nin
for i in range(nin):
in_i = in_args[i]
assert isinstance(in_i, W_NDimArray)
in_iter, in_state = in_i.create_iter(shape)
in_iters[i] = in_iter
in_states[i] = in_state
shapelen = len(shape)
assert isinstance(out, W_NDimArray)
out_iter, out_state = out.create_iter(shape)
vals = [None] * nin
while not out_iter.done(out_state):
call_many_to_one_driver.jit_merge_point(shapelen=shapelen, func=func,
in_dtypes=in_dtypes, res_dtype=res_dtype, nin=nin)
for i in range(nin):
vals[i] = in_dtypes[i].coerce(space, in_iters[i].getitem(in_states[i]))
w_arglist = space.newlist(vals)
w_out_val = space.call_args(func, Arguments.frompacked(space, w_arglist))
out_iter.setitem(out_state, res_dtype.coerce(space, w_out_val))
for i in range(nin):
in_states[i] = in_iters[i].next(in_states[i])
out_state = out_iter.next(out_state)
return out
call_many_to_many_driver = jit.JitDriver(
name='numpy_call_many_to_many',
greens=['shapelen', 'nin', 'nout', 'func', 'in_dtypes', 'out_dtypes'],
reds='auto')
def call_many_to_many(space, shape, func, in_dtypes, out_dtypes, in_args, out_args):
# out must have been built. func needs no calc_type, is usually an
# external ufunc
nin = len(in_args)
in_iters = [None] * nin
in_states = [None] * nin
nout = len(out_args)
out_iters = [None] * nout
out_states = [None] * nout
for i in range(nin):
in_i = in_args[i]
assert isinstance(in_i, W_NDimArray)
in_iter, in_state = in_i.create_iter(shape)
in_iters[i] = in_iter
in_states[i] = in_state
for i in range(nout):
out_i = out_args[i]
assert isinstance(out_i, W_NDimArray)
out_iter, out_state = out_i.create_iter(shape)
out_iters[i] = out_iter
out_states[i] = out_state
shapelen = len(shape)
vals = [None] * nin
test_iter, test_state = in_iters[-1], in_states[-1]
if nout > 0:
test_iter, test_state = out_iters[0], out_states[0]
while not test_iter.done(test_state):
call_many_to_many_driver.jit_merge_point(shapelen=shapelen, func=func,
in_dtypes=in_dtypes, out_dtypes=out_dtypes,
nin=nin, nout=nout)
for i in range(nin):
vals[i] = in_dtypes[i].coerce(space, in_iters[i].getitem(in_states[i]))
w_arglist = space.newlist(vals)
w_outvals = space.call_args(func, Arguments.frompacked(space, w_arglist))
# w_outvals should be a tuple, but func can return a single value as well
if space.isinstance_w(w_outvals, space.w_tuple):
batch = space.listview(w_outvals)
for i in range(len(batch)):
out_iters[i].setitem(out_states[i], out_dtypes[i].coerce(space, batch[i]))
out_states[i] = out_iters[i].next(out_states[i])
elif nout > 0:
out_iters[0].setitem(out_states[0], out_dtypes[0].coerce(space, w_outvals))
out_states[0] = out_iters[0].next(out_states[0])
for i in range(nin):
in_states[i] = in_iters[i].next(in_states[i])
test_state = test_iter.next(test_state)
return space.newtuple([convert_to_array(space, o) for o in out_args])
setslice_driver = jit.JitDriver(name='numpy_setslice',
greens = ['shapelen', 'dtype'],
reds = 'auto', vectorize=True)
def setslice(space, shape, target, source):
if not shape:
dtype = target.dtype
val = source.getitem(source.start)
if dtype.is_str_or_unicode():
val = dtype.coerce(space, val)
else:
val = val.convert_to(space, dtype)
target.setitem(target.start, val)
return target
return _setslice(space, shape, target, source)
def _setslice(space, shape, target, source):
# note that unlike everything else, target and source here are
# array implementations, not arrays
target_iter, target_state = target.create_iter(shape)
source_iter, source_state = source.create_iter(shape)
source_iter.track_index = False
dtype = target.dtype
shapelen = len(shape)
while not target_iter.done(target_state):
setslice_driver.jit_merge_point(shapelen=shapelen, dtype=dtype)
val = source_iter.getitem(source_state)
if dtype.is_str_or_unicode() or dtype.is_record():
val = dtype.coerce(space, val)
else:
val = val.convert_to(space, dtype)
target_iter.setitem(target_state, val)
target_state = target_iter.next(target_state)
source_state = source_iter.next(source_state)
return target
def split_iter(arr, axis_flags):
"""Prepare 2 iterators for nested iteration over `arr`.
Arguments:
arr: instance of BaseConcreteArray
axis_flags: list of bools, one for each dimension of `arr`.The inner
iterator operates over the dimensions for which the flag is True
"""
shape = arr.get_shape()
strides = arr.get_strides()
backstrides = arr.get_backstrides()
shapelen = len(shape)
assert len(axis_flags) == shapelen
inner_shape = [-1] * shapelen
inner_strides = [-1] * shapelen
inner_backstrides = [-1] * shapelen
outer_shape = [-1] * shapelen
outer_strides = [-1] * shapelen
outer_backstrides = [-1] * shapelen
for i in range(len(shape)):
if axis_flags[i]:
inner_shape[i] = shape[i]
inner_strides[i] = strides[i]
inner_backstrides[i] = backstrides[i]
outer_shape[i] = 1
outer_strides[i] = 0
outer_backstrides[i] = 0
else:
outer_shape[i] = shape[i]
outer_strides[i] = strides[i]
outer_backstrides[i] = backstrides[i]
inner_shape[i] = 1
inner_strides[i] = 0
inner_backstrides[i] = 0
inner_iter = ArrayIter(arr, support.product(inner_shape),
inner_shape, inner_strides, inner_backstrides)
outer_iter = ArrayIter(arr, support.product(outer_shape),
outer_shape, outer_strides, outer_backstrides)
return inner_iter, outer_iter
reduce_flat_driver = jit.JitDriver(
name='numpy_reduce_flat',
greens = ['shapelen', 'func', 'done_func', 'calc_dtype'], reds = 'auto',
vectorize = True)
def reduce_flat(space, func, w_arr, calc_dtype, done_func, identity):
obj_iter, obj_state = w_arr.create_iter()
if identity is None:
cur_value = obj_iter.getitem(obj_state).convert_to(space, calc_dtype)
obj_state = obj_iter.next(obj_state)
else:
cur_value = identity.convert_to(space, calc_dtype)
shapelen = len(w_arr.get_shape())
while not obj_iter.done(obj_state):
reduce_flat_driver.jit_merge_point(
shapelen=shapelen, func=func,
done_func=done_func, calc_dtype=calc_dtype)
rval = obj_iter.getitem(obj_state).convert_to(space, calc_dtype)
if done_func is not None and done_func(calc_dtype, rval):
return rval
cur_value = func(calc_dtype, cur_value, rval)
obj_state = obj_iter.next(obj_state)
return cur_value
reduce_driver = jit.JitDriver(
name='numpy_reduce',
greens=['shapelen', 'func', 'dtype'], reds='auto',
vectorize=True)
def reduce(space, func, w_arr, axis_flags, dtype, out, identity):
out_iter, out_state = out.create_iter()
out_iter.track_index = False
shape = w_arr.get_shape()
shapelen = len(shape)
inner_iter, outer_iter = split_iter(w_arr.implementation, axis_flags)
assert outer_iter.size == out_iter.size
if identity is not None:
identity = identity.convert_to(space, dtype)
outer_state = outer_iter.reset()
while not outer_iter.done(outer_state):
inner_state = inner_iter.reset()
inner_state.offset = outer_state.offset
if identity is not None:
w_val = identity
else:
w_val = inner_iter.getitem(inner_state).convert_to(space, dtype)
inner_state = inner_iter.next(inner_state)
while not inner_iter.done(inner_state):
reduce_driver.jit_merge_point(
shapelen=shapelen, func=func, dtype=dtype)
w_item = inner_iter.getitem(inner_state).convert_to(space, dtype)
w_val = func(dtype, w_item, w_val)
inner_state = inner_iter.next(inner_state)
out_iter.setitem(out_state, w_val)
out_state = out_iter.next(out_state)
outer_state = outer_iter.next(outer_state)
return out
accumulate_flat_driver = jit.JitDriver(
name='numpy_accumulate_flat',
greens=['shapelen', 'func', 'dtype', 'out_dtype'],
reds='auto', vectorize=True)
def accumulate_flat(space, func, w_arr, calc_dtype, w_out, identity):
arr_iter, arr_state = w_arr.create_iter()
out_iter, out_state = w_out.create_iter()
out_iter.track_index = False
if identity is None:
cur_value = arr_iter.getitem(arr_state).convert_to(space, calc_dtype)
out_iter.setitem(out_state, cur_value)
out_state = out_iter.next(out_state)
arr_state = arr_iter.next(arr_state)
else:
cur_value = identity.convert_to(space, calc_dtype)
shapelen = len(w_arr.get_shape())
out_dtype = w_out.get_dtype()
while not arr_iter.done(arr_state):
accumulate_flat_driver.jit_merge_point(
shapelen=shapelen, func=func, dtype=calc_dtype,
out_dtype=out_dtype)
w_item = arr_iter.getitem(arr_state).convert_to(space, calc_dtype)
cur_value = func(calc_dtype, cur_value, w_item)
out_iter.setitem(out_state, out_dtype.coerce(space, cur_value))
out_state = out_iter.next(out_state)
arr_state = arr_iter.next(arr_state)
accumulate_driver = jit.JitDriver(
name='numpy_accumulate',
greens=['shapelen', 'func', 'calc_dtype'],
reds='auto',
vectorize=True)
def accumulate(space, func, w_arr, axis, calc_dtype, w_out, identity):
out_iter, out_state = w_out.create_iter()
arr_shape = w_arr.get_shape()
temp_shape = arr_shape[:axis] + arr_shape[axis + 1:]
temp = W_NDimArray.from_shape(space, temp_shape, calc_dtype, w_instance=w_arr)
temp_iter = AxisIter(temp.implementation, w_arr.get_shape(), axis)
temp_state = temp_iter.reset()
arr_iter, arr_state = w_arr.create_iter()
arr_iter.track_index = False
if identity is not None:
identity = identity.convert_to(space, calc_dtype)
shapelen = len(arr_shape)
while not out_iter.done(out_state):
accumulate_driver.jit_merge_point(shapelen=shapelen, func=func,
calc_dtype=calc_dtype)
w_item = arr_iter.getitem(arr_state).convert_to(space, calc_dtype)
arr_state = arr_iter.next(arr_state)
out_indices = out_iter.indices(out_state)
if out_indices[axis] == 0:
if identity is not None:
w_item = func(calc_dtype, identity, w_item)
else:
cur_value = temp_iter.getitem(temp_state)
w_item = func(calc_dtype, cur_value, w_item)
out_iter.setitem(out_state, w_item)
out_state = out_iter.next(out_state)
temp_iter.setitem(temp_state, w_item)
temp_state = temp_iter.next(temp_state)
return w_out
def fill(arr, box):
arr_iter, arr_state = arr.create_iter()
while not arr_iter.done(arr_state):
arr_iter.setitem(arr_state, box)
arr_state = arr_iter.next(arr_state)
def assign(space, arr, seq):
arr_iter, arr_state = arr.create_iter()
arr_dtype = arr.get_dtype()
for item in seq:
arr_iter.setitem(arr_state, arr_dtype.coerce(space, item))
arr_state = arr_iter.next(arr_state)
where_driver = jit.JitDriver(name='numpy_where',
greens = ['shapelen', 'dtype', 'arr_dtype'],
reds = 'auto',
vectorize=True)
def where(space, out, shape, arr, x, y, dtype):
out_iter, out_state = out.create_iter(shape)
arr_iter, arr_state = arr.create_iter(shape)
arr_dtype = arr.get_dtype()
x_iter, x_state = x.create_iter(shape)
y_iter, y_state = y.create_iter(shape)
if x.is_scalar():
if y.is_scalar():
iter, state = arr_iter, arr_state
else:
iter, state = y_iter, y_state
else:
iter, state = x_iter, x_state
out_iter.track_index = x_iter.track_index = False
arr_iter.track_index = y_iter.track_index = False
iter.track_index = True
shapelen = len(shape)
while not iter.done(state):
where_driver.jit_merge_point(shapelen=shapelen, dtype=dtype,
arr_dtype=arr_dtype)
w_cond = arr_iter.getitem(arr_state)
if arr_dtype.itemtype.bool(w_cond):
w_val = x_iter.getitem(x_state).convert_to(space, dtype)
else:
w_val = y_iter.getitem(y_state).convert_to(space, dtype)
out_iter.setitem(out_state, w_val)
out_state = out_iter.next(out_state)
arr_state = arr_iter.next(arr_state)
x_state = x_iter.next(x_state)
y_state = y_iter.next(y_state)
if x.is_scalar():
if y.is_scalar():
state = arr_state
else:
state = y_state
else:
state = x_state
return out
def _new_argmin_argmax(op_name):
arg_driver = jit.JitDriver(name='numpy_' + op_name,
greens = ['shapelen', 'dtype'],
reds = 'auto')
arg_flat_driver = jit.JitDriver(name='numpy_flat_' + op_name,
greens = ['shapelen', 'dtype'],
reds = 'auto')
def argmin_argmax(space, w_arr, w_out, axis):
from pypy.module.micronumpy.descriptor import get_dtype_cache
dtype = w_arr.get_dtype()
shapelen = len(w_arr.get_shape())
axis_flags = [False] * shapelen
axis_flags[axis] = True
inner_iter, outer_iter = split_iter(w_arr.implementation, axis_flags)
outer_state = outer_iter.reset()
out_iter, out_state = w_out.create_iter()
while not outer_iter.done(outer_state):
inner_state = inner_iter.reset()
inner_state.offset = outer_state.offset
cur_best = inner_iter.getitem(inner_state)
inner_state = inner_iter.next(inner_state)
result = 0
idx = 1
while not inner_iter.done(inner_state):
arg_driver.jit_merge_point(shapelen=shapelen, dtype=dtype)
w_val = inner_iter.getitem(inner_state)
old_best = getattr(dtype.itemtype, op_name)(cur_best, w_val)
if not old_best:
result = idx
cur_best = w_val
inner_state = inner_iter.next(inner_state)
idx += 1
result = get_dtype_cache(space).w_longdtype.box(result)
out_iter.setitem(out_state, result)
out_state = out_iter.next(out_state)
outer_state = outer_iter.next(outer_state)
return w_out
def argmin_argmax_flat(w_arr):
result = 0
idx = 1
dtype = w_arr.get_dtype()
iter, state = w_arr.create_iter()
cur_best = iter.getitem(state)
state = iter.next(state)
shapelen = len(w_arr.get_shape())
while not iter.done(state):
arg_flat_driver.jit_merge_point(shapelen=shapelen, dtype=dtype)
w_val = iter.getitem(state)
old_best = getattr(dtype.itemtype, op_name)(cur_best, w_val)
if not old_best:
result = idx
cur_best = w_val
state = iter.next(state)
idx += 1
return result
return argmin_argmax, argmin_argmax_flat
argmin, argmin_flat = _new_argmin_argmax('argmin')
argmax, argmax_flat = _new_argmin_argmax('argmax')
dot_driver = jit.JitDriver(name = 'numpy_dot',
greens = ['dtype'],
reds = 'auto',
vectorize=True)
def multidim_dot(space, left, right, result, dtype, right_critical_dim):
''' assumes left, right are concrete arrays
given left.shape == [3, 5, 7],
right.shape == [2, 7, 4]
then
result.shape == [3, 5, 2, 4]
broadcast shape should be [3, 5, 2, 7, 4]
result should skip dims 3 which is len(result_shape) - 1
(note that if right is 1d, result should
skip len(result_shape))
left should skip 2, 4 which is a.ndims-1 + range(right.ndims)
except where it==(right.ndims-2)
right should skip 0, 1
'''
left_shape = left.get_shape()
right_shape = right.get_shape()
left_impl = left.implementation
right_impl = right.implementation
assert left_shape[-1] == right_shape[right_critical_dim]
assert result.get_dtype() == dtype
outi, outs = result.create_iter()
outi.track_index = False
lefti = AllButAxisIter(left_impl, len(left_shape) - 1)
righti = AllButAxisIter(right_impl, right_critical_dim)
lefts = lefti.reset()
rights = righti.reset()
n = left_impl.shape[-1]
s1 = left_impl.strides[-1]
s2 = right_impl.strides[right_critical_dim]
while not lefti.done(lefts):
while not righti.done(rights):
oval = outi.getitem(outs)
i1 = lefts.offset
i2 = rights.offset
i = 0
while i < n:
i += 1
dot_driver.jit_merge_point(dtype=dtype)
lval = left_impl.getitem(i1).convert_to(space, dtype)
rval = right_impl.getitem(i2).convert_to(space, dtype)
oval = dtype.itemtype.add(oval, dtype.itemtype.mul(lval, rval))
i1 += jit.promote(s1)
i2 += jit.promote(s2)
outi.setitem(outs, oval)
outs = outi.next(outs)
rights = righti.next(rights)
rights = righti.reset(rights)
lefts = lefti.next(lefts)
return result
count_all_true_driver = jit.JitDriver(name = 'numpy_count',
greens = ['shapelen', 'dtype'],
reds = 'auto',
vectorize=True)
def count_all_true_concrete(impl):
s = 0
iter, state = impl.create_iter()
shapelen = len(impl.shape)
dtype = impl.dtype
while not iter.done(state):
count_all_true_driver.jit_merge_point(shapelen=shapelen, dtype=dtype)
s += iter.getitem_bool(state)
state = iter.next(state)
return s
def count_all_true(arr):
if arr.is_scalar():
return arr.get_dtype().itemtype.bool(arr.get_scalar_value())
else:
return count_all_true_concrete(arr.implementation)
nonzero_driver = jit.JitDriver(name = 'numpy_nonzero',
greens = ['shapelen', 'dims', 'dtype'],
reds = 'auto',
vectorize=True)
def nonzero(res, arr, box):
res_iter, res_state = res.create_iter()
arr_iter, arr_state = arr.create_iter()
shapelen = len(arr.shape)
dtype = arr.dtype
dims = range(shapelen)
while not arr_iter.done(arr_state):
nonzero_driver.jit_merge_point(shapelen=shapelen, dims=dims, dtype=dtype)
if arr_iter.getitem_bool(arr_state):
arr_indices = arr_iter.indices(arr_state)
for d in dims:
res_iter.setitem(res_state, box(arr_indices[d]))
res_state = res_iter.next(res_state)
arr_state = arr_iter.next(arr_state)
return res
getitem_filter_driver = jit.JitDriver(name = 'numpy_getitem_bool',
greens = ['shapelen', 'arr_dtype',
'index_dtype'],
reds = 'auto',
vectorize=True)
def getitem_filter(res, arr, index):
res_iter, res_state = res.create_iter()
shapelen = len(arr.get_shape())
if shapelen > 1 and len(index.get_shape()) < 2:
index_iter, index_state = index.create_iter(arr.get_shape(), backward_broadcast=True)
else:
index_iter, index_state = index.create_iter()
arr_iter, arr_state = arr.create_iter()
arr_dtype = arr.get_dtype()
index_dtype = index.get_dtype()
# support the deprecated form where arr([True]) will return arr[0, ...]
# by iterating over res_iter, not index_iter
while not res_iter.done(res_state):
getitem_filter_driver.jit_merge_point(shapelen=shapelen,
index_dtype=index_dtype,
arr_dtype=arr_dtype,
)
if index_iter.getitem_bool(index_state):
res_iter.setitem(res_state, arr_iter.getitem(arr_state))
res_state = res_iter.next(res_state)
index_state = index_iter.next(index_state)
arr_state = arr_iter.next(arr_state)
return res
setitem_filter_driver = jit.JitDriver(name = 'numpy_setitem_bool',
greens = ['shapelen', 'arr_dtype',
'index_dtype'],
reds = 'auto',
vectorize=True)
def setitem_filter(space, arr, index, value):
arr_iter, arr_state = arr.create_iter()
shapelen = len(arr.get_shape())
if shapelen > 1 and len(index.get_shape()) < 2:
index_iter, index_state = index.create_iter(arr.get_shape(), backward_broadcast=True)
else:
index_iter, index_state = index.create_iter()
if value.get_size() == 1:
value_iter, value_state = value.create_iter(arr.get_shape())
else:
value_iter, value_state = value.create_iter()
index_dtype = index.get_dtype()
arr_dtype = arr.get_dtype()
while not index_iter.done(index_state):
setitem_filter_driver.jit_merge_point(shapelen=shapelen,
index_dtype=index_dtype,
arr_dtype=arr_dtype,
)
if index_iter.getitem_bool(index_state):
val = arr_dtype.coerce(space, value_iter.getitem(value_state))
value_state = value_iter.next(value_state)
arr_iter.setitem(arr_state, val)
arr_state = arr_iter.next(arr_state)
index_state = index_iter.next(index_state)
flatiter_getitem_driver = jit.JitDriver(name = 'numpy_flatiter_getitem',
greens = ['dtype'],
reds = 'auto',
vectorize=True)
def flatiter_getitem(res, base_iter, base_state, step):
ri, rs = res.create_iter()
dtype = res.get_dtype()
while not ri.done(rs):
flatiter_getitem_driver.jit_merge_point(dtype=dtype)
ri.setitem(rs, base_iter.getitem(base_state))
base_state = base_iter.goto(base_state.index + step)
rs = ri.next(rs)
return res
flatiter_setitem_driver = jit.JitDriver(name = 'numpy_flatiter_setitem',
greens = ['dtype'],
reds = 'auto',
vectorize=True)
def flatiter_setitem(space, dtype, val, arr_iter, arr_state, step, length):
val_iter, val_state = val.create_iter()
while length > 0:
flatiter_setitem_driver.jit_merge_point(dtype=dtype)
val = val_iter.getitem(val_state)
if dtype.is_str_or_unicode():
val = dtype.coerce(space, val)
else:
val = val.convert_to(space, dtype)
arr_iter.setitem(arr_state, val)
arr_state = arr_iter.goto(arr_state.index + step)
val_state = val_iter.next(val_state)
if val_iter.done(val_state):
val_state = val_iter.reset(val_state)
length -= 1
fromstring_driver = jit.JitDriver(name = 'numpy_fromstring',
greens = ['itemsize', 'dtype'],
reds = 'auto')
def fromstring_loop(space, a, dtype, itemsize, s):
i = 0
ai, state = a.create_iter()
while not ai.done(state):
fromstring_driver.jit_merge_point(dtype=dtype, itemsize=itemsize)
sub = s[i*itemsize:i*itemsize + itemsize]
val = dtype.runpack_str(space, sub)
ai.setitem(state, val)
state = ai.next(state)
i += 1
def tostring(space, arr):
builder = StringBuilder()
iter, state = arr.create_iter()
w_res_str = W_NDimArray.from_shape(space, [1], arr.get_dtype())
itemsize = arr.get_dtype().elsize
with w_res_str.implementation as storage:
res_str_casted = rffi.cast(rffi.CArrayPtr(lltype.Char),
support.get_storage_as_int(storage))
while not iter.done(state):
w_res_str.implementation.setitem(0, iter.getitem(state))
for i in range(itemsize):
builder.append(res_str_casted[i])
state = iter.next(state)
return builder.build()
getitem_int_driver = jit.JitDriver(name = 'numpy_getitem_int',
greens = ['shapelen', 'indexlen',
'prefixlen', 'dtype'],
reds = 'auto')
def getitem_array_int(space, arr, res, iter_shape, indexes_w, prefix_w):
shapelen = len(iter_shape)
prefixlen = len(prefix_w)
indexlen = len(indexes_w)
dtype = arr.get_dtype()
iter = PureShapeIter(iter_shape, indexes_w)
while not iter.done():
getitem_int_driver.jit_merge_point(shapelen=shapelen, indexlen=indexlen,
dtype=dtype, prefixlen=prefixlen)
# prepare the index
index_w = [None] * indexlen
for i in range(indexlen):
if iter.idx_w_i[i] is not None:
index_w[i] = iter.idx_w_i[i].getitem(iter.idx_w_s[i])
else:
index_w[i] = indexes_w[i]
res.descr_setitem(space, space.newtuple(prefix_w[:prefixlen] +
iter.get_index(space, shapelen)),
arr.descr_getitem(space, space.newtuple(index_w)))
iter.next()
return res
setitem_int_driver = jit.JitDriver(name = 'numpy_setitem_int',
greens = ['shapelen', 'indexlen',
'prefixlen', 'dtype'],
reds = 'auto')
def setitem_array_int(space, arr, iter_shape, indexes_w, val_arr,
prefix_w):
shapelen = len(iter_shape)
indexlen = len(indexes_w)
prefixlen = len(prefix_w)
dtype = arr.get_dtype()
iter = PureShapeIter(iter_shape, indexes_w)
while not iter.done():
setitem_int_driver.jit_merge_point(shapelen=shapelen, indexlen=indexlen,
dtype=dtype, prefixlen=prefixlen)
# prepare the index
index_w = [None] * indexlen
for i in range(indexlen):
if iter.idx_w_i[i] is not None:
index_w[i] = iter.idx_w_i[i].getitem(iter.idx_w_s[i])
else:
index_w[i] = indexes_w[i]
w_idx = space.newtuple(prefix_w[:prefixlen] + iter.get_index(space,
shapelen))
if val_arr.is_scalar():
w_value = val_arr.get_scalar_value()
else:
w_value = val_arr.descr_getitem(space, w_idx)
arr.descr_setitem(space, space.newtuple(index_w), w_value)
iter.next()
byteswap_driver = jit.JitDriver(name='numpy_byteswap_driver',
greens = ['dtype'],
reds = 'auto',
vectorize=True)
def byteswap(from_, to):
dtype = from_.dtype
from_iter, from_state = from_.create_iter()
to_iter, to_state = to.create_iter()
while not from_iter.done(from_state):
byteswap_driver.jit_merge_point(dtype=dtype)
val = dtype.itemtype.byteswap(from_iter.getitem(from_state))
to_iter.setitem(to_state, val)
to_state = to_iter.next(to_state)
from_state = from_iter.next(from_state)
choose_driver = jit.JitDriver(name='numpy_choose_driver',
greens = ['shapelen', 'mode', 'dtype'],
reds = 'auto',
vectorize=True)
def choose(space, arr, choices, shape, dtype, out, mode):
shapelen = len(shape)
pairs = [a.create_iter(shape) for a in choices]
iterators = [i[0] for i in pairs]
states = [i[1] for i in pairs]
arr_iter, arr_state = arr.create_iter(shape)
out_iter, out_state = out.create_iter(shape)
while not arr_iter.done(arr_state):
choose_driver.jit_merge_point(shapelen=shapelen, dtype=dtype,
mode=mode)
index = support.index_w(space, arr_iter.getitem(arr_state))
if index < 0 or index >= len(iterators):
if mode == NPY.RAISE:
raise oefmt(space.w_ValueError,
"invalid entry in choice array")
elif mode == NPY.WRAP:
index = index % (len(iterators))
else:
assert mode == NPY.CLIP
if index < 0:
index = 0
else:
index = len(iterators) - 1
val = iterators[index].getitem(states[index]).convert_to(space, dtype)
out_iter.setitem(out_state, val)
for i in range(len(iterators)):
states[i] = iterators[i].next(states[i])
out_state = out_iter.next(out_state)
arr_state = arr_iter.next(arr_state)
clip_driver = jit.JitDriver(name='numpy_clip_driver',
greens = ['shapelen', 'dtype'],
reds = 'auto',
vectorize=True)
def clip(space, arr, shape, min, max, out):
assert min or max
arr_iter, arr_state = arr.create_iter(shape)
if min is not None:
min_iter, min_state = min.create_iter(shape)
else:
min_iter, min_state = None, None
if max is not None:
max_iter, max_state = max.create_iter(shape)
else:
max_iter, max_state = None, None
out_iter, out_state = out.create_iter(shape)
shapelen = len(shape)
dtype = out.get_dtype()
while not arr_iter.done(arr_state):
clip_driver.jit_merge_point(shapelen=shapelen, dtype=dtype)
w_v = arr_iter.getitem(arr_state).convert_to(space, dtype)
arr_state = arr_iter.next(arr_state)
if min_iter is not None:
w_min = min_iter.getitem(min_state).convert_to(space, dtype)
if dtype.itemtype.lt(w_v, w_min):
w_v = w_min
min_state = min_iter.next(min_state)
if max_iter is not None:
w_max = max_iter.getitem(max_state).convert_to(space, dtype)
if dtype.itemtype.gt(w_v, w_max):
w_v = w_max
max_state = max_iter.next(max_state)
out_iter.setitem(out_state, w_v)
out_state = out_iter.next(out_state)
round_driver = jit.JitDriver(name='numpy_round_driver',
greens = ['shapelen', 'dtype'],
reds = 'auto',
vectorize=True)
def round(space, arr, dtype, shape, decimals, out):
arr_iter, arr_state = arr.create_iter(shape)
out_iter, out_state = out.create_iter(shape)
shapelen = len(shape)
while not arr_iter.done(arr_state):
round_driver.jit_merge_point(shapelen=shapelen, dtype=dtype)
w_v = arr_iter.getitem(arr_state).convert_to(space, dtype)
w_v = dtype.itemtype.round(w_v, decimals)
out_iter.setitem(out_state, w_v)
arr_state = arr_iter.next(arr_state)
out_state = out_iter.next(out_state)
diagonal_simple_driver = jit.JitDriver(name='numpy_diagonal_simple_driver',
greens = ['axis1', 'axis2'],
reds = 'auto')
def diagonal_simple(space, arr, out, offset, axis1, axis2, size):
out_iter, out_state = out.create_iter()
i = 0
index = [0] * 2
while i < size:
diagonal_simple_driver.jit_merge_point(axis1=axis1, axis2=axis2)
index[axis1] = i
index[axis2] = i + offset
out_iter.setitem(out_state, arr.getitem_index(space, index))
i += 1
out_state = out_iter.next(out_state)
def diagonal_array(space, arr, out, offset, axis1, axis2, shape):
out_iter, out_state = out.create_iter()
iter = PureShapeIter(shape, [])
shapelen_minus_1 = len(shape) - 1
assert shapelen_minus_1 >= 0
if axis1 < axis2:
a = axis1
b = axis2 - 1
else:
a = axis2
b = axis1 - 1
assert a >= 0
assert b >= 0
while not iter.done():
last_index = iter.indexes[-1]
if axis1 < axis2:
indexes = (iter.indexes[:a] + [last_index] +
iter.indexes[a:b] + [last_index + offset] +
iter.indexes[b:shapelen_minus_1])
else:
indexes = (iter.indexes[:a] + [last_index + offset] +
iter.indexes[a:b] + [last_index] +
iter.indexes[b:shapelen_minus_1])
out_iter.setitem(out_state, arr.getitem_index(space, indexes))
iter.next()
out_state = out_iter.next(out_state)
def _new_binsearch(side, op_name):
binsearch_driver = jit.JitDriver(name='numpy_binsearch_' + side,
greens=['dtype'],
reds='auto')
def binsearch(space, arr, key, ret):
assert len(arr.get_shape()) == 1
dtype = key.get_dtype()
op = getattr(dtype.itemtype, op_name)
key_iter, key_state = key.create_iter()
ret_iter, ret_state = ret.create_iter()
ret_iter.track_index = False
size = arr.get_size()
min_idx = 0
max_idx = size
last_key_val = key_iter.getitem(key_state)
while not key_iter.done(key_state):
key_val = key_iter.getitem(key_state)
if dtype.itemtype.lt(last_key_val, key_val):
max_idx = size
else:
min_idx = 0
max_idx = max_idx + 1 if max_idx < size else size
last_key_val = key_val
while min_idx < max_idx:
binsearch_driver.jit_merge_point(dtype=dtype)
mid_idx = min_idx + ((max_idx - min_idx) >> 1)
mid_val = arr.getitem(space, [mid_idx]).convert_to(space, dtype)
if op(mid_val, key_val):
min_idx = mid_idx + 1
else:
max_idx = mid_idx
ret_iter.setitem(ret_state, ret.get_dtype().box(min_idx))
ret_state = ret_iter.next(ret_state)
key_state = key_iter.next(key_state)
return binsearch
binsearch_left = _new_binsearch('left', 'lt')
binsearch_right = _new_binsearch('right', 'le')
|