File: ndarray.py

package info (click to toggle)
pypy3 7.3.19%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 212,236 kB
  • sloc: python: 2,098,316; ansic: 540,565; sh: 21,462; asm: 14,419; cpp: 4,451; makefile: 4,209; objc: 761; xml: 530; exp: 499; javascript: 314; pascal: 244; lisp: 45; csh: 12; awk: 4
file content (1685 lines) | stat: -rw-r--r-- 73,481 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
from pypy.interpreter.error import OperationError, oefmt
from pypy.interpreter.gateway import interp2app, unwrap_spec, applevel, \
    WrappedDefault
from pypy.interpreter.typedef import TypeDef, GetSetProperty, \
    make_weakref_descr
from pypy.interpreter.buffer import SimpleView
from rpython.rlib import jit
from rpython.rlib.rstring import StringBuilder
from rpython.rlib.rawstorage import RAW_STORAGE_PTR
from rpython.rlib.rarithmetic import ovfcheck
from rpython.rtyper.lltypesystem import rffi
from rpython.tool.sourcetools import func_with_new_name
from pypy.module.micronumpy import descriptor, ufuncs, boxes, arrayops, loop, \
    support, constants as NPY
from pypy.module.micronumpy.appbridge import get_appbridge_cache
from pypy.module.micronumpy.arrayops import repeat, choose, put
from pypy.module.micronumpy.base import W_NDimArray, convert_to_array, \
    ArrayArgumentException, wrap_impl
from pypy.module.micronumpy.concrete import BaseConcreteArray, V_OBJECTSTORE
from pypy.module.micronumpy.converters import (
    multi_axis_converter, order_converter, shape_converter,
    searchside_converter, out_converter)
from pypy.module.micronumpy.flagsobj import W_FlagsObject
from pypy.module.micronumpy.strides import (
    get_shape_from_iterable, shape_agreement, shape_agreement_multiple,
    is_c_contiguous, is_f_contiguous, calc_strides, new_view, BooleanChunk,
    SliceChunk)
from pypy.module.micronumpy.casting import can_cast_array
from pypy.module.micronumpy.descriptor import get_dtype_cache



def _match_dot_shapes(space, left, right):
    left_shape = left.get_shape()
    right_shape = right.get_shape()
    my_critical_dim_size = left_shape[-1]
    right_critical_dim_size = right_shape[0]
    right_critical_dim = 0
    out_shape = []
    if len(right_shape) > 1:
        right_critical_dim = len(right_shape) - 2
        right_critical_dim_size = right_shape[right_critical_dim]
        assert right_critical_dim >= 0
        out_shape = (out_shape + left_shape[:-1] +
                     right_shape[0:right_critical_dim] +
                     right_shape[right_critical_dim + 1:])
    elif len(right_shape) > 0:
        #dot does not reduce for scalars
        out_shape = out_shape + left_shape[:-1]
    if my_critical_dim_size != right_critical_dim_size:
        raise oefmt(space.w_ValueError, "objects are not aligned")
    return out_shape, right_critical_dim

class __extend__(W_NDimArray):
    @jit.unroll_safe
    def descr_get_shape(self, space):
        shape = self.get_shape()
        return space.newtuple([space.newint(i) for i in shape])

    def descr_set_shape(self, space, w_new_shape):
        shape = get_shape_from_iterable(space, self.get_size(), w_new_shape)
        self.implementation = self.implementation.set_shape(space, self, shape)
        w_cls = space.type(self)
        if not space.is_w(w_cls, space.gettypefor(W_NDimArray)):
            # numpy madness - allow __array_finalize__(self, obj)
            # to run, in MaskedArray this modifies obj._mask
            wrap_impl(space, w_cls, self, self.implementation)

    def descr_get_strides(self, space):
        strides = self.implementation.get_strides()
        return space.newtuple([space.newint(i) for i in strides])

    def descr_get_dtype(self, space):
        return self.implementation.dtype

    def descr_set_dtype(self, space, w_dtype):
        dtype = space.interp_w(descriptor.W_Dtype, space.call_function(
            space.gettypefor(descriptor.W_Dtype), w_dtype))
        if (dtype.elsize != self.get_dtype().elsize or
                (not dtype.is_record() and self.get_dtype().is_flexible())):
            raise oefmt(space.w_ValueError,
                        "new type not compatible with array.")
        self.implementation.set_dtype(space, dtype)

    def descr_del_dtype(self, space):
        raise oefmt(space.w_AttributeError, "Cannot delete array dtype")

    def descr_get_ndim(self, space):
        return space.newint(self.ndims())

    def descr_get_itemsize(self, space):
        return space.newint(self.get_dtype().elsize)

    def descr_get_nbytes(self, space):
        return space.newint(self.get_size() * self.get_dtype().elsize)

    def descr_fill(self, space, w_value):
        self.fill(space, self.get_dtype().coerce(space, w_value))

    def descr_tostring(self, space, w_order=None):
        try:
            order = order_converter(space, w_order, NPY.CORDER)
        except:
            raise oefmt(space.w_TypeError, "order not understood")
        order = support.get_order_as_CF(self.get_order(), order)
        arr = self
        if order != arr.get_order():
            arr = W_NDimArray(self.implementation.transpose(self, None))
        return space.newtext(loop.tostring(space, arr))

    def getitem_filter(self, space, arr, axis=0):
        shape = self.get_shape()
        if arr.ndims() > 1 and arr.get_shape() != shape:
            raise oefmt(space.w_IndexError,
                        "boolean index array should have 1 dimension")
        if arr.get_size() > self.get_size():
            raise oefmt(space.w_IndexError, "index out of range for array")
        size = loop.count_all_true(arr)
        if arr.ndims() == 1:
            if self.ndims() > 1 and arr.get_shape()[0] != shape[axis]:
                msg = ("boolean index did not match indexed array along"
                      " dimension %d; dimension is %d but corresponding"
                      " boolean dimension is %d" % (axis, shape[axis],
                      arr.get_shape()[0]))
                #warning = space.gettypefor(support.W_VisibleDeprecationWarning)
                space.warn(space.newtext(msg), space.w_VisibleDeprecationWarning)
            res_shape = shape[:axis] + [size] + shape[axis+1:]
        else:
            res_shape = [size]
        w_res = W_NDimArray.from_shape(space, res_shape, self.get_dtype(),
                                       w_instance=self)
        return loop.getitem_filter(w_res, self, arr)

    def setitem_filter(self, space, idx, val):
        if idx.ndims() > 1 and idx.get_shape() != self.get_shape():
            raise oefmt(space.w_IndexError,
                        "boolean index array should have 1 dimension")
        if idx.get_size() > self.get_size():
            raise oefmt(space.w_IndexError, "index out of range for array")
        size = loop.count_all_true(idx)
        if size > val.get_size() and val.get_size() != 1:
            raise oefmt(space.w_ValueError,
                        "NumPy boolean array indexing assignment "
                        "cannot assign %d input values to "
                        "the %d output values where the mask is true",
                        val.get_size(), size)
        loop.setitem_filter(space, self, idx, val)

    def _prepare_array_index(self, space, w_index):
        if isinstance(w_index, W_NDimArray):
            return [], w_index.get_shape(), w_index.get_shape(), [w_index]
        if isinstance(w_index, boxes.W_GenericBox):
            return [], [1], [1], [w_index]
        w_lst = space.listview(w_index)
        for w_item in w_lst:
            if not (space.isinstance_w(w_item, space.w_int) or space.isinstance_w(w_item, space.w_float)):
                break
        else:
            arr = convert_to_array(space, w_index)
            return [], arr.get_shape(), arr.get_shape(), [arr]
        shape = None
        indexes_w = [None] * len(w_lst)
        res_shape = []
        arr_index_in_shape = False
        prefix = []
        for i, w_item in enumerate(w_lst):
            if isinstance(w_item, W_NDimArray) and w_item.get_dtype().is_bool():
                if w_item.ndims() > 0:
                    indexes_w[i] = w_item
                else:
                    raise oefmt(space.w_IndexError,
                        "in the future, 0-d boolean arrays will be "
                        "interpreted as a valid boolean index")
            elif (isinstance(w_item, W_NDimArray) or
                    space.isinstance_w(w_item, space.w_list)):
                w_item = convert_to_array(space, w_item)
                if shape is None:
                    shape = w_item.get_shape()
                else:
                    shape = shape_agreement(space, shape, w_item)
                indexes_w[i] = w_item
                if not arr_index_in_shape:
                    res_shape.append(-1)
                    arr_index_in_shape = True
            else:
                if space.isinstance_w(w_item, space.w_slice):
                    lgt = space.decode_index4_unsafe(w_item, self.get_shape()[i])[3]
                    if not arr_index_in_shape:
                        prefix.append(w_item)
                    res_shape.append(lgt)
                indexes_w[i] = w_item
        real_shape = []
        for i in res_shape:
            if i == -1:
                real_shape += shape
            else:
                real_shape.append(i)
        return prefix, real_shape[:], shape, indexes_w

    def getitem_array_int(self, space, w_index):
        prefix, res_shape, iter_shape, indexes = \
            self._prepare_array_index(space, w_index)
        if iter_shape is None:
            # w_index is a list of slices, return a view
            chunks = self.implementation._prepare_slice_args(space, w_index)
            copy = False
            if isinstance(chunks[0], BooleanChunk):
                copy = True
            w_ret = new_view(space, self, chunks)
            if copy:
                w_ret = w_ret.descr_copy(space, space.newint(w_ret.get_order()))
            return w_ret
        shape = res_shape + self.get_shape()[len(indexes):]
        w_res = W_NDimArray.from_shape(space, shape, self.get_dtype(),
                                       self.get_order(), w_instance=self)
        if not w_res.get_size():
            return w_res
        return loop.getitem_array_int(space, self, w_res, iter_shape, indexes,
                                      prefix)

    def setitem_array_int(self, space, w_index, w_value):
        val_arr = convert_to_array(space, w_value)
        prefix, _, iter_shape, indexes = \
            self._prepare_array_index(space, w_index)
        if iter_shape is None:
            # w_index is a list of slices
            chunks = self.implementation._prepare_slice_args(space, w_index)
            dim = -1
            view = self
            for i, c in enumerate(chunks):
                if isinstance(c, BooleanChunk):
                    dim = i
                    idx = c.w_idx
                    chunks.pop(i)
                    chunks.insert(0, SliceChunk(space.newslice(space.newint(0),
                                 space.w_None, space.w_None)))
                    break
            if dim > 0:
                view = self.implementation.swapaxes(space, self, 0, dim)
            if dim >= 0:
                view = new_view(space, self, chunks)
                view.setitem_filter(space, idx, val_arr)
            else:
                view = new_view(space, self, chunks)
                view.implementation.setslice(space, val_arr)
            return
        if support.product(iter_shape) == 0:
            return
        loop.setitem_array_int(space, self, iter_shape, indexes, val_arr,
                               prefix)

    def descr_getitem(self, space, w_idx):
        if self.get_dtype().is_record():
            if space.isinstance_w(w_idx, space.w_text):
                idx = space.text_w(w_idx)
                return self.getfield(space, idx)
        if space.is_w(w_idx, space.w_Ellipsis):
            return self.descr_view(space, space.type(self))
        elif isinstance(w_idx, W_NDimArray) and w_idx.get_dtype().is_bool():
            if w_idx.ndims() > 0:
                w_ret = self.getitem_filter(space, w_idx)
            else:
                raise oefmt(space.w_IndexError,
                        "in the future, 0-d boolean arrays will be "
                        "interpreted as a valid boolean index")
        elif isinstance(w_idx, boxes.W_GenericBox):
            w_ret = self.getitem_array_int(space, w_idx)

            if isinstance(w_idx, boxes.W_IntegerBox):
                # if w_idx is integer then getitem_array_int must contain a single value and we must return it.
                # Get 0-th element of the w_ret.
                w_ret = w_ret.implementation.descr_getitem(space, self, space.newint(0))
        else:
            try:
                w_ret = self.implementation.descr_getitem(space, self, w_idx)
            except ArrayArgumentException:
                w_ret = self.getitem_array_int(space, w_idx)
        if isinstance(w_ret, boxes.W_ObjectBox):
            #return the W_Root object, not a scalar
            w_ret = w_ret.w_obj
        return w_ret

    def getitem(self, space, index_list):
        return self.implementation.getitem_index(space, index_list)

    def setitem(self, space, index_list, w_value):
        self.implementation.setitem_index(space, index_list, w_value)

    def descr_setitem(self, space, w_idx, w_value):
        if self.get_dtype().is_record():
            if space.isinstance_w(w_idx, space.w_text):
                idx = space.text_w(w_idx)
                view = self.getfield(space, idx)
                w_value = convert_to_array(space, w_value)
                view.implementation.setslice(space, w_value)
                return
        if space.is_w(w_idx, space.w_Ellipsis):
            self.implementation.setslice(space, convert_to_array(space, w_value))
            return
        # TODO: multiarray/mapping.c calls a subclass's __getitem__ here, which
        # is a big performance hit but necessary for the matrix class. The original
        # C code is like:
        #/*
        #* WARNING: There is a huge special case here. If this is not a
        #*          base class array, we have to get the view through its
        #*          very own index machinery.
        #*          Many subclasses should probably call __setitem__
        #*          with a base class ndarray view to avoid this.
        #*/
        #else if (!(index_type & (HAS_FANCY | HAS_SCALAR_ARRAY))
        #        && !PyArray_CheckExact(self)) {
        #view = (PyArrayObject *)PyObject_GetItem((PyObject *)self, ind);

        elif isinstance(w_idx, W_NDimArray) and w_idx.get_dtype().is_bool() \
                and w_idx.ndims() > 0:
            self.setitem_filter(space, w_idx, convert_to_array(space, w_value))
            return
        try:
            self.implementation.descr_setitem(space, self, w_idx, w_value)
        except ArrayArgumentException:
            self.setitem_array_int(space, w_idx, w_value)

    def getfield(self, space, field):
        dtype = self.get_dtype()
        if field not in dtype.fields:
            raise oefmt(space.w_ValueError, "no field of name %s", field)
        arr = self.implementation
        ofs, subdtype = arr.dtype.fields[field][:2]
        if subdtype.is_object() and arr.gcstruct is V_OBJECTSTORE:
            raise oefmt(space.w_NotImplementedError,
                "cannot read object from array with no gc hook")
        # ofs only changes start
        # create a view of the original array by extending
        # the shape, strides, backstrides of the array
        strides, backstrides = calc_strides(subdtype.shape,
                                            subdtype.subdtype, arr.order)
        final_shape = arr.shape + subdtype.shape
        final_strides = arr.get_strides() + strides
        final_backstrides = arr.get_backstrides() + backstrides
        final_dtype = subdtype
        if subdtype.subdtype:
            final_dtype = subdtype.subdtype
        return W_NDimArray.new_slice(space, arr.start + ofs, final_strides,
                                     final_backstrides,
                                     final_shape, arr, self, final_dtype)


    def descr_delitem(self, space, w_idx):
        raise oefmt(space.w_ValueError, "cannot delete array elements")

    def descr_len(self, space):
        shape = self.get_shape()
        if len(shape):
            return space.newint(shape[0])
        raise oefmt(space.w_TypeError, "len() of unsized object")

    def descr_repr(self, space):
        cache = get_appbridge_cache(space)
        if cache.w_array_repr is None:
            return space.newtext(self.dump_data())
        return space.call_function(cache.w_array_repr, self)

    def descr_str(self, space):
        cache = get_appbridge_cache(space)
        if cache.w_array_str is None:
            return space.newtext(self.dump_data(prefix='', separator='', suffix=''))
        return space.call_function(cache.w_array_str, self)

    def dump_data(self, prefix='array(', separator=',', suffix=')'):
        i, state = self.create_iter()
        first = True
        dtype = self.get_dtype()
        s = StringBuilder()
        s.append(prefix)
        if not self.is_scalar():
            s.append('[')
        while not i.done(state):
            if first:
                first = False
            else:
                s.append(separator)
                s.append(' ')
            if self.is_scalar() and dtype.is_str():
                s.append(i.getitem(state).raw_str())
            else:
                s.append(dtype.itemtype.str_format(i.getitem(state), add_quotes=True))
            state = i.next(state)
        if not self.is_scalar():
            s.append(']')
        s.append(suffix)
        return s.build()

    def create_iter(self, shape=None, backward_broadcast=False):
        assert isinstance(self.implementation, BaseConcreteArray)
        return self.implementation.create_iter(
            shape=shape, backward_broadcast=backward_broadcast)

    def is_scalar(self):
        return self.ndims() == 0

    def set_scalar_value(self, w_val):
        return self.implementation.setitem(self.implementation.start, w_val)

    def fill(self, space, box):
        self.implementation.fill(space, box)

    def descr_get_size(self, space):
        return space.newint(self.get_size())

    def get_size(self):
        return self.implementation.get_size()

    def get_scalar_value(self):
        assert self.get_size() == 1
        return self.implementation.getitem(self.implementation.start)

    def descr_copy(self, space, w_order=None):
        if w_order is None:
            order = NPY.CORDER
        elif space.isinstance_w(w_order, space.w_int):
            order = space.int_w(w_order)
        else:
            order = order_converter(space, w_order, NPY.CORDER)
        copy = self.implementation.copy(space, order)
        w_subtype = space.type(self)
        return wrap_impl(space, w_subtype, self, copy)

    def descr_get_real(self, space):
        ret = self.implementation.get_real(space, self)
        return wrap_impl(space, space.type(self), self, ret)

    def descr_get_imag(self, space):
        ret = self.implementation.get_imag(space, self)
        return wrap_impl(space, space.type(self), self, ret)

    def descr_set_real(self, space, w_value):
        # copy (broadcast) values into self
        self.implementation.set_real(space, self, w_value)

    def descr_set_imag(self, space, w_value):
        # if possible, copy (broadcast) values into self
        if not self.get_dtype().is_complex():
            raise oefmt(space.w_TypeError,
                        'array does not have imaginary part to set')
        self.implementation.set_imag(space, self, w_value)

    def reshape(self, space, w_shape, order=NPY.ANYORDER):
        new_shape = get_shape_from_iterable(space, self.get_size(), w_shape)
        new_impl = self.implementation.reshape(self, new_shape, order)
        if new_impl is not None:
            return wrap_impl(space, space.type(self), self, new_impl)
        # Create copy with contiguous data
        arr = self.descr_copy(space, space.newint(order))
        if arr.get_size() > 0:
            new_implementation = arr.implementation.reshape(self, new_shape, order)
            if new_implementation is None:
                raise oefmt(space.w_ValueError,
                            'could not reshape array of size %d to shape %s',
                            arr.get_size(), str(new_shape))
            arr.implementation = new_implementation
        else:
            arr.implementation.shape = new_shape
        return arr

    def descr_reshape(self, space, __args__):
        """reshape(...)
        a.reshape(shape)

        Returns an array containing the same data with a new shape.

        Refer to `numpy.reshape` for full documentation.

        See Also
        --------
        numpy.reshape : equivalent function
        """
        args_w, kw_w = __args__.unpack()
        order = NPY.CORDER
        if kw_w:
            if "order" in kw_w:
                order = order_converter(space, kw_w["order"], order)
                del kw_w["order"]
            if kw_w:
                raise oefmt(space.w_TypeError,
                            "reshape() got unexpected keyword argument(s)")
        if order == NPY.KEEPORDER:
            raise oefmt(space.w_ValueError,
                        "order 'K' is not permitted for reshaping")
        if len(args_w) == 1:
            if space.is_none(args_w[0]):
                return self.descr_view(space)
            w_shape = args_w[0]
        else:
            w_shape = space.newtuple(args_w)
        return self.reshape(space, w_shape, order)

    def descr_get_transpose(self, space, axes=None):
        return W_NDimArray(self.implementation.transpose(self, axes))

    def descr_transpose(self, space, args_w):
        if len(args_w) == 0 or len(args_w) == 1 and space.is_none(args_w[0]):
            return self.descr_get_transpose(space)
        else:
            if len(args_w) > 1:
                axes = args_w
            else:  # Iterable in the only argument (len(arg_w) == 1 and arg_w[0] is not None)
                axes = space.fixedview(args_w[0])

        axes = self._checked_axes(axes, space)
        return self.descr_get_transpose(space, axes)

    def _checked_axes(self, axes_raw, space):
        if len(axes_raw) != self.ndims():
            raise oefmt(space.w_ValueError, "axes don't match array")
        axes = []
        axes_seen = [False] * self.ndims()
        for elem in axes_raw:
            try:
                axis = support.index_w(space, elem)
            except OperationError:
                raise oefmt(space.w_TypeError, "an integer is required")
            if axis < 0 or axis >= self.ndims():
                raise oefmt(space.w_ValueError, "invalid axis for this array")
            if axes_seen[axis] is True:
                raise oefmt(space.w_ValueError, "repeated axis in transpose")
            axes.append(axis)
            axes_seen[axis] = True
        return axes

    @unwrap_spec(axis1=int, axis2=int)
    def descr_swapaxes(self, space, axis1, axis2):
        """a.swapaxes(axis1, axis2)

        Return a view of the array with `axis1` and `axis2` interchanged.

        Refer to `numpy.swapaxes` for full documentation.

        See Also
        --------
        numpy.swapaxes : equivalent function
        """
        if axis1 == axis2:
            return self.descr_view(space)
        n = self.ndims()
        if axis1 < 0:
            axis1 += n
        if axis2 < 0:
            axis2 += n
        if axis1 < 0 or axis1 >= n:
            raise oefmt(space.w_ValueError, "bad axis1 argument to swapaxes")
        if axis2 < 0 or axis2 >= n:
            raise oefmt(space.w_ValueError, "bad axis2 argument to swapaxes")
        if n <= 1:
            return self
        return self.implementation.swapaxes(space, self, axis1, axis2)

    def descr_nonzero(self, space):
        index_type = get_dtype_cache(space).w_int64dtype
        return self.implementation.nonzero(space, index_type)

    def descr_tolist(self, space):
        if self.ndims() == 0:
            return self.get_scalar_value().item(space)
        l_w = []
        for i in range(self.get_shape()[0]):
            item_w = self.descr_getitem(space, space.newint(i))
            if (isinstance(item_w, W_NDimArray) or
                    isinstance(item_w, boxes.W_GenericBox)):
                l_w.append(space.call_method(item_w, "tolist"))
            else:
                l_w.append(item_w)
        return space.newlist(l_w)

    def descr_ravel(self, space, w_order=None):
        order = order_converter(space, w_order, self.get_order())
        return self.reshape(space, space.newint(-1), order)

    @unwrap_spec(w_axis=WrappedDefault(None),
                 w_out=WrappedDefault(None),
                 w_mode=WrappedDefault('raise'))
    def descr_take(self, space, w_obj, w_axis=None, w_out=None, w_mode=None):
        return app_take(space, self, w_obj, w_axis, w_out, w_mode)

    def descr_compress(self, space, w_obj, w_axis=None):
        if not space.is_none(w_axis):
            raise oefmt(space.w_NotImplementedError,
                        "axis unsupported for compress")
            arr = self
        else:
            arr = self.reshape(space, space.newint(-1), self.get_order())
        index = convert_to_array(space, w_obj)
        return arr.getitem_filter(space, index)

    def descr_flatten(self, space, w_order=None):
        order = order_converter(space, w_order, self.get_order())
        if self.is_scalar():
            # scalars have no storage
            return self.reshape(space, space.newint(1), order)
        w_res = self.descr_ravel(space, w_order)
        if w_res.implementation.storage == self.implementation.storage:
            return w_res.descr_copy(space)
        return w_res

    @unwrap_spec(repeats=int)
    def descr_repeat(self, space, repeats, w_axis=None):
        return repeat(space, self, repeats, w_axis)

    def descr_set_flatiter(self, space, w_obj):
        iter, state = self.create_iter()
        dtype = self.get_dtype()
        w_arr = convert_to_array(space, w_obj)
        if dtype.is_record():
            return self.implementation.setslice(space, w_arr)
        loop.flatiter_setitem(space, dtype, w_arr, iter, state, 1, iter.size)

    def descr_get_flatiter(self, space):
        from .flatiter import W_FlatIterator
        return W_FlatIterator(self)

    def descr_item(self, space, args_w):
        if len(args_w) == 1 and space.isinstance_w(args_w[0], space.w_tuple):
            args_w = space.fixedview(args_w[0])
        shape = self.get_shape()
        coords = [0] * len(shape)
        if len(args_w) == 0:
            if self.get_size() == 1:
                w_obj = self.get_scalar_value()
                assert isinstance(w_obj, boxes.W_GenericBox)
                return w_obj.item(space)
            raise oefmt(space.w_ValueError,
                        "can only convert an array of size 1 to a Python scalar")
        elif len(args_w) == 1 and len(shape) != 1:
            value = support.index_w(space, args_w[0])
            value = support.check_and_adjust_index(space, value, self.get_size(), -1)
            for idim in range(len(shape) - 1, -1, -1):
                coords[idim] = value % shape[idim]
                value //= shape[idim]
        elif len(args_w) == len(shape):
            for idim in range(len(shape)):
                coords[idim] = support.index_w(space, args_w[idim])
        else:
            raise oefmt(space.w_ValueError, "incorrect number of indices for array")
        item = self.getitem(space, coords)
        assert isinstance(item, boxes.W_GenericBox)
        return item.item(space)

    def descr_itemset(self, space, args_w):
        if len(args_w) == 0:
            raise oefmt(space.w_ValueError,
                        "itemset must have at least one argument")
        if len(args_w) != self.ndims() + 1:
            raise oefmt(space.w_ValueError,
                        "incorrect number of indices for array")
        self.descr_setitem(space, space.newtuple(args_w[:-1]), args_w[-1])

    def descr___array__(self, space, w_dtype=None):
        if not space.is_none(w_dtype):
            raise oefmt(space.w_NotImplementedError,
                        "__array__(dtype) not implemented")
        if type(self) is W_NDimArray:
            return self
        # sz cannot overflow since self is valid
        sz = support.product(self.get_shape()) * self.get_dtype().elsize
        return W_NDimArray.from_shape_and_storage(
            space, self.get_shape(), self.implementation.storage,
            self.get_dtype(), storage_bytes=sz, w_base=self)

    def descr_array_iface(self, space):
        '''
        Note: arr.__array__.data[0] is a pointer so arr must be kept alive
              while it is in use
        '''
        with self.implementation as storage:
            addr = support.get_storage_as_int(storage, self.get_start())
            # will explode if it can't
            w_d = space.newdict()
            space.setitem_str(w_d, 'data',
                              space.newtuple([space.newint(addr), space.w_False]))
            space.setitem_str(w_d, 'shape', self.descr_get_shape(space))
            space.setitem_str(w_d, 'typestr', self.get_dtype().descr_get_str(space))
            if self.implementation.order == NPY.CORDER:
                # Array is contiguous, no strides in the interface.
                strides = space.w_None
            else:
                strides = self.descr_get_strides(space)
            space.setitem_str(w_d, 'strides', strides)
            space.setitem_str(w_d, 'version', space.newint(3))
            return w_d

    w_pypy_data = None

    def fget___pypy_data__(self, space):
        return self.w_pypy_data

    def fset___pypy_data__(self, space, w_data):
        self.w_pypy_data = w_data

    def fdel___pypy_data__(self, space):
        self.w_pypy_data = None

    __array_priority__ = 0.0

    def descr___array_priority__(self, space):
        return space.newfloat(self.__array_priority__)

    def descr_argsort(self, space, w_axis=None, w_kind=None, w_order=None):
        # happily ignore the kind
        # create a contiguous copy of the array
        # we must do that, because we need a working set. otherwise
        # we would modify the array in-place. Use this to our advantage
        # by converting nonnative byte order.
        if self.is_scalar():
            return space.newint(0)
        dtype = self.get_dtype().descr_newbyteorder(space, NPY.NATIVE)
        contig = self.implementation.astype(space, dtype, self.get_order())
        return contig.argsort(space, w_axis)

    @unwrap_spec(order='text', casting='text', subok=bool, copy=bool)
    def descr_astype(self, space, w_dtype, order='K', casting='unsafe', subok=True, copy=True):
        cur_dtype = self.get_dtype()
        new_dtype = space.interp_w(descriptor.W_Dtype, space.call_function(
            space.gettypefor(descriptor.W_Dtype), w_dtype))
        if new_dtype.num == NPY.VOID:
            raise oefmt(space.w_NotImplementedError,
                        "astype(%s) not implemented yet",
                        new_dtype.get_name())
        if new_dtype.is_str_or_unicode() and new_dtype.elsize == 0:
            elsize = 0
            ch = new_dtype.char
            itype = cur_dtype.itemtype
            for i in range(self.get_size()):
                elsize = max(elsize, space.len_w(itype.to_builtin_type(space, self.implementation.getitem(i))))
            new_dtype = descriptor.variable_dtype(
                    space, ch + str(elsize))
        if new_dtype.elsize == 0:
            # XXX Should not happen
            raise oefmt(space.w_ValueError, "new dtype has elsize of 0")
        if not can_cast_array(space, self, new_dtype, casting):
            raise oefmt(space.w_TypeError, "Cannot cast array from %R to %R"
                        "according to the rule %s", self.get_dtype(),
                        new_dtype, casting)
        order  = order_converter(space, space.newtext(order), self.get_order())
        if (not copy and new_dtype == self.get_dtype()
                and (order in (NPY.KEEPORDER, NPY.ANYORDER) or order == self.get_order())
                and (subok or type(self) is W_NDimArray)):
            return self
        impl = self.implementation
        new_impl = impl.astype(space, new_dtype, order)
        if new_impl is None:
            return self
        if subok:
            w_type = space.type(self)
        else:
            w_type = None
        return wrap_impl(space, w_type, self, new_impl)

    def descr_get_base(self, space):
        impl = self.implementation
        ret = impl.base()
        if ret is None:
            return space.w_None
        return ret

    @unwrap_spec(inplace=bool)
    def descr_byteswap(self, space, inplace=False):
        if inplace:
            loop.byteswap(self.implementation, self.implementation)
            return self
        else:
            w_res = W_NDimArray.from_shape(space, self.get_shape(),
                                           self.get_dtype(), w_instance=self)
            loop.byteswap(self.implementation, w_res.implementation)
            return w_res

    def descr_choose(self, space, w_choices, w_out=None, w_mode=None):
        return choose(space, self, w_choices, w_out, w_mode)

    def descr_clip(self, space, w_min=None, w_max=None, w_out=None):
        if space.is_none(w_min):
            w_min = None
        else:
            w_min = convert_to_array(space, w_min)
        if space.is_none(w_max):
            w_max = None
        else:
            w_max = convert_to_array(space, w_max)
        if space.is_none(w_out):
            w_out = None
        elif not isinstance(w_out, W_NDimArray):
            raise oefmt(space.w_TypeError,
                        "return arrays must be of ArrayType")
        if not w_min and not w_max:
            raise oefmt(space.w_ValueError, "One of max or min must be given.")
        shape = shape_agreement_multiple(space, [self, w_min, w_max, w_out])
        out = descriptor.dtype_agreement(space, [self, w_min, w_max], shape, w_out)
        loop.clip(space, self, shape, w_min, w_max, out)
        return out

    def descr_get_ctypes(self, space):
        w_result = space.appexec([self], """(arr):
            from numpy.core import _internal
            p_data = arr.__array_interface__['data'][0]
            return _internal._ctypes(arr, p_data)
        """)
        return w_result

    def buffer_w(self, space, flags):
        # XXX format isn't always 'B' probably
        return self.implementation.get_buffer(space, flags)

    def descr_get_data(self, space):
        return space.newmemoryview(
            self.implementation.get_buffer(space, space.BUF_FULL))

    @unwrap_spec(offset=int, axis1=int, axis2=int)
    def descr_diagonal(self, space, offset=0, axis1=0, axis2=1):
        if self.ndims() < 2:
            raise oefmt(space.w_ValueError,
                        "need at least 2 dimensions for diagonal")
        if (axis1 < 0 or axis2 < 0 or axis1 >= self.ndims() or
                axis2 >= self.ndims()):
            raise oefmt(space.w_ValueError,
                        "axis1(=%d) and axis2(=%d) must be within range "
                        "(ndim=%d)", axis1, axis2, self.ndims())
        if axis1 == axis2:
            raise oefmt(space.w_ValueError,
                        "axis1 and axis2 cannot be the same")
        return arrayops.diagonal(space, self.implementation, offset, axis1, axis2)

    @unwrap_spec(offset=int, axis1=int, axis2=int)
    def descr_trace(self, space, offset=0, axis1=0, axis2=1,
                    w_dtype=None, w_out=None):
        diag = self.descr_diagonal(space, offset, axis1, axis2)
        return diag.descr_sum(space, w_axis=space.newint(-1), w_dtype=w_dtype, w_out=w_out)

    def descr_dump(self, space, w_file):
        raise oefmt(space.w_NotImplementedError, "dump not implemented yet")

    def descr_dumps(self, space):
        raise oefmt(space.w_NotImplementedError, "dumps not implemented yet")

    w_flags = None

    def descr_get_flags(self, space):
        if self.w_flags is None:
            self.w_flags = W_FlagsObject(self)
        return self.w_flags

    @unwrap_spec(offset=int)
    def descr_getfield(self, space, w_dtype, offset):
        raise oefmt(space.w_NotImplementedError,
                    "getfield not implemented yet")

    @unwrap_spec(new_order='text')
    def descr_newbyteorder(self, space, new_order=NPY.SWAP):
        return self.descr_view(
            space, self.get_dtype().descr_newbyteorder(space, new_order))

    @unwrap_spec(w_axis=WrappedDefault(None),
                 w_out=WrappedDefault(None))
    def descr_ptp(self, space, w_axis=None, w_out=None):
        return app_ptp(space, self, w_axis, w_out)

    def descr_put(self, space, w_indices, w_values, w_mode=None):
        put(space, self, w_indices, w_values, w_mode)

    @unwrap_spec(w_refcheck=WrappedDefault(True))
    def descr_resize(self, space, w_new_shape, w_refcheck=None):
        raise oefmt(space.w_NotImplementedError, "resize not implemented yet")

    @unwrap_spec(decimals=int)
    def descr_round(self, space, decimals=0, w_out=None):
        if space.is_none(w_out):
            if self.get_dtype().is_bool():
                # numpy promotes bool.round() to float16. Go figure.
                w_out = W_NDimArray.from_shape(space, self.get_shape(),
                    get_dtype_cache(space).w_float16dtype)
            else:
                w_out = None
        elif not isinstance(w_out, W_NDimArray):
            raise oefmt(space.w_TypeError,
                        "return arrays must be of ArrayType")
        out = descriptor.dtype_agreement(space, [self], self.get_shape(), w_out)
        if out.get_dtype().is_bool() and self.get_dtype().is_bool():
            calc_dtype = get_dtype_cache(space).w_longdtype
        else:
            calc_dtype = out.get_dtype()

        if decimals == 0:
            out = out.descr_view(space, space.type(self))
        loop.round(space, self, calc_dtype, self.get_shape(), decimals, out)
        return out

    @unwrap_spec(w_side=WrappedDefault('left'), w_sorter=WrappedDefault(None))
    def descr_searchsorted(self, space, w_v, w_side=None, w_sorter=None):
        if not space.is_none(w_sorter):
            raise oefmt(space.w_NotImplementedError,
                        'sorter not supported in searchsort')
        side = searchside_converter(space, w_side)
        if self.ndims() != 1:
            raise oefmt(space.w_ValueError, "a must be a 1-d array")
        v = convert_to_array(space, w_v)
        ret = W_NDimArray.from_shape(
            space, v.get_shape(), get_dtype_cache(space).w_longdtype)
        if ret.get_size() < 1:
            return ret
        if side == NPY.SEARCHLEFT:
            binsearch = loop.binsearch_left
        else:
            binsearch = loop.binsearch_right
        binsearch(space, self, v, ret)
        if ret.is_scalar():
            return ret.get_scalar_value()
        return ret

    def descr_setasflat(self, space, w_v):
        raise oefmt(space.w_NotImplementedError,
                    "setasflat not implemented yet")

    def descr_setfield(self, space, w_val, w_dtype, w_offset=0):
        raise oefmt(space.w_NotImplementedError,
                    "setfield not implemented yet")

    def descr_setflags(self, space, w_write=None, w_align=None, w_uic=None):
        raise oefmt(space.w_NotImplementedError,
                    "setflags not implemented yet")

    @unwrap_spec(kind='text')
    def descr_sort(self, space, w_axis=None, kind='quicksort', w_order=None):
        # happily ignore the kind
        # modify the array in-place
        if self.is_scalar():
            return
        return self.implementation.sort(space, w_axis, w_order)

    def descr_partition(self, space, __args__):
        return get_appbridge_cache(space).call_method(
            space, 'numpy.core._partition_use', 'partition', __args__.prepend(self))

    def descr_squeeze(self, space, w_axis=None):
        cur_shape = self.get_shape()
        if not space.is_none(w_axis):
            axes = multi_axis_converter(space, w_axis, len(cur_shape))
            new_shape = []
            for i in range(len(cur_shape)):
                if axes[i]:
                    if cur_shape[i] != 1:
                        raise oefmt(space.w_ValueError,
                                    "cannot select an axis to squeeze out "
                                    "which has size not equal to one")
                else:
                    new_shape.append(cur_shape[i])
        else:
            new_shape = [s for s in cur_shape if s != 1]
        if len(cur_shape) == len(new_shape):
            return self
        # XXX need to call __array_wrap__
        return wrap_impl(space, space.type(self), self,
                         self.implementation.get_view(
                             space, self, self.get_dtype(), new_shape))

    def descr_strides(self, space):
        raise oefmt(space.w_NotImplementedError,
                    "strides not implemented yet")

    def descr_tofile(self, space, w_fid, w_sep="", w_format="%s"):
        raise oefmt(space.w_NotImplementedError,
                    "tofile not implemented yet")

    def descr_view(self, space, w_dtype=None, w_type=None):
        if not w_type and w_dtype:
            try:
                if space.issubtype_w(w_dtype, space.gettypefor(W_NDimArray)):
                    w_type = w_dtype
                    w_dtype = None
            except OperationError as e:
                if e.match(space, space.w_TypeError):
                    pass
                else:
                    raise
        if w_dtype:
            dtype = space.interp_w(descriptor.W_Dtype, space.call_function(
                space.gettypefor(descriptor.W_Dtype), w_dtype))
        else:
            dtype = self.get_dtype()
        old_itemsize = self.get_dtype().elsize
        new_itemsize = dtype.elsize
        impl = self.implementation
        if new_itemsize == 0:
            raise oefmt(space.w_TypeError, "data-type must not be 0-sized")
        if dtype.subdtype is None:
            new_shape = self.get_shape()[:]
            dims = len(new_shape)
        else:
            new_shape = self.get_shape() + dtype.shape
            dtype = dtype.subdtype
            dims = 0
        if dims == 0:
            # Cannot resize scalars
            if old_itemsize != new_itemsize:
                raise oefmt(space.w_ValueError,
                            "new type not compatible with array.")
            strides = None
            backstrides = None
            base = self
        else:
            base = impl.base()
            if base is None:
                base = self
            strides = impl.get_strides()[:]
            backstrides = impl.get_backstrides()[:]
            if old_itemsize != new_itemsize:
                if not is_c_contiguous(impl) and not is_f_contiguous(impl):
                    raise oefmt(space.w_ValueError,
                                "new type not compatible with array.")
                # Adapt the smallest dim to the new itemsize
                if self.get_order() == NPY.FORTRANORDER:
                    minstride = strides[0]
                    mini = 0
                else:
                    minstride = strides[-1]
                    mini = len(strides) - 1
                for i in range(len(strides)):
                    if strides[i] < minstride:
                        minstride = strides[i]
                        mini = i
                if new_shape[mini] * old_itemsize % new_itemsize != 0:
                    raise oefmt(space.w_ValueError,
                                "new type not compatible with array.")
                new_shape[mini] = new_shape[mini] * old_itemsize / new_itemsize
                strides[mini] = strides[mini] * new_itemsize / old_itemsize
                backstrides[mini] = strides[mini] * new_shape[mini]
        if dtype.is_object() != impl.dtype.is_object():
            raise oefmt(space.w_ValueError, 'expect trouble in ndarray.view,'
                ' one of target dtype or dtype is object dtype')
        w_type = w_type or space.type(self)
        v = impl.get_view(space, base, dtype, new_shape, strides, backstrides)
        w_ret = wrap_impl(space, w_type, self, v)
        return w_ret

    # --------------------- operations ----------------------------
    # TODO: support all kwargs like numpy ufunc_object.c
    sig = None
    cast = 'safe'
    extobj = None


    def _unaryop_impl(ufunc_name):
        def impl(self, space, w_out=None):
            return getattr(ufuncs.get(space), ufunc_name).call(
                space, [self, w_out], self.sig, self.cast, self.extobj)
        return func_with_new_name(impl, "unaryop_%s_impl" % ufunc_name)

    descr_pos = _unaryop_impl("positive")
    descr_neg = _unaryop_impl("negative")
    descr_abs = _unaryop_impl("absolute")
    descr_invert = _unaryop_impl("invert")

    descr_conj = _unaryop_impl('conjugate')

    def descr___nonzero__(self, space):
        if self.get_size() > 1:
            raise oefmt(space.w_ValueError,
                        "The truth value of an array with more than one "
                        "element is ambiguous. Use a.any() or a.all()")
        iter, state = self.create_iter()
        return space.newbool(space.is_true(iter.getitem(state)))

    def _binop_impl(ufunc_name):
        def impl(self, space, w_other, w_out=None):
            return getattr(ufuncs.get(space), ufunc_name).call(
                space, [self, w_other, w_out], self.sig, self.cast, self.extobj)
        return func_with_new_name(impl, "binop_%s_impl" % ufunc_name)

    descr_add = _binop_impl("add")
    descr_sub = _binop_impl("subtract")
    descr_mul = _binop_impl("multiply")
    descr_div = _binop_impl("divide")
    descr_truediv = _binop_impl("true_divide")
    descr_floordiv = _binop_impl("floor_divide")
    descr_mod = _binop_impl("mod")
    descr_pow = _binop_impl("power")
    descr_lshift = _binop_impl("left_shift")
    descr_rshift = _binop_impl("right_shift")
    descr_and = _binop_impl("bitwise_and")
    descr_or = _binop_impl("bitwise_or")
    descr_xor = _binop_impl("bitwise_xor")

    def descr_divmod(self, space, w_other):
        w_quotient = self.descr_div(space, w_other)
        w_remainder = self.descr_mod(space, w_other)
        return space.newtuple([w_quotient, w_remainder])

    def _binop_comp_impl(ufunc):
        def impl(self, space, w_other, w_out=None):
            try:
                return ufunc(self, space, w_other, w_out)
            except OperationError as e:
                if e.match(space, space.w_ValueError):
                    # and 'operands could not be broadcast together' in str(e.get_w_value(space)):
                    return space.w_False
                raise e

        return func_with_new_name(impl, ufunc.func_name)

    descr_eq = _binop_comp_impl(_binop_impl("equal"))
    descr_ne = _binop_comp_impl(_binop_impl("not_equal"))
    descr_lt = _binop_comp_impl(_binop_impl("less"))
    descr_le = _binop_comp_impl(_binop_impl("less_equal"))
    descr_gt = _binop_comp_impl(_binop_impl("greater"))
    descr_ge = _binop_comp_impl(_binop_impl("greater_equal"))

    def _binop_inplace_impl(ufunc_name):
        def impl(self, space, w_other):
            w_out = self
            ufunc = getattr(ufuncs.get(space), ufunc_name)
            return ufunc.call(space, [self, w_other, w_out], self.sig, self.cast, self.extobj)
        return func_with_new_name(impl, "binop_inplace_%s_impl" % ufunc_name)

    descr_iadd = _binop_inplace_impl("add")
    descr_isub = _binop_inplace_impl("subtract")
    descr_imul = _binop_inplace_impl("multiply")
    descr_idiv = _binop_inplace_impl("divide")
    descr_itruediv = _binop_inplace_impl("true_divide")
    descr_ifloordiv = _binop_inplace_impl("floor_divide")
    descr_imod = _binop_inplace_impl("mod")
    descr_ipow = _binop_inplace_impl("power")
    descr_ilshift = _binop_inplace_impl("left_shift")
    descr_irshift = _binop_inplace_impl("right_shift")
    descr_iand = _binop_inplace_impl("bitwise_and")
    descr_ior = _binop_inplace_impl("bitwise_or")
    descr_ixor = _binop_inplace_impl("bitwise_xor")

    def _binop_right_impl(ufunc_name):
        def impl(self, space, w_other, w_out=None):
            w_other = convert_to_array(space, w_other)
            return getattr(ufuncs.get(space), ufunc_name).call(
                space, [w_other, self, w_out], self.sig, self.cast, self.extobj)
        return func_with_new_name(impl, "binop_right_%s_impl" % ufunc_name)

    descr_radd = _binop_right_impl("add")
    descr_rsub = _binop_right_impl("subtract")
    descr_rmul = _binop_right_impl("multiply")
    descr_rdiv = _binop_right_impl("divide")
    descr_rtruediv = _binop_right_impl("true_divide")
    descr_rfloordiv = _binop_right_impl("floor_divide")
    descr_rmod = _binop_right_impl("mod")
    descr_rpow = _binop_right_impl("power")
    descr_rlshift = _binop_right_impl("left_shift")
    descr_rrshift = _binop_right_impl("right_shift")
    descr_rand = _binop_right_impl("bitwise_and")
    descr_ror = _binop_right_impl("bitwise_or")
    descr_rxor = _binop_right_impl("bitwise_xor")

    def descr_rdivmod(self, space, w_other):
        w_quotient = self.descr_rdiv(space, w_other)
        w_remainder = self.descr_rmod(space, w_other)
        return space.newtuple([w_quotient, w_remainder])

    def descr_dot(self, space, w_other, w_out=None):
        from .casting import find_result_type
        out = out_converter(space, w_out)
        other = convert_to_array(space, w_other)
        if other.is_scalar():
            #Note: w_out is not modified, this is numpy compliant.
            return self.descr_mul(space, other)
        elif self.ndims() < 2 and other.ndims() < 2:
            w_res = self.descr_mul(space, other)
            assert isinstance(w_res, W_NDimArray)
            return w_res.descr_sum(space, space.newint(-1), out)
        dtype = find_result_type(space, [self, other], [])
        if self.get_size() < 1 and other.get_size() < 1:
            # numpy compatability
            return W_NDimArray.new_scalar(space, dtype, space.newint(0))
        # Do the dims match?
        out_shape, other_critical_dim = _match_dot_shapes(space, self, other)
        if out:
            matches = True
            if dtype != out.get_dtype():
                matches = False
            elif not out.implementation.order == NPY.CORDER:
                matches = False
            elif out.ndims() != len(out_shape):
                matches = False
            else:
                for i in range(len(out_shape)):
                    if out.get_shape()[i] != out_shape[i]:
                        matches = False
                        break
            if not matches:
                raise oefmt(space.w_ValueError,
                            "output array is not acceptable (must have the "
                            "right type, nr dimensions, and be a C-Array)")
            w_res = out
            w_res.fill(space, self.get_dtype().coerce(space, None))
        else:
            w_res = W_NDimArray.from_shape(space, out_shape, dtype, w_instance=self)
        # This is the place to add fpypy and blas
        return loop.multidim_dot(space, self, other, w_res, dtype,
                                 other_critical_dim)

    def descr_mean(self, space, __args__):
        return get_appbridge_cache(space).call_method(
            space, 'numpy.core._methods', '_mean', __args__.prepend(self))

    def descr_var(self, space, __args__):
        return get_appbridge_cache(space).call_method(
            space, 'numpy.core._methods', '_var', __args__.prepend(self))

    def descr_std(self, space, __args__):
        return get_appbridge_cache(space).call_method(
            space, 'numpy.core._methods', '_std', __args__.prepend(self))

    # ----------------------- reduce -------------------------------

    def _reduce_ufunc_impl(ufunc_name, name, bool_result=False):
        @unwrap_spec(keepdims=bool)
        def impl(self, space, w_axis=None, w_dtype=None, w_out=None, keepdims=False):
            out = out_converter(space, w_out)
            if bool_result:
                w_dtype = get_dtype_cache(space).w_booldtype
            return getattr(ufuncs.get(space), ufunc_name).reduce(
                space, self, w_axis, keepdims, out, w_dtype)
        impl.__name__ = name
        return impl

    descr_sum = _reduce_ufunc_impl("add", "descr_sum")
    descr_prod = _reduce_ufunc_impl("multiply", "descr_prod")
    descr_max = _reduce_ufunc_impl("maximum", "descr_max")
    descr_min = _reduce_ufunc_impl("minimum", "descr_min")
    descr_all = _reduce_ufunc_impl('logical_and', "descr_all", bool_result=True)
    descr_any = _reduce_ufunc_impl('logical_or', "descr_any", bool_result=True)


    def _accumulate_method(ufunc_name, name):
        def method(self, space, w_axis=None, w_dtype=None, w_out=None):
            out = out_converter(space, w_out)
            if space.is_none(w_axis):
                w_axis = space.newint(0)
                arr = self.reshape(space, space.newint(-1), self.get_order())
            else:
                arr = self
            ufunc = getattr(ufuncs.get(space), ufunc_name)
            return ufunc.reduce(space, arr, w_axis, False, out, w_dtype,
                                variant=ufuncs.ACCUMULATE)
        method.__name__ = name
        return method

    descr_cumsum = _accumulate_method('add', 'descr_cumsum')
    descr_cumprod = _accumulate_method('multiply', 'descr_cumprod')

    def _reduce_argmax_argmin_impl(raw_name):
        op_name = "arg%s" % raw_name
        op_name_flat = "arg%s_flat" % raw_name
        def impl(self, space, w_axis=None, w_out=None):
            if self.get_size() == 0:
                raise oefmt(space.w_ValueError,
                            "Can't call %s on zero-size arrays", op_name)
            try:
                getattr(self.get_dtype().itemtype, raw_name)
            except AttributeError:
                raise oefmt(space.w_NotImplementedError,
                            '%s not implemented for %s',
                            op_name, self.get_dtype().get_name())
            shape = self.get_shape()
            if space.is_none(w_axis) or len(shape) <= 1:
                return space.newint(getattr(loop, op_name_flat)(self))
            else:
                axis = space.int_w(w_axis)
                assert axis >= 0
                out_shape = shape[:axis] + shape[axis+1:]
                dtype = get_dtype_cache(space).w_longdtype
                w_out = W_NDimArray.from_shape(space, out_shape, dtype)
                return getattr(loop, op_name)(space, self, w_out, axis)

        return func_with_new_name(impl, "reduce_%s_impl" % op_name)

    descr_argmax = _reduce_argmax_argmin_impl("max")
    descr_argmin = _reduce_argmax_argmin_impl("min")

    def descr_int(self, space):
        if self.get_size() != 1:
            raise oefmt(space.w_TypeError,
                        "only length-1 arrays can be converted to Python "
                        "scalars")
        if self.get_dtype().is_str_or_unicode():
            raise oefmt(space.w_TypeError,
                        "don't know how to convert scalar number to int")
        value = self.get_scalar_value()
        return space.int(value)

    def descr_float(self, space):
        if self.get_size() != 1:
            raise oefmt(space.w_TypeError,
                        "only length-1 arrays can be converted to Python "
                        "scalars")
        if self.get_dtype().is_str_or_unicode():
            raise oefmt(space.w_TypeError,
                        "don't know how to convert scalar number to float")
        value = self.get_scalar_value()
        return space.float(value)

    def descr_hex(self, space):
        if self.get_size() != 1:
            raise oefmt(space.w_TypeError,
                        "only length-1 arrays can be converted to Python scalars")
        if not self.get_dtype().is_int():
            raise oefmt(space.w_TypeError,
                        "don't know how to convert scalar number to hex")
        value = self.get_scalar_value()
        return space.call_method(space.builtin, 'hex', value)

    def descr_oct(self, space):
        if self.get_size() != 1:
            raise oefmt(space.w_TypeError,
                        "only length-1 arrays can be converted to Python scalars")
        if not self.get_dtype().is_int():
            raise oefmt(space.w_TypeError,
                        "don't know how to convert scalar number to oct")
        value = self.get_scalar_value()
        return space.call_method(space.builtin, 'oct', value)

    def descr_index(self, space):
        if self.get_size() != 1 or \
                not self.get_dtype().is_int() or self.get_dtype().is_bool():
            raise oefmt(space.w_TypeError,
                        "only integer arrays with one element can be "
                        "converted to an index")
        value = self.get_scalar_value()
        assert isinstance(value, boxes.W_GenericBox)
        return value.item(space)

    def descr_reduce(self, space):
        from rpython.rlib.rstring import StringBuilder
        from pypy.interpreter.mixedmodule import MixedModule
        from pypy.module.micronumpy.concrete import SliceArray

        _numpypy = space.getbuiltinmodule("_numpypy")
        assert isinstance(_numpypy, MixedModule)
        multiarray = _numpypy.get("multiarray")
        assert isinstance(multiarray, MixedModule)
        reconstruct = multiarray.get("_reconstruct")
        parameters = space.newtuple([self.getclass(space), space.newtuple(
            [space.newint(0)]), space.newtext("b")])

        builder = StringBuilder()
        if self.get_dtype().is_object():
            raise oefmt(space.w_NotImplementedError,
                    "reduce for 'object' dtype not supported yet")
        if isinstance(self.implementation, SliceArray):
            iter, state = self.implementation.create_iter()
            while not iter.done(state):
                box = iter.getitem(state)
                builder.append(box.raw_str())
                state = iter.next(state)
        else:
            with self.implementation as storage:
                builder.append_charpsize(storage,
                                     self.implementation.get_storage_size())

        state = space.newtuple([
            space.newint(1),      # version
            self.descr_get_shape(space),
            self.get_dtype(),
            space.newbool(False),  # is_fortran
            space.newbytes(builder.build()),
        ])

        return space.newtuple([reconstruct, parameters, state])

    def descr_setstate(self, space, w_state):
        lens = space.len_w(w_state)
        # numpy compatability, see multiarray/methods.c
        if lens == 5:
            base_index = 1
        elif lens == 4:
            base_index = 0
        else:
            raise oefmt(space.w_ValueError,
                        "__setstate__ called with len(args[1])==%d, not 5 or 4",
                        lens)
        shape = space.getitem(w_state, space.newint(base_index))
        dtype = space.getitem(w_state, space.newint(base_index+1))
        #isfortran = space.getitem(w_state, space.newint(base_index+2))
        storage = space.getitem(w_state, space.newint(base_index+3))
        if not isinstance(dtype, descriptor.W_Dtype):
            raise oefmt(space.w_ValueError,
                        "__setstate__(self, (shape, dtype, .. called with "
                        "improper dtype '%R'", dtype)
        self.implementation = W_NDimArray.from_shape_and_storage(
            space, [space.int_w(i) for i in space.listview(shape)],
            rffi.str2charp(space.bytes_w(storage), track_allocation=False),
            dtype, storage_bytes=space.len_w(storage), owning=True).implementation

    def descr___array_finalize__(self, space, w_obj):
        pass

    def descr___array_wrap__(self, space, w_obj, w_context=None):
        return w_obj

    def descr___array_prepare__(self, space, w_obj, w_context=None):
        return w_obj
        pass


@unwrap_spec(offset=int)
def descr_new_array(space, w_subtype, w_shape, w_dtype=None, w_buffer=None,
                    offset=0, w_strides=None, w_order=None):
    from pypy.module.micronumpy.concrete import ConcreteArray
    dtype = space.interp_w(descriptor.W_Dtype, space.call_function(
        space.gettypefor(descriptor.W_Dtype), w_dtype))
    shape = shape_converter(space, w_shape, dtype)
    if len(shape) > NPY.MAXDIMS:
        raise oefmt(space.w_ValueError,
            "sequence too large; cannot be greater than %d", NPY.MAXDIMS)
    if not space.is_none(w_buffer):
        if (not space.is_none(w_strides)):
            strides = [space.int_w(w_i) for w_i in
                       space.unpackiterable(w_strides)]
        else:
            strides = None

        try:
            buf = space.writebuf_w(w_buffer)
        except OperationError:
            buf = space.readbuf_w(w_buffer)
        try:
            raw_ptr = buf.get_raw_address()
        except ValueError:
            raise oefmt(space.w_TypeError, "Only raw buffers are supported")
        if not shape:
            raise oefmt(space.w_TypeError,
                        "numpy scalars from buffers not supported yet")
        storage = rffi.cast(RAW_STORAGE_PTR, raw_ptr)
        storage = rffi.ptradd(storage, offset)
        return W_NDimArray.from_shape_and_storage(space, shape, storage,
                                                  dtype, w_base=w_buffer,
                                                  storage_bytes=buf.getlength()-offset,
                                                  w_subtype=w_subtype,
                                                  writable=not buf.readonly,
                                                  strides=strides)

    order = order_converter(space, w_order, NPY.CORDER)
    if space.is_w(w_subtype, space.gettypefor(W_NDimArray)):
        return W_NDimArray.from_shape(space, shape, dtype, order)
    strides, backstrides = calc_strides(shape, dtype.base, order)
    try:
        totalsize = ovfcheck(support.product_check(shape) * dtype.base.elsize)
    except OverflowError as e:
        raise oefmt(space.w_ValueError, "array is too big.")
    impl = ConcreteArray(shape, dtype.base, order, strides, backstrides)
    w_ret = space.allocate_instance(W_NDimArray, w_subtype)
    W_NDimArray.__init__(w_ret, impl)
    space.call_function(space.getattr(w_ret,
                        space.newtext('__array_finalize__')), w_subtype)
    return w_ret


@unwrap_spec(addr=int, buf_len=int)
def descr__from_shape_and_storage(space, w_cls, w_shape, addr, w_dtype,
                buf_len=-1, w_subtype=None, w_strides=None):
    """
    Create an array from an existing buffer, given its address as int.
    PyPy-only implementation detail.
    """
    storage = rffi.cast(RAW_STORAGE_PTR, addr)
    dtype = space.interp_w(descriptor.W_Dtype, space.call_function(
        space.gettypefor(descriptor.W_Dtype), w_dtype))
    shape = shape_converter(space, w_shape, dtype)
    if not space.is_none(w_strides):
        strides = [space.int_w(w_i) for w_i in
                   space.unpackiterable(w_strides)]
    else:
        strides = None
    if w_subtype:
        if not space.isinstance_w(w_subtype, space.w_type):
            raise oefmt(space.w_ValueError,
                        "subtype must be a subtype of ndarray, not a class "
                        "instance")
        return W_NDimArray.from_shape_and_storage(space, shape, storage, dtype,
                                                  buf_len, NPY.CORDER, False, w_subtype,
                                                  strides=strides)
    else:
        return W_NDimArray.from_shape_and_storage(space, shape, storage, dtype,
                                                  storage_bytes=buf_len,
                                                  strides=strides)

app_take = applevel(r"""
    def take(a, indices, axis, out, mode):
        if mode != 'raise':
            raise NotImplementedError("mode != raise not implemented")
        if axis is None:
            from numpy import array
            indices = array(indices)
            res = a.ravel()[indices.ravel()].reshape(indices.shape)
        else:
            from operator import mul
            if axis < 0: axis += len(a.shape)
            s0, s1 = a.shape[:axis], a.shape[axis+1:]
            l0 = reduce(mul, s0) if s0 else 1
            l1 = reduce(mul, s1) if s1 else 1
            res = a.reshape((l0, -1, l1))[:,indices,:].reshape(s0 + (-1,) + s1)
        if out is not None:
            out[:] = res
            return out
        return res
""", filename=__file__).interphook('take')

app_ptp = applevel(r"""
    def ptp(a, axis, out):
        res = a.max(axis) - a.min(axis)
        if out is not None:
            out[:] = res
            return out
        return res
""", filename=__file__).interphook('ptp')

W_NDimArray.typedef = TypeDef("numpy.ndarray", None, None, 'read-write',
    __new__ = interp2app(descr_new_array),

    __len__ = interp2app(W_NDimArray.descr_len),
    __getitem__ = interp2app(W_NDimArray.descr_getitem),
    __setitem__ = interp2app(W_NDimArray.descr_setitem),
    __delitem__ = interp2app(W_NDimArray.descr_delitem),

    __repr__ = interp2app(W_NDimArray.descr_repr),
    __str__ = interp2app(W_NDimArray.descr_str),
    __int__ = interp2app(W_NDimArray.descr_int),
    __float__ = interp2app(W_NDimArray.descr_float),
    __hex__ = interp2app(W_NDimArray.descr_hex),
    __oct__ = interp2app(W_NDimArray.descr_oct),
    __index__ = interp2app(W_NDimArray.descr_index),

    __pos__ = interp2app(W_NDimArray.descr_pos),
    __neg__ = interp2app(W_NDimArray.descr_neg),
    __abs__ = interp2app(W_NDimArray.descr_abs),
    __invert__ = interp2app(W_NDimArray.descr_invert),
    __nonzero__ = interp2app(W_NDimArray.descr___nonzero__),

    __add__ = interp2app(W_NDimArray.descr_add),
    __sub__ = interp2app(W_NDimArray.descr_sub),
    __mul__ = interp2app(W_NDimArray.descr_mul),
    __div__ = interp2app(W_NDimArray.descr_div),
    __truediv__ = interp2app(W_NDimArray.descr_truediv),
    __floordiv__ = interp2app(W_NDimArray.descr_floordiv),
    __mod__ = interp2app(W_NDimArray.descr_mod),
    __divmod__ = interp2app(W_NDimArray.descr_divmod),
    __pow__ = interp2app(W_NDimArray.descr_pow),
    __lshift__ = interp2app(W_NDimArray.descr_lshift),
    __rshift__ = interp2app(W_NDimArray.descr_rshift),
    __and__ = interp2app(W_NDimArray.descr_and),
    __or__ = interp2app(W_NDimArray.descr_or),
    __xor__ = interp2app(W_NDimArray.descr_xor),

    __radd__ = interp2app(W_NDimArray.descr_radd),
    __rsub__ = interp2app(W_NDimArray.descr_rsub),
    __rmul__ = interp2app(W_NDimArray.descr_rmul),
    __rdiv__ = interp2app(W_NDimArray.descr_rdiv),
    __rtruediv__ = interp2app(W_NDimArray.descr_rtruediv),
    __rfloordiv__ = interp2app(W_NDimArray.descr_rfloordiv),
    __rmod__ = interp2app(W_NDimArray.descr_rmod),
    __rdivmod__ = interp2app(W_NDimArray.descr_rdivmod),
    __rpow__ = interp2app(W_NDimArray.descr_rpow),
    __rlshift__ = interp2app(W_NDimArray.descr_rlshift),
    __rrshift__ = interp2app(W_NDimArray.descr_rrshift),
    __rand__ = interp2app(W_NDimArray.descr_rand),
    __ror__ = interp2app(W_NDimArray.descr_ror),
    __rxor__ = interp2app(W_NDimArray.descr_rxor),

    __iadd__ = interp2app(W_NDimArray.descr_iadd),
    __isub__ = interp2app(W_NDimArray.descr_isub),
    __imul__ = interp2app(W_NDimArray.descr_imul),
    __idiv__ = interp2app(W_NDimArray.descr_idiv),
    __itruediv__ = interp2app(W_NDimArray.descr_itruediv),
    __ifloordiv__ = interp2app(W_NDimArray.descr_ifloordiv),
    __imod__ = interp2app(W_NDimArray.descr_imod),
    __ipow__ = interp2app(W_NDimArray.descr_ipow),
    __ilshift__ = interp2app(W_NDimArray.descr_ilshift),
    __irshift__ = interp2app(W_NDimArray.descr_irshift),
    __iand__ = interp2app(W_NDimArray.descr_iand),
    __ior__ = interp2app(W_NDimArray.descr_ior),
    __ixor__ = interp2app(W_NDimArray.descr_ixor),

    __eq__ = interp2app(W_NDimArray.descr_eq),
    __ne__ = interp2app(W_NDimArray.descr_ne),
    __lt__ = interp2app(W_NDimArray.descr_lt),
    __le__ = interp2app(W_NDimArray.descr_le),
    __gt__ = interp2app(W_NDimArray.descr_gt),
    __ge__ = interp2app(W_NDimArray.descr_ge),

    dtype = GetSetProperty(W_NDimArray.descr_get_dtype,
                           W_NDimArray.descr_set_dtype,
                           W_NDimArray.descr_del_dtype),
    shape = GetSetProperty(W_NDimArray.descr_get_shape,
                           W_NDimArray.descr_set_shape),
    strides = GetSetProperty(W_NDimArray.descr_get_strides),
    ndim = GetSetProperty(W_NDimArray.descr_get_ndim),
    size = GetSetProperty(W_NDimArray.descr_get_size),
    itemsize = GetSetProperty(W_NDimArray.descr_get_itemsize),
    nbytes = GetSetProperty(W_NDimArray.descr_get_nbytes),
    flags = GetSetProperty(W_NDimArray.descr_get_flags),

    fill = interp2app(W_NDimArray.descr_fill),
    tobytes = interp2app(W_NDimArray.descr_tostring),
    tostring = interp2app(W_NDimArray.descr_tostring),

    mean = interp2app(W_NDimArray.descr_mean),
    sum = interp2app(W_NDimArray.descr_sum),
    prod = interp2app(W_NDimArray.descr_prod),
    max = interp2app(W_NDimArray.descr_max),
    min = interp2app(W_NDimArray.descr_min),
    put = interp2app(W_NDimArray.descr_put),
    argmax = interp2app(W_NDimArray.descr_argmax),
    argmin = interp2app(W_NDimArray.descr_argmin),
    all = interp2app(W_NDimArray.descr_all),
    any = interp2app(W_NDimArray.descr_any),
    dot = interp2app(W_NDimArray.descr_dot),
    var = interp2app(W_NDimArray.descr_var),
    std = interp2app(W_NDimArray.descr_std),
    searchsorted = interp2app(W_NDimArray.descr_searchsorted),

    cumsum = interp2app(W_NDimArray.descr_cumsum),
    cumprod = interp2app(W_NDimArray.descr_cumprod),

    copy = interp2app(W_NDimArray.descr_copy),
    reshape = interp2app(W_NDimArray.descr_reshape),
    resize = interp2app(W_NDimArray.descr_resize),
    squeeze = interp2app(W_NDimArray.descr_squeeze),
    T = GetSetProperty(W_NDimArray.descr_get_transpose),
    transpose = interp2app(W_NDimArray.descr_transpose),
    tolist = interp2app(W_NDimArray.descr_tolist),
    flatten = interp2app(W_NDimArray.descr_flatten),
    ravel = interp2app(W_NDimArray.descr_ravel),
    take = interp2app(W_NDimArray.descr_take),
    ptp = interp2app(W_NDimArray.descr_ptp),
    compress = interp2app(W_NDimArray.descr_compress),
    repeat = interp2app(W_NDimArray.descr_repeat),
    swapaxes = interp2app(W_NDimArray.descr_swapaxes),
    nonzero = interp2app(W_NDimArray.descr_nonzero),
    flat = GetSetProperty(W_NDimArray.descr_get_flatiter,
                          W_NDimArray.descr_set_flatiter),
    item = interp2app(W_NDimArray.descr_item),
    itemset = interp2app(W_NDimArray.descr_itemset),
    real = GetSetProperty(W_NDimArray.descr_get_real,
                          W_NDimArray.descr_set_real),
    imag = GetSetProperty(W_NDimArray.descr_get_imag,
                          W_NDimArray.descr_set_imag),
    conj = interp2app(W_NDimArray.descr_conj),
    conjugate = interp2app(W_NDimArray.descr_conj),

    argsort  = interp2app(W_NDimArray.descr_argsort),
    sort  = interp2app(W_NDimArray.descr_sort),
    partition  = interp2app(W_NDimArray.descr_partition),
    astype   = interp2app(W_NDimArray.descr_astype),
    base     = GetSetProperty(W_NDimArray.descr_get_base),
    byteswap = interp2app(W_NDimArray.descr_byteswap),
    choose   = interp2app(W_NDimArray.descr_choose),
    clip     = interp2app(W_NDimArray.descr_clip),
    round    = interp2app(W_NDimArray.descr_round),
    data     = GetSetProperty(W_NDimArray.descr_get_data),
    diagonal = interp2app(W_NDimArray.descr_diagonal),
    trace = interp2app(W_NDimArray.descr_trace),
    view = interp2app(W_NDimArray.descr_view),
    newbyteorder = interp2app(W_NDimArray.descr_newbyteorder),

    ctypes = GetSetProperty(W_NDimArray.descr_get_ctypes), # XXX unimplemented
    __array_interface__ = GetSetProperty(W_NDimArray.descr_array_iface),
    __weakref__ = make_weakref_descr(W_NDimArray),
    _from_shape_and_storage = interp2app(descr__from_shape_and_storage,
                                         as_classmethod=True),
    __pypy_data__ = GetSetProperty(W_NDimArray.fget___pypy_data__,
                                   W_NDimArray.fset___pypy_data__,
                                   W_NDimArray.fdel___pypy_data__),
    __reduce__ = interp2app(W_NDimArray.descr_reduce),
    __setstate__ = interp2app(W_NDimArray.descr_setstate),
    __array_finalize__ = interp2app(W_NDimArray.descr___array_finalize__),
    __array_prepare__ = interp2app(W_NDimArray.descr___array_prepare__),
    __array_wrap__ = interp2app(W_NDimArray.descr___array_wrap__),
    __array_priority__ = GetSetProperty(W_NDimArray.descr___array_priority__),
    __array__         = interp2app(W_NDimArray.descr___array__),
)


def _reconstruct(space, w_subtype, w_shape, w_dtype):
    return descr_new_array(space, w_subtype, w_shape, w_dtype)