1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
|
from pypy.interpreter.error import OperationError, oefmt
from pypy.interpreter.gateway import interp2app, unwrap_spec, applevel, \
WrappedDefault
from pypy.interpreter.typedef import TypeDef, GetSetProperty, \
make_weakref_descr
from pypy.interpreter.buffer import SimpleView
from rpython.rlib import jit
from rpython.rlib.rstring import StringBuilder
from rpython.rlib.rawstorage import RAW_STORAGE_PTR
from rpython.rlib.rarithmetic import ovfcheck
from rpython.rtyper.lltypesystem import rffi
from rpython.tool.sourcetools import func_with_new_name
from pypy.module.micronumpy import descriptor, ufuncs, boxes, arrayops, loop, \
support, constants as NPY
from pypy.module.micronumpy.appbridge import get_appbridge_cache
from pypy.module.micronumpy.arrayops import repeat, choose, put
from pypy.module.micronumpy.base import W_NDimArray, convert_to_array, \
ArrayArgumentException, wrap_impl
from pypy.module.micronumpy.concrete import BaseConcreteArray, V_OBJECTSTORE
from pypy.module.micronumpy.converters import (
multi_axis_converter, order_converter, shape_converter,
searchside_converter, out_converter)
from pypy.module.micronumpy.flagsobj import W_FlagsObject
from pypy.module.micronumpy.strides import (
get_shape_from_iterable, shape_agreement, shape_agreement_multiple,
is_c_contiguous, is_f_contiguous, calc_strides, new_view, BooleanChunk,
SliceChunk)
from pypy.module.micronumpy.casting import can_cast_array
from pypy.module.micronumpy.descriptor import get_dtype_cache
def _match_dot_shapes(space, left, right):
left_shape = left.get_shape()
right_shape = right.get_shape()
my_critical_dim_size = left_shape[-1]
right_critical_dim_size = right_shape[0]
right_critical_dim = 0
out_shape = []
if len(right_shape) > 1:
right_critical_dim = len(right_shape) - 2
right_critical_dim_size = right_shape[right_critical_dim]
assert right_critical_dim >= 0
out_shape = (out_shape + left_shape[:-1] +
right_shape[0:right_critical_dim] +
right_shape[right_critical_dim + 1:])
elif len(right_shape) > 0:
#dot does not reduce for scalars
out_shape = out_shape + left_shape[:-1]
if my_critical_dim_size != right_critical_dim_size:
raise oefmt(space.w_ValueError, "objects are not aligned")
return out_shape, right_critical_dim
class __extend__(W_NDimArray):
@jit.unroll_safe
def descr_get_shape(self, space):
shape = self.get_shape()
return space.newtuple([space.newint(i) for i in shape])
def descr_set_shape(self, space, w_new_shape):
shape = get_shape_from_iterable(space, self.get_size(), w_new_shape)
self.implementation = self.implementation.set_shape(space, self, shape)
w_cls = space.type(self)
if not space.is_w(w_cls, space.gettypefor(W_NDimArray)):
# numpy madness - allow __array_finalize__(self, obj)
# to run, in MaskedArray this modifies obj._mask
wrap_impl(space, w_cls, self, self.implementation)
def descr_get_strides(self, space):
strides = self.implementation.get_strides()
return space.newtuple([space.newint(i) for i in strides])
def descr_get_dtype(self, space):
return self.implementation.dtype
def descr_set_dtype(self, space, w_dtype):
dtype = space.interp_w(descriptor.W_Dtype, space.call_function(
space.gettypefor(descriptor.W_Dtype), w_dtype))
if (dtype.elsize != self.get_dtype().elsize or
(not dtype.is_record() and self.get_dtype().is_flexible())):
raise oefmt(space.w_ValueError,
"new type not compatible with array.")
self.implementation.set_dtype(space, dtype)
def descr_del_dtype(self, space):
raise oefmt(space.w_AttributeError, "Cannot delete array dtype")
def descr_get_ndim(self, space):
return space.newint(self.ndims())
def descr_get_itemsize(self, space):
return space.newint(self.get_dtype().elsize)
def descr_get_nbytes(self, space):
return space.newint(self.get_size() * self.get_dtype().elsize)
def descr_fill(self, space, w_value):
self.fill(space, self.get_dtype().coerce(space, w_value))
def descr_tostring(self, space, w_order=None):
try:
order = order_converter(space, w_order, NPY.CORDER)
except:
raise oefmt(space.w_TypeError, "order not understood")
order = support.get_order_as_CF(self.get_order(), order)
arr = self
if order != arr.get_order():
arr = W_NDimArray(self.implementation.transpose(self, None))
return space.newtext(loop.tostring(space, arr))
def getitem_filter(self, space, arr, axis=0):
shape = self.get_shape()
if arr.ndims() > 1 and arr.get_shape() != shape:
raise oefmt(space.w_IndexError,
"boolean index array should have 1 dimension")
if arr.get_size() > self.get_size():
raise oefmt(space.w_IndexError, "index out of range for array")
size = loop.count_all_true(arr)
if arr.ndims() == 1:
if self.ndims() > 1 and arr.get_shape()[0] != shape[axis]:
msg = ("boolean index did not match indexed array along"
" dimension %d; dimension is %d but corresponding"
" boolean dimension is %d" % (axis, shape[axis],
arr.get_shape()[0]))
#warning = space.gettypefor(support.W_VisibleDeprecationWarning)
space.warn(space.newtext(msg), space.w_VisibleDeprecationWarning)
res_shape = shape[:axis] + [size] + shape[axis+1:]
else:
res_shape = [size]
w_res = W_NDimArray.from_shape(space, res_shape, self.get_dtype(),
w_instance=self)
return loop.getitem_filter(w_res, self, arr)
def setitem_filter(self, space, idx, val):
if idx.ndims() > 1 and idx.get_shape() != self.get_shape():
raise oefmt(space.w_IndexError,
"boolean index array should have 1 dimension")
if idx.get_size() > self.get_size():
raise oefmt(space.w_IndexError, "index out of range for array")
size = loop.count_all_true(idx)
if size > val.get_size() and val.get_size() != 1:
raise oefmt(space.w_ValueError,
"NumPy boolean array indexing assignment "
"cannot assign %d input values to "
"the %d output values where the mask is true",
val.get_size(), size)
loop.setitem_filter(space, self, idx, val)
def _prepare_array_index(self, space, w_index):
if isinstance(w_index, W_NDimArray):
return [], w_index.get_shape(), w_index.get_shape(), [w_index]
if isinstance(w_index, boxes.W_GenericBox):
return [], [1], [1], [w_index]
w_lst = space.listview(w_index)
for w_item in w_lst:
if not (space.isinstance_w(w_item, space.w_int) or space.isinstance_w(w_item, space.w_float)):
break
else:
arr = convert_to_array(space, w_index)
return [], arr.get_shape(), arr.get_shape(), [arr]
shape = None
indexes_w = [None] * len(w_lst)
res_shape = []
arr_index_in_shape = False
prefix = []
for i, w_item in enumerate(w_lst):
if isinstance(w_item, W_NDimArray) and w_item.get_dtype().is_bool():
if w_item.ndims() > 0:
indexes_w[i] = w_item
else:
raise oefmt(space.w_IndexError,
"in the future, 0-d boolean arrays will be "
"interpreted as a valid boolean index")
elif (isinstance(w_item, W_NDimArray) or
space.isinstance_w(w_item, space.w_list)):
w_item = convert_to_array(space, w_item)
if shape is None:
shape = w_item.get_shape()
else:
shape = shape_agreement(space, shape, w_item)
indexes_w[i] = w_item
if not arr_index_in_shape:
res_shape.append(-1)
arr_index_in_shape = True
else:
if space.isinstance_w(w_item, space.w_slice):
lgt = space.decode_index4_unsafe(w_item, self.get_shape()[i])[3]
if not arr_index_in_shape:
prefix.append(w_item)
res_shape.append(lgt)
indexes_w[i] = w_item
real_shape = []
for i in res_shape:
if i == -1:
real_shape += shape
else:
real_shape.append(i)
return prefix, real_shape[:], shape, indexes_w
def getitem_array_int(self, space, w_index):
prefix, res_shape, iter_shape, indexes = \
self._prepare_array_index(space, w_index)
if iter_shape is None:
# w_index is a list of slices, return a view
chunks = self.implementation._prepare_slice_args(space, w_index)
copy = False
if isinstance(chunks[0], BooleanChunk):
copy = True
w_ret = new_view(space, self, chunks)
if copy:
w_ret = w_ret.descr_copy(space, space.newint(w_ret.get_order()))
return w_ret
shape = res_shape + self.get_shape()[len(indexes):]
w_res = W_NDimArray.from_shape(space, shape, self.get_dtype(),
self.get_order(), w_instance=self)
if not w_res.get_size():
return w_res
return loop.getitem_array_int(space, self, w_res, iter_shape, indexes,
prefix)
def setitem_array_int(self, space, w_index, w_value):
val_arr = convert_to_array(space, w_value)
prefix, _, iter_shape, indexes = \
self._prepare_array_index(space, w_index)
if iter_shape is None:
# w_index is a list of slices
chunks = self.implementation._prepare_slice_args(space, w_index)
dim = -1
view = self
for i, c in enumerate(chunks):
if isinstance(c, BooleanChunk):
dim = i
idx = c.w_idx
chunks.pop(i)
chunks.insert(0, SliceChunk(space.newslice(space.newint(0),
space.w_None, space.w_None)))
break
if dim > 0:
view = self.implementation.swapaxes(space, self, 0, dim)
if dim >= 0:
view = new_view(space, self, chunks)
view.setitem_filter(space, idx, val_arr)
else:
view = new_view(space, self, chunks)
view.implementation.setslice(space, val_arr)
return
if support.product(iter_shape) == 0:
return
loop.setitem_array_int(space, self, iter_shape, indexes, val_arr,
prefix)
def descr_getitem(self, space, w_idx):
if self.get_dtype().is_record():
if space.isinstance_w(w_idx, space.w_text):
idx = space.text_w(w_idx)
return self.getfield(space, idx)
if space.is_w(w_idx, space.w_Ellipsis):
return self.descr_view(space, space.type(self))
elif isinstance(w_idx, W_NDimArray) and w_idx.get_dtype().is_bool():
if w_idx.ndims() > 0:
w_ret = self.getitem_filter(space, w_idx)
else:
raise oefmt(space.w_IndexError,
"in the future, 0-d boolean arrays will be "
"interpreted as a valid boolean index")
elif isinstance(w_idx, boxes.W_GenericBox):
w_ret = self.getitem_array_int(space, w_idx)
if isinstance(w_idx, boxes.W_IntegerBox):
# if w_idx is integer then getitem_array_int must contain a single value and we must return it.
# Get 0-th element of the w_ret.
w_ret = w_ret.implementation.descr_getitem(space, self, space.newint(0))
else:
try:
w_ret = self.implementation.descr_getitem(space, self, w_idx)
except ArrayArgumentException:
w_ret = self.getitem_array_int(space, w_idx)
if isinstance(w_ret, boxes.W_ObjectBox):
#return the W_Root object, not a scalar
w_ret = w_ret.w_obj
return w_ret
def getitem(self, space, index_list):
return self.implementation.getitem_index(space, index_list)
def setitem(self, space, index_list, w_value):
self.implementation.setitem_index(space, index_list, w_value)
def descr_setitem(self, space, w_idx, w_value):
if self.get_dtype().is_record():
if space.isinstance_w(w_idx, space.w_text):
idx = space.text_w(w_idx)
view = self.getfield(space, idx)
w_value = convert_to_array(space, w_value)
view.implementation.setslice(space, w_value)
return
if space.is_w(w_idx, space.w_Ellipsis):
self.implementation.setslice(space, convert_to_array(space, w_value))
return
# TODO: multiarray/mapping.c calls a subclass's __getitem__ here, which
# is a big performance hit but necessary for the matrix class. The original
# C code is like:
#/*
#* WARNING: There is a huge special case here. If this is not a
#* base class array, we have to get the view through its
#* very own index machinery.
#* Many subclasses should probably call __setitem__
#* with a base class ndarray view to avoid this.
#*/
#else if (!(index_type & (HAS_FANCY | HAS_SCALAR_ARRAY))
# && !PyArray_CheckExact(self)) {
#view = (PyArrayObject *)PyObject_GetItem((PyObject *)self, ind);
elif isinstance(w_idx, W_NDimArray) and w_idx.get_dtype().is_bool() \
and w_idx.ndims() > 0:
self.setitem_filter(space, w_idx, convert_to_array(space, w_value))
return
try:
self.implementation.descr_setitem(space, self, w_idx, w_value)
except ArrayArgumentException:
self.setitem_array_int(space, w_idx, w_value)
def getfield(self, space, field):
dtype = self.get_dtype()
if field not in dtype.fields:
raise oefmt(space.w_ValueError, "no field of name %s", field)
arr = self.implementation
ofs, subdtype = arr.dtype.fields[field][:2]
if subdtype.is_object() and arr.gcstruct is V_OBJECTSTORE:
raise oefmt(space.w_NotImplementedError,
"cannot read object from array with no gc hook")
# ofs only changes start
# create a view of the original array by extending
# the shape, strides, backstrides of the array
strides, backstrides = calc_strides(subdtype.shape,
subdtype.subdtype, arr.order)
final_shape = arr.shape + subdtype.shape
final_strides = arr.get_strides() + strides
final_backstrides = arr.get_backstrides() + backstrides
final_dtype = subdtype
if subdtype.subdtype:
final_dtype = subdtype.subdtype
return W_NDimArray.new_slice(space, arr.start + ofs, final_strides,
final_backstrides,
final_shape, arr, self, final_dtype)
def descr_delitem(self, space, w_idx):
raise oefmt(space.w_ValueError, "cannot delete array elements")
def descr_len(self, space):
shape = self.get_shape()
if len(shape):
return space.newint(shape[0])
raise oefmt(space.w_TypeError, "len() of unsized object")
def descr_repr(self, space):
cache = get_appbridge_cache(space)
if cache.w_array_repr is None:
return space.newtext(self.dump_data())
return space.call_function(cache.w_array_repr, self)
def descr_str(self, space):
cache = get_appbridge_cache(space)
if cache.w_array_str is None:
return space.newtext(self.dump_data(prefix='', separator='', suffix=''))
return space.call_function(cache.w_array_str, self)
def dump_data(self, prefix='array(', separator=',', suffix=')'):
i, state = self.create_iter()
first = True
dtype = self.get_dtype()
s = StringBuilder()
s.append(prefix)
if not self.is_scalar():
s.append('[')
while not i.done(state):
if first:
first = False
else:
s.append(separator)
s.append(' ')
if self.is_scalar() and dtype.is_str():
s.append(i.getitem(state).raw_str())
else:
s.append(dtype.itemtype.str_format(i.getitem(state), add_quotes=True))
state = i.next(state)
if not self.is_scalar():
s.append(']')
s.append(suffix)
return s.build()
def create_iter(self, shape=None, backward_broadcast=False):
assert isinstance(self.implementation, BaseConcreteArray)
return self.implementation.create_iter(
shape=shape, backward_broadcast=backward_broadcast)
def is_scalar(self):
return self.ndims() == 0
def set_scalar_value(self, w_val):
return self.implementation.setitem(self.implementation.start, w_val)
def fill(self, space, box):
self.implementation.fill(space, box)
def descr_get_size(self, space):
return space.newint(self.get_size())
def get_size(self):
return self.implementation.get_size()
def get_scalar_value(self):
assert self.get_size() == 1
return self.implementation.getitem(self.implementation.start)
def descr_copy(self, space, w_order=None):
if w_order is None:
order = NPY.CORDER
elif space.isinstance_w(w_order, space.w_int):
order = space.int_w(w_order)
else:
order = order_converter(space, w_order, NPY.CORDER)
copy = self.implementation.copy(space, order)
w_subtype = space.type(self)
return wrap_impl(space, w_subtype, self, copy)
def descr_get_real(self, space):
ret = self.implementation.get_real(space, self)
return wrap_impl(space, space.type(self), self, ret)
def descr_get_imag(self, space):
ret = self.implementation.get_imag(space, self)
return wrap_impl(space, space.type(self), self, ret)
def descr_set_real(self, space, w_value):
# copy (broadcast) values into self
self.implementation.set_real(space, self, w_value)
def descr_set_imag(self, space, w_value):
# if possible, copy (broadcast) values into self
if not self.get_dtype().is_complex():
raise oefmt(space.w_TypeError,
'array does not have imaginary part to set')
self.implementation.set_imag(space, self, w_value)
def reshape(self, space, w_shape, order=NPY.ANYORDER):
new_shape = get_shape_from_iterable(space, self.get_size(), w_shape)
new_impl = self.implementation.reshape(self, new_shape, order)
if new_impl is not None:
return wrap_impl(space, space.type(self), self, new_impl)
# Create copy with contiguous data
arr = self.descr_copy(space, space.newint(order))
if arr.get_size() > 0:
new_implementation = arr.implementation.reshape(self, new_shape, order)
if new_implementation is None:
raise oefmt(space.w_ValueError,
'could not reshape array of size %d to shape %s',
arr.get_size(), str(new_shape))
arr.implementation = new_implementation
else:
arr.implementation.shape = new_shape
return arr
def descr_reshape(self, space, __args__):
"""reshape(...)
a.reshape(shape)
Returns an array containing the same data with a new shape.
Refer to `numpy.reshape` for full documentation.
See Also
--------
numpy.reshape : equivalent function
"""
args_w, kw_w = __args__.unpack()
order = NPY.CORDER
if kw_w:
if "order" in kw_w:
order = order_converter(space, kw_w["order"], order)
del kw_w["order"]
if kw_w:
raise oefmt(space.w_TypeError,
"reshape() got unexpected keyword argument(s)")
if order == NPY.KEEPORDER:
raise oefmt(space.w_ValueError,
"order 'K' is not permitted for reshaping")
if len(args_w) == 1:
if space.is_none(args_w[0]):
return self.descr_view(space)
w_shape = args_w[0]
else:
w_shape = space.newtuple(args_w)
return self.reshape(space, w_shape, order)
def descr_get_transpose(self, space, axes=None):
return W_NDimArray(self.implementation.transpose(self, axes))
def descr_transpose(self, space, args_w):
if len(args_w) == 0 or len(args_w) == 1 and space.is_none(args_w[0]):
return self.descr_get_transpose(space)
else:
if len(args_w) > 1:
axes = args_w
else: # Iterable in the only argument (len(arg_w) == 1 and arg_w[0] is not None)
axes = space.fixedview(args_w[0])
axes = self._checked_axes(axes, space)
return self.descr_get_transpose(space, axes)
def _checked_axes(self, axes_raw, space):
if len(axes_raw) != self.ndims():
raise oefmt(space.w_ValueError, "axes don't match array")
axes = []
axes_seen = [False] * self.ndims()
for elem in axes_raw:
try:
axis = support.index_w(space, elem)
except OperationError:
raise oefmt(space.w_TypeError, "an integer is required")
if axis < 0 or axis >= self.ndims():
raise oefmt(space.w_ValueError, "invalid axis for this array")
if axes_seen[axis] is True:
raise oefmt(space.w_ValueError, "repeated axis in transpose")
axes.append(axis)
axes_seen[axis] = True
return axes
@unwrap_spec(axis1=int, axis2=int)
def descr_swapaxes(self, space, axis1, axis2):
"""a.swapaxes(axis1, axis2)
Return a view of the array with `axis1` and `axis2` interchanged.
Refer to `numpy.swapaxes` for full documentation.
See Also
--------
numpy.swapaxes : equivalent function
"""
if axis1 == axis2:
return self.descr_view(space)
n = self.ndims()
if axis1 < 0:
axis1 += n
if axis2 < 0:
axis2 += n
if axis1 < 0 or axis1 >= n:
raise oefmt(space.w_ValueError, "bad axis1 argument to swapaxes")
if axis2 < 0 or axis2 >= n:
raise oefmt(space.w_ValueError, "bad axis2 argument to swapaxes")
if n <= 1:
return self
return self.implementation.swapaxes(space, self, axis1, axis2)
def descr_nonzero(self, space):
index_type = get_dtype_cache(space).w_int64dtype
return self.implementation.nonzero(space, index_type)
def descr_tolist(self, space):
if self.ndims() == 0:
return self.get_scalar_value().item(space)
l_w = []
for i in range(self.get_shape()[0]):
item_w = self.descr_getitem(space, space.newint(i))
if (isinstance(item_w, W_NDimArray) or
isinstance(item_w, boxes.W_GenericBox)):
l_w.append(space.call_method(item_w, "tolist"))
else:
l_w.append(item_w)
return space.newlist(l_w)
def descr_ravel(self, space, w_order=None):
order = order_converter(space, w_order, self.get_order())
return self.reshape(space, space.newint(-1), order)
@unwrap_spec(w_axis=WrappedDefault(None),
w_out=WrappedDefault(None),
w_mode=WrappedDefault('raise'))
def descr_take(self, space, w_obj, w_axis=None, w_out=None, w_mode=None):
return app_take(space, self, w_obj, w_axis, w_out, w_mode)
def descr_compress(self, space, w_obj, w_axis=None):
if not space.is_none(w_axis):
raise oefmt(space.w_NotImplementedError,
"axis unsupported for compress")
arr = self
else:
arr = self.reshape(space, space.newint(-1), self.get_order())
index = convert_to_array(space, w_obj)
return arr.getitem_filter(space, index)
def descr_flatten(self, space, w_order=None):
order = order_converter(space, w_order, self.get_order())
if self.is_scalar():
# scalars have no storage
return self.reshape(space, space.newint(1), order)
w_res = self.descr_ravel(space, w_order)
if w_res.implementation.storage == self.implementation.storage:
return w_res.descr_copy(space)
return w_res
@unwrap_spec(repeats=int)
def descr_repeat(self, space, repeats, w_axis=None):
return repeat(space, self, repeats, w_axis)
def descr_set_flatiter(self, space, w_obj):
iter, state = self.create_iter()
dtype = self.get_dtype()
w_arr = convert_to_array(space, w_obj)
if dtype.is_record():
return self.implementation.setslice(space, w_arr)
loop.flatiter_setitem(space, dtype, w_arr, iter, state, 1, iter.size)
def descr_get_flatiter(self, space):
from .flatiter import W_FlatIterator
return W_FlatIterator(self)
def descr_item(self, space, args_w):
if len(args_w) == 1 and space.isinstance_w(args_w[0], space.w_tuple):
args_w = space.fixedview(args_w[0])
shape = self.get_shape()
coords = [0] * len(shape)
if len(args_w) == 0:
if self.get_size() == 1:
w_obj = self.get_scalar_value()
assert isinstance(w_obj, boxes.W_GenericBox)
return w_obj.item(space)
raise oefmt(space.w_ValueError,
"can only convert an array of size 1 to a Python scalar")
elif len(args_w) == 1 and len(shape) != 1:
value = support.index_w(space, args_w[0])
value = support.check_and_adjust_index(space, value, self.get_size(), -1)
for idim in range(len(shape) - 1, -1, -1):
coords[idim] = value % shape[idim]
value //= shape[idim]
elif len(args_w) == len(shape):
for idim in range(len(shape)):
coords[idim] = support.index_w(space, args_w[idim])
else:
raise oefmt(space.w_ValueError, "incorrect number of indices for array")
item = self.getitem(space, coords)
assert isinstance(item, boxes.W_GenericBox)
return item.item(space)
def descr_itemset(self, space, args_w):
if len(args_w) == 0:
raise oefmt(space.w_ValueError,
"itemset must have at least one argument")
if len(args_w) != self.ndims() + 1:
raise oefmt(space.w_ValueError,
"incorrect number of indices for array")
self.descr_setitem(space, space.newtuple(args_w[:-1]), args_w[-1])
def descr___array__(self, space, w_dtype=None):
if not space.is_none(w_dtype):
raise oefmt(space.w_NotImplementedError,
"__array__(dtype) not implemented")
if type(self) is W_NDimArray:
return self
# sz cannot overflow since self is valid
sz = support.product(self.get_shape()) * self.get_dtype().elsize
return W_NDimArray.from_shape_and_storage(
space, self.get_shape(), self.implementation.storage,
self.get_dtype(), storage_bytes=sz, w_base=self)
def descr_array_iface(self, space):
'''
Note: arr.__array__.data[0] is a pointer so arr must be kept alive
while it is in use
'''
with self.implementation as storage:
addr = support.get_storage_as_int(storage, self.get_start())
# will explode if it can't
w_d = space.newdict()
space.setitem_str(w_d, 'data',
space.newtuple([space.newint(addr), space.w_False]))
space.setitem_str(w_d, 'shape', self.descr_get_shape(space))
space.setitem_str(w_d, 'typestr', self.get_dtype().descr_get_str(space))
if self.implementation.order == NPY.CORDER:
# Array is contiguous, no strides in the interface.
strides = space.w_None
else:
strides = self.descr_get_strides(space)
space.setitem_str(w_d, 'strides', strides)
space.setitem_str(w_d, 'version', space.newint(3))
return w_d
w_pypy_data = None
def fget___pypy_data__(self, space):
return self.w_pypy_data
def fset___pypy_data__(self, space, w_data):
self.w_pypy_data = w_data
def fdel___pypy_data__(self, space):
self.w_pypy_data = None
__array_priority__ = 0.0
def descr___array_priority__(self, space):
return space.newfloat(self.__array_priority__)
def descr_argsort(self, space, w_axis=None, w_kind=None, w_order=None):
# happily ignore the kind
# create a contiguous copy of the array
# we must do that, because we need a working set. otherwise
# we would modify the array in-place. Use this to our advantage
# by converting nonnative byte order.
if self.is_scalar():
return space.newint(0)
dtype = self.get_dtype().descr_newbyteorder(space, NPY.NATIVE)
contig = self.implementation.astype(space, dtype, self.get_order())
return contig.argsort(space, w_axis)
@unwrap_spec(order='text', casting='text', subok=bool, copy=bool)
def descr_astype(self, space, w_dtype, order='K', casting='unsafe', subok=True, copy=True):
cur_dtype = self.get_dtype()
new_dtype = space.interp_w(descriptor.W_Dtype, space.call_function(
space.gettypefor(descriptor.W_Dtype), w_dtype))
if new_dtype.num == NPY.VOID:
raise oefmt(space.w_NotImplementedError,
"astype(%s) not implemented yet",
new_dtype.get_name())
if new_dtype.is_str_or_unicode() and new_dtype.elsize == 0:
elsize = 0
ch = new_dtype.char
itype = cur_dtype.itemtype
for i in range(self.get_size()):
elsize = max(elsize, space.len_w(itype.to_builtin_type(space, self.implementation.getitem(i))))
new_dtype = descriptor.variable_dtype(
space, ch + str(elsize))
if new_dtype.elsize == 0:
# XXX Should not happen
raise oefmt(space.w_ValueError, "new dtype has elsize of 0")
if not can_cast_array(space, self, new_dtype, casting):
raise oefmt(space.w_TypeError, "Cannot cast array from %R to %R"
"according to the rule %s", self.get_dtype(),
new_dtype, casting)
order = order_converter(space, space.newtext(order), self.get_order())
if (not copy and new_dtype == self.get_dtype()
and (order in (NPY.KEEPORDER, NPY.ANYORDER) or order == self.get_order())
and (subok or type(self) is W_NDimArray)):
return self
impl = self.implementation
new_impl = impl.astype(space, new_dtype, order)
if new_impl is None:
return self
if subok:
w_type = space.type(self)
else:
w_type = None
return wrap_impl(space, w_type, self, new_impl)
def descr_get_base(self, space):
impl = self.implementation
ret = impl.base()
if ret is None:
return space.w_None
return ret
@unwrap_spec(inplace=bool)
def descr_byteswap(self, space, inplace=False):
if inplace:
loop.byteswap(self.implementation, self.implementation)
return self
else:
w_res = W_NDimArray.from_shape(space, self.get_shape(),
self.get_dtype(), w_instance=self)
loop.byteswap(self.implementation, w_res.implementation)
return w_res
def descr_choose(self, space, w_choices, w_out=None, w_mode=None):
return choose(space, self, w_choices, w_out, w_mode)
def descr_clip(self, space, w_min=None, w_max=None, w_out=None):
if space.is_none(w_min):
w_min = None
else:
w_min = convert_to_array(space, w_min)
if space.is_none(w_max):
w_max = None
else:
w_max = convert_to_array(space, w_max)
if space.is_none(w_out):
w_out = None
elif not isinstance(w_out, W_NDimArray):
raise oefmt(space.w_TypeError,
"return arrays must be of ArrayType")
if not w_min and not w_max:
raise oefmt(space.w_ValueError, "One of max or min must be given.")
shape = shape_agreement_multiple(space, [self, w_min, w_max, w_out])
out = descriptor.dtype_agreement(space, [self, w_min, w_max], shape, w_out)
loop.clip(space, self, shape, w_min, w_max, out)
return out
def descr_get_ctypes(self, space):
w_result = space.appexec([self], """(arr):
from numpy.core import _internal
p_data = arr.__array_interface__['data'][0]
return _internal._ctypes(arr, p_data)
""")
return w_result
def buffer_w(self, space, flags):
# XXX format isn't always 'B' probably
return self.implementation.get_buffer(space, flags)
def descr_get_data(self, space):
return space.newmemoryview(
self.implementation.get_buffer(space, space.BUF_FULL))
@unwrap_spec(offset=int, axis1=int, axis2=int)
def descr_diagonal(self, space, offset=0, axis1=0, axis2=1):
if self.ndims() < 2:
raise oefmt(space.w_ValueError,
"need at least 2 dimensions for diagonal")
if (axis1 < 0 or axis2 < 0 or axis1 >= self.ndims() or
axis2 >= self.ndims()):
raise oefmt(space.w_ValueError,
"axis1(=%d) and axis2(=%d) must be within range "
"(ndim=%d)", axis1, axis2, self.ndims())
if axis1 == axis2:
raise oefmt(space.w_ValueError,
"axis1 and axis2 cannot be the same")
return arrayops.diagonal(space, self.implementation, offset, axis1, axis2)
@unwrap_spec(offset=int, axis1=int, axis2=int)
def descr_trace(self, space, offset=0, axis1=0, axis2=1,
w_dtype=None, w_out=None):
diag = self.descr_diagonal(space, offset, axis1, axis2)
return diag.descr_sum(space, w_axis=space.newint(-1), w_dtype=w_dtype, w_out=w_out)
def descr_dump(self, space, w_file):
raise oefmt(space.w_NotImplementedError, "dump not implemented yet")
def descr_dumps(self, space):
raise oefmt(space.w_NotImplementedError, "dumps not implemented yet")
w_flags = None
def descr_get_flags(self, space):
if self.w_flags is None:
self.w_flags = W_FlagsObject(self)
return self.w_flags
@unwrap_spec(offset=int)
def descr_getfield(self, space, w_dtype, offset):
raise oefmt(space.w_NotImplementedError,
"getfield not implemented yet")
@unwrap_spec(new_order='text')
def descr_newbyteorder(self, space, new_order=NPY.SWAP):
return self.descr_view(
space, self.get_dtype().descr_newbyteorder(space, new_order))
@unwrap_spec(w_axis=WrappedDefault(None),
w_out=WrappedDefault(None))
def descr_ptp(self, space, w_axis=None, w_out=None):
return app_ptp(space, self, w_axis, w_out)
def descr_put(self, space, w_indices, w_values, w_mode=None):
put(space, self, w_indices, w_values, w_mode)
@unwrap_spec(w_refcheck=WrappedDefault(True))
def descr_resize(self, space, w_new_shape, w_refcheck=None):
raise oefmt(space.w_NotImplementedError, "resize not implemented yet")
@unwrap_spec(decimals=int)
def descr_round(self, space, decimals=0, w_out=None):
if space.is_none(w_out):
if self.get_dtype().is_bool():
# numpy promotes bool.round() to float16. Go figure.
w_out = W_NDimArray.from_shape(space, self.get_shape(),
get_dtype_cache(space).w_float16dtype)
else:
w_out = None
elif not isinstance(w_out, W_NDimArray):
raise oefmt(space.w_TypeError,
"return arrays must be of ArrayType")
out = descriptor.dtype_agreement(space, [self], self.get_shape(), w_out)
if out.get_dtype().is_bool() and self.get_dtype().is_bool():
calc_dtype = get_dtype_cache(space).w_longdtype
else:
calc_dtype = out.get_dtype()
if decimals == 0:
out = out.descr_view(space, space.type(self))
loop.round(space, self, calc_dtype, self.get_shape(), decimals, out)
return out
@unwrap_spec(w_side=WrappedDefault('left'), w_sorter=WrappedDefault(None))
def descr_searchsorted(self, space, w_v, w_side=None, w_sorter=None):
if not space.is_none(w_sorter):
raise oefmt(space.w_NotImplementedError,
'sorter not supported in searchsort')
side = searchside_converter(space, w_side)
if self.ndims() != 1:
raise oefmt(space.w_ValueError, "a must be a 1-d array")
v = convert_to_array(space, w_v)
ret = W_NDimArray.from_shape(
space, v.get_shape(), get_dtype_cache(space).w_longdtype)
if ret.get_size() < 1:
return ret
if side == NPY.SEARCHLEFT:
binsearch = loop.binsearch_left
else:
binsearch = loop.binsearch_right
binsearch(space, self, v, ret)
if ret.is_scalar():
return ret.get_scalar_value()
return ret
def descr_setasflat(self, space, w_v):
raise oefmt(space.w_NotImplementedError,
"setasflat not implemented yet")
def descr_setfield(self, space, w_val, w_dtype, w_offset=0):
raise oefmt(space.w_NotImplementedError,
"setfield not implemented yet")
def descr_setflags(self, space, w_write=None, w_align=None, w_uic=None):
raise oefmt(space.w_NotImplementedError,
"setflags not implemented yet")
@unwrap_spec(kind='text')
def descr_sort(self, space, w_axis=None, kind='quicksort', w_order=None):
# happily ignore the kind
# modify the array in-place
if self.is_scalar():
return
return self.implementation.sort(space, w_axis, w_order)
def descr_partition(self, space, __args__):
return get_appbridge_cache(space).call_method(
space, 'numpy.core._partition_use', 'partition', __args__.prepend(self))
def descr_squeeze(self, space, w_axis=None):
cur_shape = self.get_shape()
if not space.is_none(w_axis):
axes = multi_axis_converter(space, w_axis, len(cur_shape))
new_shape = []
for i in range(len(cur_shape)):
if axes[i]:
if cur_shape[i] != 1:
raise oefmt(space.w_ValueError,
"cannot select an axis to squeeze out "
"which has size not equal to one")
else:
new_shape.append(cur_shape[i])
else:
new_shape = [s for s in cur_shape if s != 1]
if len(cur_shape) == len(new_shape):
return self
# XXX need to call __array_wrap__
return wrap_impl(space, space.type(self), self,
self.implementation.get_view(
space, self, self.get_dtype(), new_shape))
def descr_strides(self, space):
raise oefmt(space.w_NotImplementedError,
"strides not implemented yet")
def descr_tofile(self, space, w_fid, w_sep="", w_format="%s"):
raise oefmt(space.w_NotImplementedError,
"tofile not implemented yet")
def descr_view(self, space, w_dtype=None, w_type=None):
if not w_type and w_dtype:
try:
if space.issubtype_w(w_dtype, space.gettypefor(W_NDimArray)):
w_type = w_dtype
w_dtype = None
except OperationError as e:
if e.match(space, space.w_TypeError):
pass
else:
raise
if w_dtype:
dtype = space.interp_w(descriptor.W_Dtype, space.call_function(
space.gettypefor(descriptor.W_Dtype), w_dtype))
else:
dtype = self.get_dtype()
old_itemsize = self.get_dtype().elsize
new_itemsize = dtype.elsize
impl = self.implementation
if new_itemsize == 0:
raise oefmt(space.w_TypeError, "data-type must not be 0-sized")
if dtype.subdtype is None:
new_shape = self.get_shape()[:]
dims = len(new_shape)
else:
new_shape = self.get_shape() + dtype.shape
dtype = dtype.subdtype
dims = 0
if dims == 0:
# Cannot resize scalars
if old_itemsize != new_itemsize:
raise oefmt(space.w_ValueError,
"new type not compatible with array.")
strides = None
backstrides = None
base = self
else:
base = impl.base()
if base is None:
base = self
strides = impl.get_strides()[:]
backstrides = impl.get_backstrides()[:]
if old_itemsize != new_itemsize:
if not is_c_contiguous(impl) and not is_f_contiguous(impl):
raise oefmt(space.w_ValueError,
"new type not compatible with array.")
# Adapt the smallest dim to the new itemsize
if self.get_order() == NPY.FORTRANORDER:
minstride = strides[0]
mini = 0
else:
minstride = strides[-1]
mini = len(strides) - 1
for i in range(len(strides)):
if strides[i] < minstride:
minstride = strides[i]
mini = i
if new_shape[mini] * old_itemsize % new_itemsize != 0:
raise oefmt(space.w_ValueError,
"new type not compatible with array.")
new_shape[mini] = new_shape[mini] * old_itemsize / new_itemsize
strides[mini] = strides[mini] * new_itemsize / old_itemsize
backstrides[mini] = strides[mini] * new_shape[mini]
if dtype.is_object() != impl.dtype.is_object():
raise oefmt(space.w_ValueError, 'expect trouble in ndarray.view,'
' one of target dtype or dtype is object dtype')
w_type = w_type or space.type(self)
v = impl.get_view(space, base, dtype, new_shape, strides, backstrides)
w_ret = wrap_impl(space, w_type, self, v)
return w_ret
# --------------------- operations ----------------------------
# TODO: support all kwargs like numpy ufunc_object.c
sig = None
cast = 'safe'
extobj = None
def _unaryop_impl(ufunc_name):
def impl(self, space, w_out=None):
return getattr(ufuncs.get(space), ufunc_name).call(
space, [self, w_out], self.sig, self.cast, self.extobj)
return func_with_new_name(impl, "unaryop_%s_impl" % ufunc_name)
descr_pos = _unaryop_impl("positive")
descr_neg = _unaryop_impl("negative")
descr_abs = _unaryop_impl("absolute")
descr_invert = _unaryop_impl("invert")
descr_conj = _unaryop_impl('conjugate')
def descr___nonzero__(self, space):
if self.get_size() > 1:
raise oefmt(space.w_ValueError,
"The truth value of an array with more than one "
"element is ambiguous. Use a.any() or a.all()")
iter, state = self.create_iter()
return space.newbool(space.is_true(iter.getitem(state)))
def _binop_impl(ufunc_name):
def impl(self, space, w_other, w_out=None):
return getattr(ufuncs.get(space), ufunc_name).call(
space, [self, w_other, w_out], self.sig, self.cast, self.extobj)
return func_with_new_name(impl, "binop_%s_impl" % ufunc_name)
descr_add = _binop_impl("add")
descr_sub = _binop_impl("subtract")
descr_mul = _binop_impl("multiply")
descr_div = _binop_impl("divide")
descr_truediv = _binop_impl("true_divide")
descr_floordiv = _binop_impl("floor_divide")
descr_mod = _binop_impl("mod")
descr_pow = _binop_impl("power")
descr_lshift = _binop_impl("left_shift")
descr_rshift = _binop_impl("right_shift")
descr_and = _binop_impl("bitwise_and")
descr_or = _binop_impl("bitwise_or")
descr_xor = _binop_impl("bitwise_xor")
def descr_divmod(self, space, w_other):
w_quotient = self.descr_div(space, w_other)
w_remainder = self.descr_mod(space, w_other)
return space.newtuple([w_quotient, w_remainder])
def _binop_comp_impl(ufunc):
def impl(self, space, w_other, w_out=None):
try:
return ufunc(self, space, w_other, w_out)
except OperationError as e:
if e.match(space, space.w_ValueError):
# and 'operands could not be broadcast together' in str(e.get_w_value(space)):
return space.w_False
raise e
return func_with_new_name(impl, ufunc.func_name)
descr_eq = _binop_comp_impl(_binop_impl("equal"))
descr_ne = _binop_comp_impl(_binop_impl("not_equal"))
descr_lt = _binop_comp_impl(_binop_impl("less"))
descr_le = _binop_comp_impl(_binop_impl("less_equal"))
descr_gt = _binop_comp_impl(_binop_impl("greater"))
descr_ge = _binop_comp_impl(_binop_impl("greater_equal"))
def _binop_inplace_impl(ufunc_name):
def impl(self, space, w_other):
w_out = self
ufunc = getattr(ufuncs.get(space), ufunc_name)
return ufunc.call(space, [self, w_other, w_out], self.sig, self.cast, self.extobj)
return func_with_new_name(impl, "binop_inplace_%s_impl" % ufunc_name)
descr_iadd = _binop_inplace_impl("add")
descr_isub = _binop_inplace_impl("subtract")
descr_imul = _binop_inplace_impl("multiply")
descr_idiv = _binop_inplace_impl("divide")
descr_itruediv = _binop_inplace_impl("true_divide")
descr_ifloordiv = _binop_inplace_impl("floor_divide")
descr_imod = _binop_inplace_impl("mod")
descr_ipow = _binop_inplace_impl("power")
descr_ilshift = _binop_inplace_impl("left_shift")
descr_irshift = _binop_inplace_impl("right_shift")
descr_iand = _binop_inplace_impl("bitwise_and")
descr_ior = _binop_inplace_impl("bitwise_or")
descr_ixor = _binop_inplace_impl("bitwise_xor")
def _binop_right_impl(ufunc_name):
def impl(self, space, w_other, w_out=None):
w_other = convert_to_array(space, w_other)
return getattr(ufuncs.get(space), ufunc_name).call(
space, [w_other, self, w_out], self.sig, self.cast, self.extobj)
return func_with_new_name(impl, "binop_right_%s_impl" % ufunc_name)
descr_radd = _binop_right_impl("add")
descr_rsub = _binop_right_impl("subtract")
descr_rmul = _binop_right_impl("multiply")
descr_rdiv = _binop_right_impl("divide")
descr_rtruediv = _binop_right_impl("true_divide")
descr_rfloordiv = _binop_right_impl("floor_divide")
descr_rmod = _binop_right_impl("mod")
descr_rpow = _binop_right_impl("power")
descr_rlshift = _binop_right_impl("left_shift")
descr_rrshift = _binop_right_impl("right_shift")
descr_rand = _binop_right_impl("bitwise_and")
descr_ror = _binop_right_impl("bitwise_or")
descr_rxor = _binop_right_impl("bitwise_xor")
def descr_rdivmod(self, space, w_other):
w_quotient = self.descr_rdiv(space, w_other)
w_remainder = self.descr_rmod(space, w_other)
return space.newtuple([w_quotient, w_remainder])
def descr_dot(self, space, w_other, w_out=None):
from .casting import find_result_type
out = out_converter(space, w_out)
other = convert_to_array(space, w_other)
if other.is_scalar():
#Note: w_out is not modified, this is numpy compliant.
return self.descr_mul(space, other)
elif self.ndims() < 2 and other.ndims() < 2:
w_res = self.descr_mul(space, other)
assert isinstance(w_res, W_NDimArray)
return w_res.descr_sum(space, space.newint(-1), out)
dtype = find_result_type(space, [self, other], [])
if self.get_size() < 1 and other.get_size() < 1:
# numpy compatability
return W_NDimArray.new_scalar(space, dtype, space.newint(0))
# Do the dims match?
out_shape, other_critical_dim = _match_dot_shapes(space, self, other)
if out:
matches = True
if dtype != out.get_dtype():
matches = False
elif not out.implementation.order == NPY.CORDER:
matches = False
elif out.ndims() != len(out_shape):
matches = False
else:
for i in range(len(out_shape)):
if out.get_shape()[i] != out_shape[i]:
matches = False
break
if not matches:
raise oefmt(space.w_ValueError,
"output array is not acceptable (must have the "
"right type, nr dimensions, and be a C-Array)")
w_res = out
w_res.fill(space, self.get_dtype().coerce(space, None))
else:
w_res = W_NDimArray.from_shape(space, out_shape, dtype, w_instance=self)
# This is the place to add fpypy and blas
return loop.multidim_dot(space, self, other, w_res, dtype,
other_critical_dim)
def descr_mean(self, space, __args__):
return get_appbridge_cache(space).call_method(
space, 'numpy.core._methods', '_mean', __args__.prepend(self))
def descr_var(self, space, __args__):
return get_appbridge_cache(space).call_method(
space, 'numpy.core._methods', '_var', __args__.prepend(self))
def descr_std(self, space, __args__):
return get_appbridge_cache(space).call_method(
space, 'numpy.core._methods', '_std', __args__.prepend(self))
# ----------------------- reduce -------------------------------
def _reduce_ufunc_impl(ufunc_name, name, bool_result=False):
@unwrap_spec(keepdims=bool)
def impl(self, space, w_axis=None, w_dtype=None, w_out=None, keepdims=False):
out = out_converter(space, w_out)
if bool_result:
w_dtype = get_dtype_cache(space).w_booldtype
return getattr(ufuncs.get(space), ufunc_name).reduce(
space, self, w_axis, keepdims, out, w_dtype)
impl.__name__ = name
return impl
descr_sum = _reduce_ufunc_impl("add", "descr_sum")
descr_prod = _reduce_ufunc_impl("multiply", "descr_prod")
descr_max = _reduce_ufunc_impl("maximum", "descr_max")
descr_min = _reduce_ufunc_impl("minimum", "descr_min")
descr_all = _reduce_ufunc_impl('logical_and', "descr_all", bool_result=True)
descr_any = _reduce_ufunc_impl('logical_or', "descr_any", bool_result=True)
def _accumulate_method(ufunc_name, name):
def method(self, space, w_axis=None, w_dtype=None, w_out=None):
out = out_converter(space, w_out)
if space.is_none(w_axis):
w_axis = space.newint(0)
arr = self.reshape(space, space.newint(-1), self.get_order())
else:
arr = self
ufunc = getattr(ufuncs.get(space), ufunc_name)
return ufunc.reduce(space, arr, w_axis, False, out, w_dtype,
variant=ufuncs.ACCUMULATE)
method.__name__ = name
return method
descr_cumsum = _accumulate_method('add', 'descr_cumsum')
descr_cumprod = _accumulate_method('multiply', 'descr_cumprod')
def _reduce_argmax_argmin_impl(raw_name):
op_name = "arg%s" % raw_name
op_name_flat = "arg%s_flat" % raw_name
def impl(self, space, w_axis=None, w_out=None):
if self.get_size() == 0:
raise oefmt(space.w_ValueError,
"Can't call %s on zero-size arrays", op_name)
try:
getattr(self.get_dtype().itemtype, raw_name)
except AttributeError:
raise oefmt(space.w_NotImplementedError,
'%s not implemented for %s',
op_name, self.get_dtype().get_name())
shape = self.get_shape()
if space.is_none(w_axis) or len(shape) <= 1:
return space.newint(getattr(loop, op_name_flat)(self))
else:
axis = space.int_w(w_axis)
assert axis >= 0
out_shape = shape[:axis] + shape[axis+1:]
dtype = get_dtype_cache(space).w_longdtype
w_out = W_NDimArray.from_shape(space, out_shape, dtype)
return getattr(loop, op_name)(space, self, w_out, axis)
return func_with_new_name(impl, "reduce_%s_impl" % op_name)
descr_argmax = _reduce_argmax_argmin_impl("max")
descr_argmin = _reduce_argmax_argmin_impl("min")
def descr_int(self, space):
if self.get_size() != 1:
raise oefmt(space.w_TypeError,
"only length-1 arrays can be converted to Python "
"scalars")
if self.get_dtype().is_str_or_unicode():
raise oefmt(space.w_TypeError,
"don't know how to convert scalar number to int")
value = self.get_scalar_value()
return space.int(value)
def descr_float(self, space):
if self.get_size() != 1:
raise oefmt(space.w_TypeError,
"only length-1 arrays can be converted to Python "
"scalars")
if self.get_dtype().is_str_or_unicode():
raise oefmt(space.w_TypeError,
"don't know how to convert scalar number to float")
value = self.get_scalar_value()
return space.float(value)
def descr_hex(self, space):
if self.get_size() != 1:
raise oefmt(space.w_TypeError,
"only length-1 arrays can be converted to Python scalars")
if not self.get_dtype().is_int():
raise oefmt(space.w_TypeError,
"don't know how to convert scalar number to hex")
value = self.get_scalar_value()
return space.call_method(space.builtin, 'hex', value)
def descr_oct(self, space):
if self.get_size() != 1:
raise oefmt(space.w_TypeError,
"only length-1 arrays can be converted to Python scalars")
if not self.get_dtype().is_int():
raise oefmt(space.w_TypeError,
"don't know how to convert scalar number to oct")
value = self.get_scalar_value()
return space.call_method(space.builtin, 'oct', value)
def descr_index(self, space):
if self.get_size() != 1 or \
not self.get_dtype().is_int() or self.get_dtype().is_bool():
raise oefmt(space.w_TypeError,
"only integer arrays with one element can be "
"converted to an index")
value = self.get_scalar_value()
assert isinstance(value, boxes.W_GenericBox)
return value.item(space)
def descr_reduce(self, space):
from rpython.rlib.rstring import StringBuilder
from pypy.interpreter.mixedmodule import MixedModule
from pypy.module.micronumpy.concrete import SliceArray
_numpypy = space.getbuiltinmodule("_numpypy")
assert isinstance(_numpypy, MixedModule)
multiarray = _numpypy.get("multiarray")
assert isinstance(multiarray, MixedModule)
reconstruct = multiarray.get("_reconstruct")
parameters = space.newtuple([self.getclass(space), space.newtuple(
[space.newint(0)]), space.newtext("b")])
builder = StringBuilder()
if self.get_dtype().is_object():
raise oefmt(space.w_NotImplementedError,
"reduce for 'object' dtype not supported yet")
if isinstance(self.implementation, SliceArray):
iter, state = self.implementation.create_iter()
while not iter.done(state):
box = iter.getitem(state)
builder.append(box.raw_str())
state = iter.next(state)
else:
with self.implementation as storage:
builder.append_charpsize(storage,
self.implementation.get_storage_size())
state = space.newtuple([
space.newint(1), # version
self.descr_get_shape(space),
self.get_dtype(),
space.newbool(False), # is_fortran
space.newbytes(builder.build()),
])
return space.newtuple([reconstruct, parameters, state])
def descr_setstate(self, space, w_state):
lens = space.len_w(w_state)
# numpy compatability, see multiarray/methods.c
if lens == 5:
base_index = 1
elif lens == 4:
base_index = 0
else:
raise oefmt(space.w_ValueError,
"__setstate__ called with len(args[1])==%d, not 5 or 4",
lens)
shape = space.getitem(w_state, space.newint(base_index))
dtype = space.getitem(w_state, space.newint(base_index+1))
#isfortran = space.getitem(w_state, space.newint(base_index+2))
storage = space.getitem(w_state, space.newint(base_index+3))
if not isinstance(dtype, descriptor.W_Dtype):
raise oefmt(space.w_ValueError,
"__setstate__(self, (shape, dtype, .. called with "
"improper dtype '%R'", dtype)
self.implementation = W_NDimArray.from_shape_and_storage(
space, [space.int_w(i) for i in space.listview(shape)],
rffi.str2charp(space.bytes_w(storage), track_allocation=False),
dtype, storage_bytes=space.len_w(storage), owning=True).implementation
def descr___array_finalize__(self, space, w_obj):
pass
def descr___array_wrap__(self, space, w_obj, w_context=None):
return w_obj
def descr___array_prepare__(self, space, w_obj, w_context=None):
return w_obj
pass
@unwrap_spec(offset=int)
def descr_new_array(space, w_subtype, w_shape, w_dtype=None, w_buffer=None,
offset=0, w_strides=None, w_order=None):
from pypy.module.micronumpy.concrete import ConcreteArray
dtype = space.interp_w(descriptor.W_Dtype, space.call_function(
space.gettypefor(descriptor.W_Dtype), w_dtype))
shape = shape_converter(space, w_shape, dtype)
if len(shape) > NPY.MAXDIMS:
raise oefmt(space.w_ValueError,
"sequence too large; cannot be greater than %d", NPY.MAXDIMS)
if not space.is_none(w_buffer):
if (not space.is_none(w_strides)):
strides = [space.int_w(w_i) for w_i in
space.unpackiterable(w_strides)]
else:
strides = None
try:
buf = space.writebuf_w(w_buffer)
except OperationError:
buf = space.readbuf_w(w_buffer)
try:
raw_ptr = buf.get_raw_address()
except ValueError:
raise oefmt(space.w_TypeError, "Only raw buffers are supported")
if not shape:
raise oefmt(space.w_TypeError,
"numpy scalars from buffers not supported yet")
storage = rffi.cast(RAW_STORAGE_PTR, raw_ptr)
storage = rffi.ptradd(storage, offset)
return W_NDimArray.from_shape_and_storage(space, shape, storage,
dtype, w_base=w_buffer,
storage_bytes=buf.getlength()-offset,
w_subtype=w_subtype,
writable=not buf.readonly,
strides=strides)
order = order_converter(space, w_order, NPY.CORDER)
if space.is_w(w_subtype, space.gettypefor(W_NDimArray)):
return W_NDimArray.from_shape(space, shape, dtype, order)
strides, backstrides = calc_strides(shape, dtype.base, order)
try:
totalsize = ovfcheck(support.product_check(shape) * dtype.base.elsize)
except OverflowError as e:
raise oefmt(space.w_ValueError, "array is too big.")
impl = ConcreteArray(shape, dtype.base, order, strides, backstrides)
w_ret = space.allocate_instance(W_NDimArray, w_subtype)
W_NDimArray.__init__(w_ret, impl)
space.call_function(space.getattr(w_ret,
space.newtext('__array_finalize__')), w_subtype)
return w_ret
@unwrap_spec(addr=int, buf_len=int)
def descr__from_shape_and_storage(space, w_cls, w_shape, addr, w_dtype,
buf_len=-1, w_subtype=None, w_strides=None):
"""
Create an array from an existing buffer, given its address as int.
PyPy-only implementation detail.
"""
storage = rffi.cast(RAW_STORAGE_PTR, addr)
dtype = space.interp_w(descriptor.W_Dtype, space.call_function(
space.gettypefor(descriptor.W_Dtype), w_dtype))
shape = shape_converter(space, w_shape, dtype)
if not space.is_none(w_strides):
strides = [space.int_w(w_i) for w_i in
space.unpackiterable(w_strides)]
else:
strides = None
if w_subtype:
if not space.isinstance_w(w_subtype, space.w_type):
raise oefmt(space.w_ValueError,
"subtype must be a subtype of ndarray, not a class "
"instance")
return W_NDimArray.from_shape_and_storage(space, shape, storage, dtype,
buf_len, NPY.CORDER, False, w_subtype,
strides=strides)
else:
return W_NDimArray.from_shape_and_storage(space, shape, storage, dtype,
storage_bytes=buf_len,
strides=strides)
app_take = applevel(r"""
def take(a, indices, axis, out, mode):
if mode != 'raise':
raise NotImplementedError("mode != raise not implemented")
if axis is None:
from numpy import array
indices = array(indices)
res = a.ravel()[indices.ravel()].reshape(indices.shape)
else:
from operator import mul
if axis < 0: axis += len(a.shape)
s0, s1 = a.shape[:axis], a.shape[axis+1:]
l0 = reduce(mul, s0) if s0 else 1
l1 = reduce(mul, s1) if s1 else 1
res = a.reshape((l0, -1, l1))[:,indices,:].reshape(s0 + (-1,) + s1)
if out is not None:
out[:] = res
return out
return res
""", filename=__file__).interphook('take')
app_ptp = applevel(r"""
def ptp(a, axis, out):
res = a.max(axis) - a.min(axis)
if out is not None:
out[:] = res
return out
return res
""", filename=__file__).interphook('ptp')
W_NDimArray.typedef = TypeDef("numpy.ndarray", None, None, 'read-write',
__new__ = interp2app(descr_new_array),
__len__ = interp2app(W_NDimArray.descr_len),
__getitem__ = interp2app(W_NDimArray.descr_getitem),
__setitem__ = interp2app(W_NDimArray.descr_setitem),
__delitem__ = interp2app(W_NDimArray.descr_delitem),
__repr__ = interp2app(W_NDimArray.descr_repr),
__str__ = interp2app(W_NDimArray.descr_str),
__int__ = interp2app(W_NDimArray.descr_int),
__float__ = interp2app(W_NDimArray.descr_float),
__hex__ = interp2app(W_NDimArray.descr_hex),
__oct__ = interp2app(W_NDimArray.descr_oct),
__index__ = interp2app(W_NDimArray.descr_index),
__pos__ = interp2app(W_NDimArray.descr_pos),
__neg__ = interp2app(W_NDimArray.descr_neg),
__abs__ = interp2app(W_NDimArray.descr_abs),
__invert__ = interp2app(W_NDimArray.descr_invert),
__nonzero__ = interp2app(W_NDimArray.descr___nonzero__),
__add__ = interp2app(W_NDimArray.descr_add),
__sub__ = interp2app(W_NDimArray.descr_sub),
__mul__ = interp2app(W_NDimArray.descr_mul),
__div__ = interp2app(W_NDimArray.descr_div),
__truediv__ = interp2app(W_NDimArray.descr_truediv),
__floordiv__ = interp2app(W_NDimArray.descr_floordiv),
__mod__ = interp2app(W_NDimArray.descr_mod),
__divmod__ = interp2app(W_NDimArray.descr_divmod),
__pow__ = interp2app(W_NDimArray.descr_pow),
__lshift__ = interp2app(W_NDimArray.descr_lshift),
__rshift__ = interp2app(W_NDimArray.descr_rshift),
__and__ = interp2app(W_NDimArray.descr_and),
__or__ = interp2app(W_NDimArray.descr_or),
__xor__ = interp2app(W_NDimArray.descr_xor),
__radd__ = interp2app(W_NDimArray.descr_radd),
__rsub__ = interp2app(W_NDimArray.descr_rsub),
__rmul__ = interp2app(W_NDimArray.descr_rmul),
__rdiv__ = interp2app(W_NDimArray.descr_rdiv),
__rtruediv__ = interp2app(W_NDimArray.descr_rtruediv),
__rfloordiv__ = interp2app(W_NDimArray.descr_rfloordiv),
__rmod__ = interp2app(W_NDimArray.descr_rmod),
__rdivmod__ = interp2app(W_NDimArray.descr_rdivmod),
__rpow__ = interp2app(W_NDimArray.descr_rpow),
__rlshift__ = interp2app(W_NDimArray.descr_rlshift),
__rrshift__ = interp2app(W_NDimArray.descr_rrshift),
__rand__ = interp2app(W_NDimArray.descr_rand),
__ror__ = interp2app(W_NDimArray.descr_ror),
__rxor__ = interp2app(W_NDimArray.descr_rxor),
__iadd__ = interp2app(W_NDimArray.descr_iadd),
__isub__ = interp2app(W_NDimArray.descr_isub),
__imul__ = interp2app(W_NDimArray.descr_imul),
__idiv__ = interp2app(W_NDimArray.descr_idiv),
__itruediv__ = interp2app(W_NDimArray.descr_itruediv),
__ifloordiv__ = interp2app(W_NDimArray.descr_ifloordiv),
__imod__ = interp2app(W_NDimArray.descr_imod),
__ipow__ = interp2app(W_NDimArray.descr_ipow),
__ilshift__ = interp2app(W_NDimArray.descr_ilshift),
__irshift__ = interp2app(W_NDimArray.descr_irshift),
__iand__ = interp2app(W_NDimArray.descr_iand),
__ior__ = interp2app(W_NDimArray.descr_ior),
__ixor__ = interp2app(W_NDimArray.descr_ixor),
__eq__ = interp2app(W_NDimArray.descr_eq),
__ne__ = interp2app(W_NDimArray.descr_ne),
__lt__ = interp2app(W_NDimArray.descr_lt),
__le__ = interp2app(W_NDimArray.descr_le),
__gt__ = interp2app(W_NDimArray.descr_gt),
__ge__ = interp2app(W_NDimArray.descr_ge),
dtype = GetSetProperty(W_NDimArray.descr_get_dtype,
W_NDimArray.descr_set_dtype,
W_NDimArray.descr_del_dtype),
shape = GetSetProperty(W_NDimArray.descr_get_shape,
W_NDimArray.descr_set_shape),
strides = GetSetProperty(W_NDimArray.descr_get_strides),
ndim = GetSetProperty(W_NDimArray.descr_get_ndim),
size = GetSetProperty(W_NDimArray.descr_get_size),
itemsize = GetSetProperty(W_NDimArray.descr_get_itemsize),
nbytes = GetSetProperty(W_NDimArray.descr_get_nbytes),
flags = GetSetProperty(W_NDimArray.descr_get_flags),
fill = interp2app(W_NDimArray.descr_fill),
tobytes = interp2app(W_NDimArray.descr_tostring),
tostring = interp2app(W_NDimArray.descr_tostring),
mean = interp2app(W_NDimArray.descr_mean),
sum = interp2app(W_NDimArray.descr_sum),
prod = interp2app(W_NDimArray.descr_prod),
max = interp2app(W_NDimArray.descr_max),
min = interp2app(W_NDimArray.descr_min),
put = interp2app(W_NDimArray.descr_put),
argmax = interp2app(W_NDimArray.descr_argmax),
argmin = interp2app(W_NDimArray.descr_argmin),
all = interp2app(W_NDimArray.descr_all),
any = interp2app(W_NDimArray.descr_any),
dot = interp2app(W_NDimArray.descr_dot),
var = interp2app(W_NDimArray.descr_var),
std = interp2app(W_NDimArray.descr_std),
searchsorted = interp2app(W_NDimArray.descr_searchsorted),
cumsum = interp2app(W_NDimArray.descr_cumsum),
cumprod = interp2app(W_NDimArray.descr_cumprod),
copy = interp2app(W_NDimArray.descr_copy),
reshape = interp2app(W_NDimArray.descr_reshape),
resize = interp2app(W_NDimArray.descr_resize),
squeeze = interp2app(W_NDimArray.descr_squeeze),
T = GetSetProperty(W_NDimArray.descr_get_transpose),
transpose = interp2app(W_NDimArray.descr_transpose),
tolist = interp2app(W_NDimArray.descr_tolist),
flatten = interp2app(W_NDimArray.descr_flatten),
ravel = interp2app(W_NDimArray.descr_ravel),
take = interp2app(W_NDimArray.descr_take),
ptp = interp2app(W_NDimArray.descr_ptp),
compress = interp2app(W_NDimArray.descr_compress),
repeat = interp2app(W_NDimArray.descr_repeat),
swapaxes = interp2app(W_NDimArray.descr_swapaxes),
nonzero = interp2app(W_NDimArray.descr_nonzero),
flat = GetSetProperty(W_NDimArray.descr_get_flatiter,
W_NDimArray.descr_set_flatiter),
item = interp2app(W_NDimArray.descr_item),
itemset = interp2app(W_NDimArray.descr_itemset),
real = GetSetProperty(W_NDimArray.descr_get_real,
W_NDimArray.descr_set_real),
imag = GetSetProperty(W_NDimArray.descr_get_imag,
W_NDimArray.descr_set_imag),
conj = interp2app(W_NDimArray.descr_conj),
conjugate = interp2app(W_NDimArray.descr_conj),
argsort = interp2app(W_NDimArray.descr_argsort),
sort = interp2app(W_NDimArray.descr_sort),
partition = interp2app(W_NDimArray.descr_partition),
astype = interp2app(W_NDimArray.descr_astype),
base = GetSetProperty(W_NDimArray.descr_get_base),
byteswap = interp2app(W_NDimArray.descr_byteswap),
choose = interp2app(W_NDimArray.descr_choose),
clip = interp2app(W_NDimArray.descr_clip),
round = interp2app(W_NDimArray.descr_round),
data = GetSetProperty(W_NDimArray.descr_get_data),
diagonal = interp2app(W_NDimArray.descr_diagonal),
trace = interp2app(W_NDimArray.descr_trace),
view = interp2app(W_NDimArray.descr_view),
newbyteorder = interp2app(W_NDimArray.descr_newbyteorder),
ctypes = GetSetProperty(W_NDimArray.descr_get_ctypes), # XXX unimplemented
__array_interface__ = GetSetProperty(W_NDimArray.descr_array_iface),
__weakref__ = make_weakref_descr(W_NDimArray),
_from_shape_and_storage = interp2app(descr__from_shape_and_storage,
as_classmethod=True),
__pypy_data__ = GetSetProperty(W_NDimArray.fget___pypy_data__,
W_NDimArray.fset___pypy_data__,
W_NDimArray.fdel___pypy_data__),
__reduce__ = interp2app(W_NDimArray.descr_reduce),
__setstate__ = interp2app(W_NDimArray.descr_setstate),
__array_finalize__ = interp2app(W_NDimArray.descr___array_finalize__),
__array_prepare__ = interp2app(W_NDimArray.descr___array_prepare__),
__array_wrap__ = interp2app(W_NDimArray.descr___array_wrap__),
__array_priority__ = GetSetProperty(W_NDimArray.descr___array_priority__),
__array__ = interp2app(W_NDimArray.descr___array__),
)
def _reconstruct(space, w_subtype, w_shape, w_dtype):
return descr_new_array(space, w_subtype, w_shape, w_dtype)
|