1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
|
from rpython.rlib import jit
from pypy.interpreter.baseobjspace import W_Root
from pypy.interpreter.typedef import TypeDef, GetSetProperty
from pypy.interpreter.gateway import interp2app, unwrap_spec, WrappedDefault
from pypy.interpreter.error import OperationError, oefmt
from pypy.module.micronumpy import support, concrete
from pypy.module.micronumpy.base import W_NDimArray, convert_to_array, W_NumpyObject
from pypy.module.micronumpy.descriptor import decode_w_dtype
from pypy.module.micronumpy.iterators import ArrayIter
from pypy.module.micronumpy.strides import (calculate_broadcast_strides,
shape_agreement, shape_agreement_multiple)
from pypy.module.micronumpy.casting import (find_binop_result_dtype,
can_cast_array, can_cast_type)
import pypy.module.micronumpy.constants as NPY
from pypy.module.micronumpy.converters import order_converter
def parse_op_arg(space, name, w_op_flags, n, parse_one_arg):
if space.is_w(w_op_flags, space.w_None):
w_op_flags = space.newtuple([space.newtext('readonly')])
if not space.isinstance_w(w_op_flags, space.w_tuple) and not \
space.isinstance_w(w_op_flags, space.w_list):
raise oefmt(space.w_ValueError,
'%s must be a tuple or array of per-op flag-tuples',
name)
ret = []
w_lst = space.listview(w_op_flags)
if space.isinstance_w(w_lst[0], space.w_tuple) or \
space.isinstance_w(w_lst[0], space.w_list):
if len(w_lst) != n:
raise oefmt(space.w_ValueError,
'%s must be a tuple or array of per-op flag-tuples',
name)
for item in w_lst:
ret.append(parse_one_arg(space, space.listview(item)))
else:
op_flag = parse_one_arg(space, w_lst)
for i in range(n):
ret.append(op_flag)
return ret
class OpFlag(object):
def __init__(self):
self.rw = ''
self.broadcast = True
self.force_contig = False
self.force_align = False
self.native_byte_order = False
self.tmp_copy = ''
self.allocate = False
def parse_op_flag(space, lst):
op_flag = OpFlag()
for w_item in lst:
item = space.text_w(w_item)
if item == 'readonly':
op_flag.rw = 'r'
elif item == 'readwrite':
op_flag.rw = 'rw'
elif item == 'writeonly':
op_flag.rw = 'w'
elif item == 'no_broadcast':
op_flag.broadcast = False
elif item == 'contig':
op_flag.force_contig = True
elif item == 'aligned':
op_flag.force_align = True
elif item == 'nbo':
op_flag.native_byte_order = True
elif item == 'copy':
op_flag.tmp_copy = 'r'
elif item == 'updateifcopy':
op_flag.tmp_copy = 'rw'
elif item == 'allocate':
op_flag.allocate = True
elif item == 'no_subtype':
raise oefmt(space.w_NotImplementedError,
'"no_subtype" op_flag not implemented yet')
elif item == 'arraymask':
raise oefmt(space.w_NotImplementedError,
'"arraymask" op_flag not implemented yet')
elif item == 'writemask':
raise oefmt(space.w_NotImplementedError,
'"writemask" op_flag not implemented yet')
else:
raise oefmt(space.w_ValueError,
'op_flags must be a tuple or array of per-op flag-tuples')
if op_flag.rw == '':
raise oefmt(space.w_ValueError,
"None of the iterator flags READWRITE, READONLY, or "
"WRITEONLY were specified for an operand")
return op_flag
def parse_func_flags(space, nditer, w_flags):
if space.is_w(w_flags, space.w_None):
return
elif not space.isinstance_w(w_flags, space.w_tuple) and not \
space.isinstance_w(w_flags, space.w_list):
raise oefmt(space.w_ValueError,
'Iter global flags must be a list or tuple of strings')
lst = space.listview(w_flags)
for w_item in lst:
if not space.isinstance_w(w_item, space.w_bytes) and not \
space.isinstance_w(w_item, space.w_unicode):
raise oefmt(space.w_TypeError,
"expected string or Unicode object, %T found",
w_item)
item = space.text_w(w_item)
if item == 'external_loop':
nditer.external_loop = True
elif item == 'buffered':
# Each iterator should be 1d
nditer.buffered = True
elif item == 'c_index':
nditer.tracked_index = 'C'
elif item == 'f_index':
nditer.tracked_index = 'F'
elif item == 'multi_index':
nditer.tracked_index = 'multi'
elif item == 'common_dtype':
nditer.common_dtype = True
elif item == 'delay_bufalloc':
nditer.delay_bufalloc = True
elif item == 'grow_inner':
nditer.grow_inner = True
elif item == 'ranged':
nditer.ranged = True
elif item == 'refs_ok':
nditer.refs_ok = True
elif item == 'reduce_ok':
raise oefmt(space.w_NotImplementedError,
'nditer reduce_ok not implemented yet')
nditer.reduce_ok = True
elif item == 'zerosize_ok':
nditer.zerosize_ok = True
else:
raise oefmt(space.w_ValueError,
'Unexpected iterator global flag "%s"',
item)
if nditer.tracked_index and nditer.external_loop:
raise oefmt(space.w_ValueError,
'Iterator flag EXTERNAL_LOOP cannot be used if an index or '
'multi-index is being tracked')
def is_backward(imp_order, order):
if imp_order == order:
return False
if order == NPY.KEEPORDER:
return False
else:
return True
class OperandIter(ArrayIter):
_immutable_fields_ = ['slice_shape', 'slice_stride', 'slice_backstride',
'operand_type', 'base']
def getitem(self, state):
# cannot be called - must return a boxed value
assert False
def getitem_bool(self, state):
# cannot be called - must return a boxed value
assert False
def setitem(self, state, elem):
# cannot be called - must return a boxed value
assert False
class ConcreteIter(OperandIter):
def __init__(self, array, size, shape, strides, backstrides,
op_flags, base):
OperandIter.__init__(self, array, size, shape, strides, backstrides)
self.slice_shape =[]
self.slice_stride = []
self.slice_backstride = []
if op_flags.rw == 'r':
self.operand_type = concrete.ConcreteNonWritableArrayWithBase
else:
self.operand_type = concrete.ConcreteArrayWithBase
self.base = base
def getoperand(self, state):
assert state.iterator is self
impl = self.operand_type
res = impl([], self.array.dtype, self.array.order, [], [],
self.array.storage, self.base)
res.start = state.offset
return res
class SliceIter(OperandIter):
def __init__(self, array, size, shape, strides, backstrides, slice_shape,
slice_stride, slice_backstride, op_flags, base):
OperandIter.__init__(self, array, size, shape, strides, backstrides)
self.slice_shape = slice_shape
self.slice_stride = slice_stride
self.slice_backstride = slice_backstride
if op_flags.rw == 'r':
self.operand_type = concrete.NonWritableSliceArray
else:
self.operand_type = concrete.SliceArray
self.base = base
def getoperand(self, state):
assert state.iterator is self
impl = self.operand_type
arr = impl(state.offset, self.slice_stride, self.slice_backstride,
self.slice_shape, self.array, self.base)
return arr
def calculate_ndim(op_in, oa_ndim):
if oa_ndim >=0:
return oa_ndim
else:
ndim = 0
for op in op_in:
if op is None:
continue
assert isinstance(op, W_NDimArray)
ndim = max(ndim, op.ndims())
return ndim
def coalesce_axes(it, space):
# Copy logic from npyiter_coalesce_axes, used in ufunc iterators
# and in nditer's with 'external_loop' flag
can_coalesce = True
for idim in range(it.ndim - 1):
for op_it, _ in it.iters:
if op_it is None:
continue
assert isinstance(op_it, ArrayIter)
indx = len(op_it.strides)
if it.order == NPY.FORTRANORDER:
indx = len(op_it.array.strides) - indx
assert indx >=0
astrides = op_it.array.strides[indx:]
else:
astrides = op_it.array.strides[:indx]
# does op_it iters over array "naturally"
if astrides != op_it.strides:
can_coalesce = False
break
if can_coalesce:
for i in range(len(it.iters)):
new_iter = coalesce_iter(it.iters[i][0], it.op_flags[i], it,
it.order)
it.iters[i] = (new_iter, new_iter.reset())
if len(it.shape) > 1:
if it.order == NPY.FORTRANORDER:
it.shape = it.shape[1:]
else:
it.shape = it.shape[:-1]
else:
it.shape = [1]
else:
break
# Always coalesce at least one
for i in range(len(it.iters)):
new_iter = coalesce_iter(it.iters[i][0], it.op_flags[i], it, NPY.CORDER)
it.iters[i] = (new_iter, new_iter.reset())
if len(it.shape) > 1:
if it.order == NPY.FORTRANORDER:
it.shape = it.shape[1:]
else:
it.shape = it.shape[:-1]
else:
it.shape = [1]
def coalesce_iter(old_iter, op_flags, it, order, flat=True):
'''
We usually iterate through an array one value at a time.
But after coalesce(), getoperand() will return a slice by removing
the fastest varying dimension(s) from the beginning or end of the shape.
If flat is true, then the slice will be 1d, otherwise stack up the shape of
the fastest varying dimension in the slice, so an iterator of a 'C' array
of shape (2,4,3) after two calls to coalesce will iterate 2 times over a slice
of shape (4,3) by setting the offset to the beginning of the data at each iteration
'''
shape = [s+1 for s in old_iter.shape_m1]
if len(shape) < 1:
return old_iter
strides = old_iter.strides
backstrides = old_iter.backstrides
if order == NPY.FORTRANORDER:
new_shape = shape[1:]
new_strides = strides[1:]
new_backstrides = backstrides[1:]
_stride = old_iter.slice_stride + [strides[0]]
_shape = old_iter.slice_shape + [shape[0]]
_backstride = old_iter.slice_backstride + [strides[0] * (shape[0] - 1)]
fastest = shape[0]
else:
new_shape = shape[:-1]
new_strides = strides[:-1]
new_backstrides = backstrides[:-1]
# use the operand's iterator's rightmost stride,
# even if it is not the fastest (for 'F' or swapped axis)
_stride = [strides[-1]] + old_iter.slice_stride
_shape = [shape[-1]] + old_iter.slice_shape
_backstride = [(shape[-1] - 1) * strides[-1]] + old_iter.slice_backstride
fastest = shape[-1]
if fastest == 0:
return old_iter
if flat:
_shape = [support.product(_shape)]
if len(_stride) > 1:
_stride = [min(_stride[0], _stride[1])]
_backstride = [(shape[0] - 1) * _stride[0]]
return SliceIter(old_iter.array, old_iter.size / fastest,
new_shape, new_strides, new_backstrides,
_shape, _stride, _backstride, op_flags, it)
class IndexIterator(object):
def __init__(self, shape, backward=False):
self.shape = shape
self.index = [0] * len(shape)
self.backward = backward
@jit.unroll_safe
def next(self):
for i in range(len(self.shape) - 1, -1, -1):
if self.index[i] < self.shape[i] - 1:
self.index[i] += 1
break
else:
self.index[i] = 0
def getvalue(self):
if not self.backward:
ret = self.index[-1]
for i in range(len(self.shape) - 2, -1, -1):
ret += self.index[i] * self.shape[i - 1]
else:
ret = self.index[0]
for i in range(1, len(self.shape)):
ret += self.index[i] * self.shape[i - 1]
return ret
class W_NDIter(W_NumpyObject):
_immutable_fields_ = ['ndim', ]
def __init__(self, space, w_seq, w_flags, w_op_flags, w_op_dtypes,
w_casting, w_op_axes, w_itershape, buffersize=0,
order=NPY.KEEPORDER, allow_backward=True):
self.external_loop = False
self.buffered = False
self.tracked_index = ''
self.common_dtype = False
self.delay_bufalloc = False
self.grow_inner = False
self.ranged = False
self.refs_ok = False
self.reduce_ok = False
self.zerosize_ok = False
self.index_iter = None
self.done = False
self.first_next = True
self.op_axes = []
self.allow_backward = allow_backward
if not space.is_w(w_casting, space.w_None):
self.casting = space.text_w(w_casting)
else:
self.casting = 'safe'
# convert w_seq operands to a list of W_NDimArray
if space.isinstance_w(w_seq, space.w_tuple) or \
space.isinstance_w(w_seq, space.w_list):
w_seq_as_list = space.listview(w_seq)
self.seq = [convert_to_array(space, w_elem)
if not space.is_none(w_elem) else None
for w_elem in w_seq_as_list]
else:
self.seq = [convert_to_array(space, w_seq)]
if order == NPY.ANYORDER:
# 'A' means "'F' order if all the arrays are Fortran contiguous,
# 'C' order otherwise"
order = NPY.CORDER
for s in self.seq:
if s and not(s.get_flags() & NPY.ARRAY_F_CONTIGUOUS):
break
else:
order = NPY.FORTRANORDER
elif order == NPY.KEEPORDER:
# 'K' means "as close to the order the array elements appear in
# memory as possible", so match self.order to seq.order
order = NPY.CORDER
for s in self.seq:
if s and not(s.get_order() == NPY.FORTRANORDER):
break
else:
order = NPY.FORTRANORDER
self.order = order
parse_func_flags(space, self, w_flags)
self.op_flags = parse_op_arg(space, 'op_flags', w_op_flags,
len(self.seq), parse_op_flag)
# handle w_op_axes
oa_ndim = -1
if not space.is_none(w_op_axes):
oa_ndim = self.set_op_axes(space, w_op_axes)
self.ndim = calculate_ndim(self.seq, oa_ndim)
# handle w_op_dtypes part 1: creating self.dtypes list from input
if not space.is_none(w_op_dtypes):
w_seq_as_list = space.listview(w_op_dtypes)
self.dtypes = [decode_w_dtype(space, w_elem) for w_elem in w_seq_as_list]
if len(self.dtypes) != len(self.seq):
raise oefmt(space.w_ValueError,
"op_dtypes must be a tuple/list matching the number of ops")
else:
self.dtypes = []
# handle None or writable operands, calculate my shape
outargs = [i for i in range(len(self.seq))
if self.seq[i] is None or self.op_flags[i].rw == 'w']
if len(outargs) > 0:
out_shape = shape_agreement_multiple(space, [self.seq[i] for i in outargs])
else:
out_shape = None
if space.isinstance_w(w_itershape, space.w_tuple) or \
space.isinstance_w(w_itershape, space.w_list):
self.shape = [space.int_w(i) for i in space.listview(w_itershape)]
else:
self.shape = shape_agreement_multiple(space, self.seq,
shape=out_shape)
if len(outargs) > 0:
# Make None operands writeonly and flagged for allocation
if len(self.dtypes) > 0:
out_dtype = self.dtypes[outargs[0]]
else:
out_dtype = None
for i in range(len(self.seq)):
if self.seq[i] is None:
self.op_flags[i].allocate = True
continue
if self.op_flags[i].rw == 'w':
continue
out_dtype = find_binop_result_dtype(
space, self.seq[i].get_dtype(), out_dtype)
for i in outargs:
if self.seq[i] is None:
# XXX can we postpone allocation to later?
self.seq[i] = W_NDimArray.from_shape(space, self.shape, out_dtype)
else:
if not self.op_flags[i].broadcast:
# Raises if output cannot be broadcast
try:
shape_agreement(space, self.shape, self.seq[i], False)
except OperationError as e:
raise oefmt(space.w_ValueError, "non-broadcastable"
" output operand with shape %s doesn't match "
"the broadcast shape %s",
str(self.seq[i].get_shape()),
str(self.shape))
if self.tracked_index != "":
order = self.order
if order == NPY.KEEPORDER:
order = self.seq[0].implementation.order
if self.tracked_index == "multi":
backward = False
else:
backward = ((
order == NPY.CORDER and self.tracked_index != 'C') or (
order == NPY.FORTRANORDER and self.tracked_index != 'F'))
self.index_iter = IndexIterator(self.shape, backward=backward)
# handle w_op_dtypes part 2: copy where needed if possible
if len(self.dtypes) > 0:
for i in range(len(self.seq)):
self_d = self.dtypes[i]
seq_d = self.seq[i].get_dtype()
if not self_d:
self.dtypes[i] = seq_d
elif self_d != seq_d:
impl = self.seq[i].implementation
if self.buffered or 'r' in self.op_flags[i].tmp_copy:
if not can_cast_array(
space, self.seq[i], self_d, self.casting):
raise oefmt(space.w_TypeError, "Iterator operand %d"
" dtype could not be cast from %R to %R"
" according to the rule '%s'",
i, seq_d, self_d, self.casting)
order = support.get_order_as_CF(impl.order, self.order)
new_impl = impl.astype(space, self_d, order).copy(space)
self.seq[i] = W_NDimArray(new_impl)
else:
raise oefmt(space.w_TypeError, "Iterator "
"operand required copying or buffering, "
"but neither copying nor buffering was "
"enabled")
if 'w' in self.op_flags[i].rw:
if not can_cast_type(
space, self_d, seq_d, self.casting):
raise oefmt(space.w_TypeError, "Iterator"
" requested dtype could not be cast from "
" %R to %R, the operand %d dtype, accord"
"ing to the rule '%s'",
self_d, seq_d, i, self.casting)
elif self.buffered and not (self.external_loop and len(self.seq)<2):
for i in range(len(self.seq)):
if i not in outargs:
self.seq[i] = self.seq[i].descr_copy(space,
w_order=space.newint(self.order))
self.dtypes = [s.get_dtype() for s in self.seq]
else:
#copy them from seq
self.dtypes = [s.get_dtype() for s in self.seq]
# create an iterator for each operand
self.iters = []
for i in range(len(self.seq)):
it = self.get_iter(space, i)
it.contiguous = False
self.iters.append((it, it.reset()))
if self.external_loop:
coalesce_axes(self, space)
def get_iter(self, space, i):
arr = self.seq[i]
imp = arr.implementation
if arr.is_scalar():
return ConcreteIter(imp, 1, [], [], [], self.op_flags[i], self)
shape = self.shape
if (self.external_loop and len(self.seq)<2 and self.buffered):
# Special case, always return a memory-ordered iterator
stride = imp.dtype.elsize
backstride = imp.size * stride - stride
return ConcreteIter(imp, imp.get_size(),
[support.product(shape)], [stride], [backstride],
self.op_flags[i], self)
backward = imp.order != self.order
# XXX cleanup needed
strides = imp.strides
backstrides = imp.backstrides
if self.allow_backward:
if ((abs(imp.strides[0]) < abs(imp.strides[-1]) and not backward) or \
(abs(imp.strides[0]) > abs(imp.strides[-1]) and backward)):
# flip the strides. Is this always true for multidimension?
strides = imp.strides[:]
backstrides = imp.backstrides[:]
shape = imp.shape[:]
strides.reverse()
backstrides.reverse()
shape.reverse()
r = calculate_broadcast_strides(strides, backstrides, imp.shape,
shape, backward)
iter_shape = shape
if len(shape) != len(r[0]):
# shape can be shorter when using an external loop, just return a view
iter_shape = imp.shape
return ConcreteIter(imp, imp.get_size(), iter_shape, r[0], r[1],
self.op_flags[i], self)
def set_op_axes(self, space, w_op_axes):
if space.len_w(w_op_axes) != len(self.seq):
raise oefmt(space.w_ValueError,
"op_axes must be a tuple/list matching the number of ops")
op_axes = space.listview(w_op_axes)
oa_ndim = -1
for w_axis in op_axes:
if not space.is_none(w_axis):
axis_len = space.len_w(w_axis)
if oa_ndim == -1:
oa_ndim = axis_len
elif axis_len != oa_ndim:
raise oefmt(space.w_ValueError,
"Each entry of op_axes must have the same size")
self.op_axes.append([space.int_w(x) if not space.is_none(x) else -1
for x in space.listview(w_axis)])
if oa_ndim == -1:
raise oefmt(space.w_ValueError,
"If op_axes is provided, at least one list of axes "
"must be contained within it")
raise oefmt(space.w_NotImplementedError, "op_axis not finished yet")
# Check that values make sense:
# - in bounds for each operand
# ValueError: Iterator input op_axes[0][3] (==3) is not a valid axis of op[0], which has 2 dimensions
# - no repeat axis
# ValueError: The 'op_axes' provided to the iterator constructor for operand 1 contained duplicate value 0
return oa_ndim
def descr_iter(self, space):
return self
def getitem(self, it, st):
w_res = W_NDimArray(it.getoperand(st))
return w_res
def descr_getitem(self, space, w_idx):
idx = space.int_w(w_idx)
try:
it, st = self.iters[idx]
except IndexError:
raise oefmt(space.w_IndexError,
"Iterator operand index %d is out of bounds", idx)
return self.getitem(it, st)
def descr_setitem(self, space, w_idx, w_value):
raise oefmt(space.w_NotImplementedError, "not implemented yet")
def descr_len(self, space):
space.newint(len(self.iters))
@jit.unroll_safe
def descr_next(self, space):
for it, st in self.iters:
if not it.done(st):
break
else:
self.done = True
raise OperationError(space.w_StopIteration, space.w_None)
res = []
if self.index_iter:
if not self.first_next:
self.index_iter.next()
else:
self.first_next = False
for i, (it, st) in enumerate(self.iters):
res.append(self.getitem(it, st))
self.iters[i] = (it, it.next(st))
if len(res) < 2:
return res[0]
return space.newtuple(res)
def iternext(self):
if self.index_iter:
self.index_iter.next()
for i, (it, st) in enumerate(self.iters):
self.iters[i] = (it, it.next(st))
for it, st in self.iters:
if not it.done(st):
break
else:
self.done = True
return self.done
return self.done
def descr_iternext(self, space):
return space.newbool(self.iternext())
def descr_copy(self, space):
raise oefmt(space.w_NotImplementedError, "not implemented yet")
def descr_debug_print(self, space):
raise oefmt(space.w_NotImplementedError, "not implemented yet")
def descr_enable_external_loop(self, space):
raise oefmt(space.w_NotImplementedError, "not implemented yet")
@unwrap_spec(axis=int)
def descr_remove_axis(self, space, axis):
raise oefmt(space.w_NotImplementedError, "not implemented yet")
def descr_remove_multi_index(self, space, w_multi_index):
raise oefmt(space.w_NotImplementedError, "not implemented yet")
def descr_reset(self, space):
raise oefmt(space.w_NotImplementedError, "not implemented yet")
def descr_get_operands(self, space):
l_w = []
for op in self.seq:
l_w.append(op.descr_view(space))
return space.newlist(l_w)
def descr_get_dtypes(self, space):
res = [None] * len(self.seq)
for i in range(len(self.seq)):
res[i] = self.seq[i].descr_get_dtype(space)
return space.newtuple(res)
def descr_get_finished(self, space):
return space.newbool(self.done)
def descr_get_has_delayed_bufalloc(self, space):
raise oefmt(space.w_NotImplementedError, "not implemented yet")
def descr_get_has_index(self, space):
return space.newbool(self.tracked_index in ["C", "F"])
def descr_get_index(self, space):
if not self.tracked_index in ["C", "F"]:
raise oefmt(space.w_ValueError, "Iterator does not have an index")
if self.done:
raise oefmt(space.w_ValueError, "Iterator is past the end")
return space.newint(self.index_iter.getvalue())
def descr_get_has_multi_index(self, space):
return space.newbool(self.tracked_index == "multi")
def descr_get_multi_index(self, space):
if not self.tracked_index == "multi":
raise oefmt(space.w_ValueError, "Iterator is not tracking a multi-index")
if self.done:
raise oefmt(space.w_ValueError, "Iterator is past the end")
return space.newtuple([space.newint(x) for x in self.index_iter.index])
def descr_get_iterationneedsapi(self, space):
raise oefmt(space.w_NotImplementedError, "not implemented yet")
def descr_get_iterindex(self, space):
raise oefmt(space.w_NotImplementedError, "not implemented yet")
def descr_get_itersize(self, space):
return space.newint(support.product(self.shape))
def descr_get_itviews(self, space):
raise oefmt(space.w_NotImplementedError, "not implemented yet")
def descr_get_ndim(self, space):
return space.newint(self.ndim)
def descr_get_nop(self, space):
raise oefmt(space.w_NotImplementedError, "not implemented yet")
def descr_get_shape(self, space):
raise oefmt(space.w_NotImplementedError, "not implemented yet")
def descr_get_value(self, space):
raise oefmt(space.w_NotImplementedError, "not implemented yet")
@unwrap_spec(w_flags=WrappedDefault(None), w_op_flags=WrappedDefault(None),
w_op_dtypes=WrappedDefault(None), w_order=WrappedDefault(None),
w_casting=WrappedDefault(None), w_op_axes=WrappedDefault(None),
w_itershape=WrappedDefault(None), w_buffersize=WrappedDefault(0))
def descr_new_nditer(space, w_subtype, w_seq, w_flags, w_op_flags, w_op_dtypes,
w_casting, w_op_axes, w_itershape, w_buffersize, w_order):
npy_order = order_converter(space, w_order, NPY.KEEPORDER)
buffersize = space.int_w(w_buffersize)
return W_NDIter(space, w_seq, w_flags, w_op_flags, w_op_dtypes, w_casting, w_op_axes,
w_itershape, buffersize, npy_order)
W_NDIter.typedef = TypeDef('numpy.nditer',
__new__ = interp2app(descr_new_nditer),
__iter__ = interp2app(W_NDIter.descr_iter),
__getitem__ = interp2app(W_NDIter.descr_getitem),
__setitem__ = interp2app(W_NDIter.descr_setitem),
__len__ = interp2app(W_NDIter.descr_len),
next = interp2app(W_NDIter.descr_next),
iternext = interp2app(W_NDIter.descr_iternext),
copy = interp2app(W_NDIter.descr_copy),
debug_print = interp2app(W_NDIter.descr_debug_print),
enable_external_loop = interp2app(W_NDIter.descr_enable_external_loop),
remove_axis = interp2app(W_NDIter.descr_remove_axis),
remove_multi_index = interp2app(W_NDIter.descr_remove_multi_index),
reset = interp2app(W_NDIter.descr_reset),
operands = GetSetProperty(W_NDIter.descr_get_operands),
dtypes = GetSetProperty(W_NDIter.descr_get_dtypes),
finished = GetSetProperty(W_NDIter.descr_get_finished),
has_delayed_bufalloc = GetSetProperty(W_NDIter.descr_get_has_delayed_bufalloc),
has_index = GetSetProperty(W_NDIter.descr_get_has_index),
index = GetSetProperty(W_NDIter.descr_get_index),
has_multi_index = GetSetProperty(W_NDIter.descr_get_has_multi_index),
multi_index = GetSetProperty(W_NDIter.descr_get_multi_index),
iterationneedsapi = GetSetProperty(W_NDIter.descr_get_iterationneedsapi),
iterindex = GetSetProperty(W_NDIter.descr_get_iterindex),
itersize = GetSetProperty(W_NDIter.descr_get_itersize),
itviews = GetSetProperty(W_NDIter.descr_get_itviews),
ndim = GetSetProperty(W_NDIter.descr_get_ndim),
nop = GetSetProperty(W_NDIter.descr_get_nop),
shape = GetSetProperty(W_NDIter.descr_get_shape),
value = GetSetProperty(W_NDIter.descr_get_value),
)
W_NDIter.typedef.acceptable_as_base_class = False
|