1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
|
from __future__ import with_statement
import math
import sys
from pypy.conftest import option
from pypy.interpreter.error import OperationError
from pypy.interpreter.gateway import interp2app
from pypy.module.micronumpy.test.test_base import BaseNumpyAppTest
from rpython.rlib.rcomplex import c_pow
def rAlmostEqual(a, b, rel_err=2e-15, abs_err=5e-323, msg=''):
"""Fail if the two floating-point numbers are not almost equal.
Determine whether floating-point values a and b are equal to within
a (small) rounding error. The default values for rel_err and
abs_err are chosen to be suitable for platforms where a float is
represented by an IEEE 754 double. They allow an error of between
9 and 19 ulps.
"""
# special values testing
if math.isnan(a):
if math.isnan(b):
return True,''
raise AssertionError(msg + '%r should be nan' % (b,))
if math.isinf(a):
if a == b:
return True,''
raise AssertionError(msg + 'finite result where infinity expected: '+ \
'expected %r, got %r' % (a, b))
# if both a and b are zero, check whether they have the same sign
# (in theory there are examples where it would be legitimate for a
# and b to have opposite signs; in practice these hardly ever
# occur).
if not a and not b:
if math.copysign(1., a) != math.copysign(1., b):
raise AssertionError( msg + \
'zero has wrong sign: expected %r, got %r' % (a, b))
# if a-b overflows, or b is infinite, return False. Again, in
# theory there are examples where a is within a few ulps of the
# max representable float, and then b could legitimately be
# infinite. In practice these examples are rare.
try:
absolute_error = abs(b-a)
except OverflowError:
pass
else:
# test passes if either the absolute error or the relative
# error is sufficiently small. The defaults amount to an
# error of between 9 ulps and 19 ulps on an IEEE-754 compliant
# machine.
if absolute_error <= max(abs_err, rel_err * abs(a)):
return True,''
raise AssertionError(msg + \
'%r and %r are not sufficiently close, %g > %g' %\
(a, b, absolute_error, max(abs_err, rel_err*abs(a))))
def parse_testfile(fname):
"""Parse a file with test values
Empty lines or lines starting with -- are ignored
yields id, fn, arg_real, arg_imag, exp_real, exp_imag
"""
with open(fname) as fp:
for line in fp:
# skip comment lines and blank lines
if line.startswith('--') or not line.strip():
continue
lhs, rhs = line.split('->')
id, fn, arg_real, arg_imag = lhs.split()
rhs_pieces = rhs.split()
exp_real, exp_imag = rhs_pieces[0], rhs_pieces[1]
flags = rhs_pieces[2:]
yield (id, fn,
float(arg_real), float(arg_imag),
float(exp_real), float(exp_imag),
flags
)
class AppTestUfuncs(BaseNumpyAppTest):
def setup_class(cls):
import os
BaseNumpyAppTest.setup_class.im_func(cls)
fname128 = os.path.join(os.path.dirname(__file__), 'complex_testcases.txt')
fname64 = os.path.join(os.path.dirname(__file__), 'complex64_testcases.txt')
cls.w_testcases128 = cls.space.wrap(list(parse_testfile(fname128)))
cls.w_testcases64 = cls.space.wrap(list(parse_testfile(fname64)))
cls.w_runAppDirect = cls.space.wrap(option.runappdirect)
cls.w_isWindows = cls.space.wrap(os.name == 'nt')
if cls.runappdirect:
def cls_rAlmostEqual(space, *args, **kwargs):
return rAlmostEqual(*args, **kwargs)
cls.w_rAlmostEqual = cls.space.wrap(cls_rAlmostEqual)
def cls_c_pow(space, *args):
return c_pow(*args)
cls.w_c_pow = cls.space.wrap(cls_c_pow)
else:
def cls_rAlmostEqual(space, __args__):
args, kwargs = __args__.unpack()
args = map(space.unwrap, args)
kwargs = dict([
(k, space.unwrap(v))
for k, v in kwargs.iteritems()
])
return space.wrap(rAlmostEqual(*args, **kwargs))
cls.w_rAlmostEqual = cls.space.wrap(interp2app(cls_rAlmostEqual))
def cls_c_pow(space, args_w):
try:
retVal = c_pow(*map(space.unwrap, args_w))
return space.wrap(retVal)
except ZeroDivisionError as e:
raise OperationError(cls.space.w_ZeroDivisionError,
cls.space.wrap(e.message))
except OverflowError as e:
raise OperationError(cls.space.w_OverflowError,
cls.space.wrap(e.message))
except ValueError as e:
raise OperationError(cls.space.w_ValueError,
cls.space.wrap(e.message))
cls.w_c_pow = cls.space.wrap(interp2app(cls_c_pow))
def test_fabs(self):
from numpy import fabs, dtype
a = dtype('complex128').type(complex(-5., 5.))
raises(TypeError, fabs, a)
def test_fmax(self):
from numpy import fmax, array
nnan, nan, inf, ninf = float('-nan'), float('nan'), float('inf'), float('-inf')
a = array((complex(ninf, 10), complex(10, ninf),
complex( inf, 10), complex(10, inf),
5+5j, 5-5j, -5+5j, -5-5j,
0+5j, 0-5j, 5, -5,
complex(nan, 0), complex(0, nan)), dtype = complex)
b = [ninf]*a.size
res = [a[0 ], a[1 ], a[2 ], a[3 ],
a[4 ], a[5 ], a[6 ], a[7 ],
a[8 ], a[9 ], a[10], a[11],
b[12], b[13]]
assert (fmax(a, b) == res).all()
b = [inf]*a.size
res = [b[0 ], b[1 ], a[2 ], b[3 ],
b[4 ], b[5 ], b[6 ], b[7 ],
b[8 ], b[9 ], b[10], b[11],
b[12], b[13]]
assert (fmax(a, b) == res).all()
b = [0]*a.size
res = [b[0 ], a[1 ], a[2 ], a[3 ],
a[4 ], a[5 ], b[6 ], b[7 ],
a[8 ], b[9 ], a[10], b[11],
b[12], b[13]]
assert (fmax(a, b) == res).all()
def test_fmin(self):
from numpy import fmin, array
nnan, nan, inf, ninf = float('-nan'), float('nan'), float('inf'), float('-inf')
a = array((complex(ninf, 10), complex(10, ninf),
complex( inf, 10), complex(10, inf),
5+5j, 5-5j, -5+5j, -5-5j,
0+5j, 0-5j, 5, -5,
complex(nan, 0), complex(0, nan)), dtype = complex)
b = [inf]*a.size
res = [a[0 ], a[1 ], b[2 ], a[3 ],
a[4 ], a[5 ], a[6 ], a[7 ],
a[8 ], a[9 ], a[10], a[11],
b[12], b[13]]
assert (fmin(a, b) == res).all()
b = [ninf]*a.size
res = [b[0 ], b[1 ], b[2 ], b[3 ],
b[4 ], b[5 ], b[6 ], b[7 ],
b[8 ], b[9 ], b[10], b[11],
b[12], b[13]]
assert (fmin(a, b) == res).all()
b = [0]*a.size
res = [a[0 ], b[1 ], b[2 ], b[3 ],
b[4 ], b[5 ], a[6 ], a[7 ],
b[8 ], a[9 ], b[10], a[11],
b[12], b[13]]
assert (fmin(a, b) == res).all()
def test_signbit(self):
from numpy import signbit
raises(TypeError, signbit, complex(1,1))
def test_reciprocal(self):
from numpy import array, reciprocal
inf = float('inf')
nan = float('nan')
#complex
orig = [2.+4.j, -2.+4.j, 2.-4.j, -2.-4.j,
complex(inf, 3), complex(inf, -3), complex(inf, -inf),
complex(nan, 3), 0+0j, 0-0j]
a2 = 2.**2 + 4.**2
r = 2. / a2
i = 4. / a2
cnan = complex(nan, nan)
expected = [complex(r, -i), complex(-r, -i), complex(r, i),
complex(-r, i),
-0j, 0j, cnan,
cnan, cnan, cnan]
for c, rel_err in (('complex64', 2e-7), ('complex128', 2e-15), ('clongdouble', 2e-15)):
actual = reciprocal(array([orig], dtype=c))
for b, a, e in zip(orig, actual, expected):
assert (a[0].real - e.real) < rel_err
assert (a[0].imag - e.imag) < rel_err
def test_floorceiltrunc(self):
from numpy import array, floor, ceil, trunc
a = array([ complex(-1.4, -1.4), complex(-1.5, -1.5)])
raises(TypeError, floor, a)
raises(TypeError, ceil, a)
raises(TypeError, trunc, a)
def test_copysign(self):
from numpy import copysign, dtype
complex128 = dtype('complex128').type
a = complex128(complex(-5., 5.))
b = complex128(complex(0., 0.))
raises(TypeError, copysign, a, b)
def test_exp2(self):
from numpy import array, exp2
inf = float('inf')
ninf = -float('inf')
nan = float('nan')
cmpl = complex
for c, rel_err in (('complex64', 2e-7), ('complex128', 2e-15), ('clongdouble', 2e-15)):
a = [cmpl(-5., 0), cmpl(-5., -5.), cmpl(-5., 5.),
cmpl(0., -5.), cmpl(0., 0.), cmpl(0., 5.),
cmpl(-0., -5.), cmpl(-0., 0.), cmpl(-0., 5.),
cmpl(-0., -0.), cmpl(inf, 0.), cmpl(inf, 5.),
cmpl(inf, -0.), cmpl(ninf, 0.), cmpl(ninf, 5.),
cmpl(ninf, -0.), cmpl(ninf, inf), cmpl(inf, inf),
cmpl(ninf, ninf), cmpl(5., inf), cmpl(5., ninf),
cmpl(nan, 5.), cmpl(5., nan), cmpl(nan, nan),
]
b = exp2(array(a,dtype=c))
for i in range(len(a)):
try:
res = self.c_pow((2,0), (a[i].real, a[i].imag))
except OverflowError:
res = (inf, nan)
except ValueError:
res = (nan, nan)
msg = 'result of 2**%r(%r) got %r expected %r\n ' % \
(c,a[i], b[i], res)
# cast untranslated boxed results to float,
# does no harm when translated
t1 = float(res[0])
t2 = float(b[i].real)
self.rAlmostEqual(t1, t2, rel_err=rel_err, msg=msg)
t1 = float(res[1])
t2 = float(b[i].imag)
self.rAlmostEqual(t1, t2, rel_err=rel_err, msg=msg)
def test_expm1(self):
import math, cmath
from numpy import array, expm1
inf = float('inf')
ninf = -float('inf')
nan = float('nan')
cmpl = complex
for c, rel_err in (('complex64', 2e-7), ('complex128', 2e-15), ('clongdouble', 2e-15)):
a = [cmpl(-5., 0), cmpl(-5., -5.), cmpl(-5., 5.),
cmpl(0., -5.), cmpl(0., 0.), cmpl(0., 5.),
cmpl(-0., -5.), cmpl(-0., 0.), cmpl(-0., 5.),
cmpl(-0., -0.), cmpl(inf, 0.), cmpl(inf, 5.),
cmpl(inf, -0.), cmpl(ninf, 0.), cmpl(ninf, 5.),
cmpl(ninf, -0.), cmpl(ninf, inf), cmpl(inf, inf),
cmpl(ninf, ninf), cmpl(5., inf), cmpl(5., ninf),
cmpl(nan, 5.), cmpl(5., nan), cmpl(nan, nan),
]
b = expm1(array(a,dtype=c))
for i in range(len(a)):
try:
res = cmath.exp(a[i]) - 1.
if a[i].imag == 0. and math.copysign(1., a[i].imag)<0:
res = cmpl(res.real, -0.)
elif a[i].imag == 0.:
res = cmpl(res.real, 0.)
except OverflowError:
res = cmpl(inf, nan)
except ValueError:
res = cmpl(nan, nan)
msg = 'result of expm1(%r(%r)) got %r expected %r\n ' % \
(c,a[i], b[i], res)
# cast untranslated boxed results to float,
# does no harm when translated
t1 = float(res.real)
t2 = float(b[i].real)
self.rAlmostEqual(t1, t2, rel_err=rel_err, msg=msg)
t1 = float(res.imag)
t2 = float(b[i].imag)
self.rAlmostEqual(t1, t2, rel_err=rel_err, msg=msg)
def test_not_complex(self):
from numpy import (radians, deg2rad, degrees, rad2deg,
logaddexp, logaddexp2, fmod,
arctan2)
raises(TypeError, radians, complex(90,90))
raises(TypeError, deg2rad, complex(90,90))
raises(TypeError, degrees, complex(90,90))
raises(TypeError, rad2deg, complex(90,90))
raises(TypeError, logaddexp, complex(1, 1), complex(3, 3))
raises(TypeError, logaddexp2, complex(1, 1), complex(3, 3))
raises(TypeError, arctan2, complex(1, 1), complex(3, 3))
raises (TypeError, fmod, complex(90,90), 3)
def test_isnan_isinf(self):
from numpy import isnan, isinf, array
assert (isnan(array([0.2+2j, complex(float('inf'),0),
complex(0,float('inf')), complex(0,float('nan')),
complex(float('nan'), 0)], dtype=complex)) == \
[False, False, False, True, True]).all()
assert (isinf(array([0.2+2j, complex(float('inf'),0),
complex(0,float('inf')), complex(0,float('nan')),
complex(float('nan'), 0)], dtype=complex)) == \
[False, True, True, False, False]).all()
def test_sign_for_complex_nan(self):
from numpy import array, nan, sign, isnan
C = array([nan], dtype=complex)
res = sign(C)
assert isnan(res.real)
assert res.imag == 0+0j
def test_square(self):
from numpy import square
assert square(complex(3, 4)) == complex(3,4) * complex(3, 4)
def test_power_simple(self):
import numpy as np
a = np.array([1+2j, 2+3j, 3+4j])
assert ((a ** 0) == 1).all()
assert ((a ** 1) == a).all()
assert ((a ** 2) == (a * a)).all()
def test_power_complex(self):
import numpy as np
# test from numpy/core/tests/test_umath_complex.py
x = np.array([1, 1j, 2, 2.5+.37j, np.inf, np.nan])
y = np.array([1, 1j, -0.5+1.5j, -0.5+1.5j, 2, 3])
lx = list(range(len(x)))
# Compute the values for complex type in python
p_r = [complex(x[i]) ** complex(y[i]) for i in lx]
# Substitute a result allowed by C99 standard
p_r[4] = complex(np.inf, np.nan)
# Do the same with numpy complex scalars
n_r_s = [x[i] ** y[i] for i in lx]
n_r_a = x ** y
for i in lx:
msg = 'Loop %d' % i
self.rAlmostEqual(float(n_r_s[i].real), float(p_r[i].real), msg=msg)
self.rAlmostEqual(float(n_r_s[i].imag), float(p_r[i].imag), msg=msg)
self.rAlmostEqual(float(n_r_a[i].real), float(p_r[i].real), msg=msg)
self.rAlmostEqual(float(n_r_a[i].imag), float(p_r[i].imag), msg=msg)
def test_conjugate(self):
from numpy import conj, conjugate, dtype
import numpy as np
c0 = dtype('complex128').type(complex(2.5, 0))
c1 = dtype('complex64').type(complex(1, 2))
assert conj is conjugate
assert conj(c0) == c0
assert c0.conjugate() == c0
assert conj(c1) == complex(1, -2)
assert conj(1) == 1
assert conj(-3) == -3
assert conj(float('-inf')) == float('-inf')
assert np.conjugate(1+2j) == 1-2j
eye2 = np.array([[1, 0], [0, 1]])
assert (eye2.conjugate() == eye2).all()
x = eye2 + 1j * eye2
for a, b in zip(np.conjugate(x), np.array([[ 1.-1.j, 0.-0.j], [ 0.-0.j, 1.-1.j]])):
assert a[0] == b[0]
assert a[1] == b[1]
def test_logn(self):
import math, cmath
# log and log10 are tested in math (1:1 from rcomplex)
from numpy import log2, array, log1p
inf = float('inf')
ninf = -float('inf')
nan = float('nan')
cmpl = complex
log_2 = math.log(2)
a = [cmpl(-5., 0), cmpl(-5., -5.), cmpl(-5., 5.),
cmpl(0., -5.), cmpl(0., 0.), cmpl(0., 5.),
cmpl(-0., -5.), cmpl(-0., 0.), cmpl(-0., 5.),
cmpl(-0., -0.), cmpl(inf, 0.), cmpl(inf, 5.),
cmpl(inf, -0.), cmpl(ninf, 0.), cmpl(ninf, 5.),
cmpl(ninf, -0.), cmpl(ninf, inf), cmpl(inf, inf),
cmpl(ninf, ninf), cmpl(5., inf), cmpl(5., ninf),
cmpl(nan, 5.), cmpl(5., nan), cmpl(nan, nan),
]
for c,rel_err in (('complex128', 2e-15), ('complex64', 1e-7)):
b = log2(array(a,dtype=c))
for i in range(len(a)):
try:
_res = cmath.log(a[i])
res = cmpl(_res.real / log_2, _res.imag / log_2)
except OverflowError:
res = cmpl(inf, nan)
except ValueError:
res = cmpl(ninf, math.atan2(a[i].imag, a[i].real) / log_2)
msg = 'result of log2(%r(%r)) got %r expected %r\n ' % \
(c,a[i], b[i], res)
# cast untranslated boxed results to float,
# does no harm when translated
t1 = float(res.real)
t2 = float(b[i].real)
self.rAlmostEqual(t1, t2, rel_err=rel_err, msg=msg)
t1 = float(res.imag)
t2 = float(b[i].imag)
self.rAlmostEqual(t1, t2, rel_err=rel_err, msg=msg)
for c,rel_err in (('complex128', 2e-15), ('complex64', 1e-7)):
b = log1p(array(a,dtype=c))
for i in range(len(a)):
try:
#be careful, normal addition wipes out +-0j
res = cmath.log(cmpl(a[i].real+1, a[i].imag))
except OverflowError:
res = cmpl(inf, nan)
except ValueError:
res = cmpl(ninf, 0)
msg = 'result of log1p(%r(%r)) got %r expected %r\n ' % \
(c,a[i], b[i], res)
# cast untranslated boxed results to float,
# does no harm when translated
t1 = float(res.real)
t2 = float(b[i].real)
self.rAlmostEqual(t1, t2, rel_err=rel_err, msg=msg)
t1 = float(res.imag)
t2 = float(b[i].imag)
self.rAlmostEqual(t1, t2, rel_err=rel_err, msg=msg)
def test_logical_ops(self):
from numpy import logical_and, logical_or, logical_xor, logical_not
c1 = complex(1, 1)
c3 = complex(3, 0)
c0 = complex(0, 0)
assert (logical_and([True, False , True, True], [c1, c1, c3, c0])
== [True, False, True, False]).all()
assert (logical_or([True, False, True, False], [c1, c3, c0, c0])
== [True, True, True, False]).all()
assert (logical_xor([True, False, True, False], [c1, c3, c0, c0])
== [False, True, True, False]).all()
assert (logical_not([c1, c0]) == [False, True]).all()
def test_minimum(self):
from numpy import array, minimum
a = array([-5.0+5j, -5.0-5j, -0.0-10j, 1.0+10j])
b = array([ 3.0+10.0j, 3.0, -2.0+2.0j, -3.0+4.0j])
c = minimum(a, b)
for i in range(4):
assert c[i] == min(a[i], b[i])
def test_maximum(self):
from numpy import array, maximum
a = array([-5.0+5j, -5.0-5j, -0.0-10j, 1.0+10j])
b = array([ 3.0+10.0j, 3.0, -2.0+2.0j, -3.0+4.0j])
c = maximum(a, b)
for i in range(4):
assert c[i] == max(a[i], b[i])
def test_complex_overflow(self):
from numpy import array, absolute, isinf, complex128, floor_divide
a = array(complex(1.5e308,1.5e308))
# Prints a RuntimeWarning, but does not raise
b = absolute(a)
assert isinf(b)
c = array([1.e+110, 1.e-110], dtype=complex128)
d = floor_divide(c**2, c)
assert (d == [1.e+110, 0]).all()
def test_basic(self):
import sys
from numpy import (dtype, add, array, dtype,
subtract as sub, multiply, divide, negative, absolute as abs,
floor_divide, real, imag, sign)
from numpy import (equal, not_equal, greater, greater_equal, less,
less_equal, isnan)
assert real(4.0) == 4.0
assert imag(0.0) == 0.0
a = array([complex(3.0, 4.0)])
b = a.real
b[0] = 1024
assert a[0].real == 1024
assert b.dtype == dtype(float)
a = array(complex(3.0, 4.0))
b = a.real
assert b == array(3)
assert a.imag == array(4)
a.real = 1024
a.imag = 2048
assert a.real == 1024 and a.imag == 2048
assert b.dtype == dtype(float)
a = array(4.0)
b = a.imag
assert b == 0
assert b.dtype == dtype(float)
exc = raises(TypeError, 'a.imag = 1024')
assert str(exc.value).startswith("array does not have imaginary")
exc = raises(ValueError, 'a.real = [1, 3]')
assert str(exc.value) == \
"could not broadcast input array from shape (2) into shape ()"
a = array('abc')
assert str(a.real) == 'abc'
assert str(a.imag) == ''
for t in 'complex64', 'complex128', 'clongdouble':
complex_ = dtype(t).type
O = complex(0, 0)
c0 = complex_(complex(2.5, 0))
c1 = complex_(complex(1, 2))
c2 = complex_(complex(3, 4))
c3 = complex_(complex(-3, -3))
assert equal(c0, 2.5)
assert equal(c1, complex_(complex(1, 2)))
assert equal(c1, complex(1, 2))
assert equal(c1, c1)
assert not_equal(c1, c2)
assert not equal(c1, c2)
assert less(c1, c2)
assert less_equal(c1, c2)
assert less_equal(c1, c1)
assert not less(c1, c1)
assert greater(c2, c1)
assert greater_equal(c2, c1)
assert not greater(c1, c2)
assert add(c1, c2) == complex_(complex(4, 6))
assert add(c1, c2) == complex(4, 6)
assert sub(c0, c0) == sub(c1, c1) == 0
assert sub(c1, c2) == complex(-2, -2)
assert negative(complex(1,1)) == complex(-1, -1)
assert negative(complex(0, 0)) == 0
assert multiply(1, c1) == c1
assert multiply(2, c2) == complex(6, 8)
assert multiply(c1, c2) == complex(-5, 10)
assert divide(c0, 1) == c0
assert divide(c2, -1) == negative(c2)
assert divide(c1, complex(0, 1)) == complex(2, -1)
n = divide(c1, O)
assert repr(n.real) == 'inf'
assert repr(n.imag).startswith('inf') #can be inf*j or infj
assert divide(c0, c0) == 1
res = divide(c2, c1)
assert abs(res.real-2.2) < 0.001
assert abs(res.imag+0.4) < 0.001
assert floor_divide(c0, c0) == complex(1, 0)
assert isnan(floor_divide(c0, complex(0, 0)).real)
assert floor_divide(c0, complex(0, 0)).imag == 0.0
assert abs(c0) == 2.5
assert abs(c2) == 5
assert sign(complex(0, 0)) == 0
assert sign(complex(-42, 0)) == -1
assert sign(complex(42, 0)) == 1
assert sign(complex(-42, 2)) == -1
assert sign(complex(42, 2)) == 1
assert sign(complex(-42, -3)) == -1
assert sign(complex(42, -3)) == 1
assert sign(complex(0, -42)) == -1
assert sign(complex(0, 42)) == 1
inf_c = complex_(complex(float('inf'), 0.))
assert repr(abs(inf_c)) == 'inf'
assert repr(abs(complex(float('nan'), float('nan')))) == 'nan'
# numpy actually raises an AttributeError,
# but numpy.raises a TypeError
if '__pypy__' in sys.builtin_module_names:
exct, excm = TypeError, 'readonly attribute'
else :
exct, excm = AttributeError, 'is not writable'
exc = raises(exct, 'c2.real = 10.')
assert excm in exc.value[0]
exc = raises(exct, 'c2.imag = 10.')
assert excm in exc.value[0]
assert(real(c2) == 3.0)
assert(imag(c2) == 4.0)
def test_conj(self):
from numpy import array
a = array([1 + 2j, 1 - 2j])
assert (a.conj() == [1 - 2j, 1 + 2j]).all()
a = array([1,2,3.4J],dtype=complex)
assert a[2].conjugate() == 0-3.4j
def test_math(self):
if self.isWindows:
skip('windows does not support c99 complex')
import sys
import numpy as np
rAlmostEqual = self.rAlmostEqual
for t, testcases in (
('complex128', self.testcases128),
#('complex64', self.testcases64),
):
complex_ = np.dtype(t).type
for id, fn, ar, ai, er, ei, flags in testcases:
arg = complex_(complex(ar, ai))
expected = (er, ei)
if fn.startswith('acos'):
fn = 'arc' + fn[1:]
elif fn.startswith('asin'):
fn = 'arc' + fn[1:]
elif fn.startswith('atan'):
fn = 'arc' + fn[1:]
elif fn in ('rect', 'polar'):
continue
function = getattr(np, fn)
_actual = function(arg)
actual = (_actual.real, _actual.imag)
if 'ignore-real-sign' in flags:
actual = (abs(actual[0]), actual[1])
expected = (abs(expected[0]), expected[1])
if 'ignore-imag-sign' in flags:
actual = (actual[0], abs(actual[1]))
expected = (expected[0], abs(expected[1]))
# for the real part of the log function, we allow an
# absolute error of up to 2e-15.
if fn in ('log', 'log10'):
real_abs_err = 2e-15
else:
real_abs_err = 5e-323
error_message = (
'%s: %s(%r(%r, %r))\n'
'Expected: complex(%r, %r)\n'
'Received: complex(%r, %r)\n'
) % (id, fn, complex_, ar, ai,
expected[0], expected[1],
actual[0], actual[1])
# since rAlmostEqual is a wrapped function,
# convert arguments to avoid boxed values
rAlmostEqual(float(expected[0]), float(actual[0]),
abs_err=real_abs_err, msg=error_message)
rAlmostEqual(float(expected[1]), float(actual[1]),
msg=error_message)
sys.stderr.write('.')
sys.stderr.write('\n')
def test_complexbox_to_pycomplex(self):
from numpy import dtype
x = dtype('complex128').type(3.4j)
assert complex(x) == 3.4j
|