1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
|
from pypy.interpreter.baseobjspace import W_Root
from pypy.interpreter.error import OperationError, oefmt
from pypy.interpreter.gateway import interp2app, unwrap_spec, WrappedDefault
from pypy.interpreter.typedef import TypeDef, GetSetProperty, interp_attrproperty
from pypy.interpreter.argument import Arguments
from rpython.rlib import jit, rgc
from rpython.rlib.rarithmetic import LONG_BIT, maxint, _get_bitsize
from rpython.tool.sourcetools import func_with_new_name
from rpython.rlib.rawstorage import (
raw_storage_setitem, free_raw_storage, alloc_raw_storage)
from rpython.rtyper.lltypesystem import rffi, lltype
from rpython.rlib.objectmodel import keepalive_until_here, specialize
from pypy.module.micronumpy import loop, constants as NPY
from pypy.module.micronumpy.descriptor import (
get_dtype_cache, decode_w_dtype, num2dtype)
from pypy.module.micronumpy.base import convert_to_array, W_NDimArray
from pypy.module.micronumpy.ctors import numpify
from pypy.module.micronumpy.nditer import W_NDIter, coalesce_iter
from pypy.module.micronumpy.strides import shape_agreement
from pypy.module.micronumpy.support import (_parse_signature, product,
get_storage_as_int, is_rhs_priority_higher)
from .converters import out_converter
from .casting import (
can_cast_type, can_cast_array, can_cast_to,
find_result_type, promote_types)
from .boxes import W_GenericBox, W_ObjectBox
REDUCE, ACCUMULATE, REDUCEAT = range(3)
_reduce_type = ["reduce", "acccumulate", "reduceat"]
def done_if_true(dtype, val):
return dtype.itemtype.bool(val)
def done_if_false(dtype, val):
return not dtype.itemtype.bool(val)
def _find_array_wrap(*args, **kwds):
'''determine an appropriate __array_wrap__ function to call for the outputs.
If an output argument is provided, then it is wrapped
with its own __array_wrap__ not with the one determined by
the input arguments.
if the provided output argument is already an array,
the wrapping function is None (which means no wrapping will
be done --- not even PyArray_Return).
A NULL is placed in output_wrap for outputs that
should just have PyArray_Return called.
'''
raise NotImplementedError()
def array_priority(space, w_lhs, w_rhs):
# handle array_priority
# w_lhs and w_rhs could be of different ndarray subtypes. Numpy does:
# 1. if __array_priorities__ are equal and one is an ndarray and the
# other is a subtype, return a subtype
# 2. elif rhs.__array_priority__ is higher, return the type of rhs
w_ndarray = space.gettypefor(W_NDimArray)
lhs_type = space.type(w_lhs)
rhs_type = space.type(w_rhs)
lhs_for_subtype = w_lhs
rhs_for_subtype = w_rhs
#it may be something like a FlatIter, which is not an ndarray
if not space.issubtype_w(lhs_type, w_ndarray):
lhs_type = space.type(w_lhs.base)
lhs_for_subtype = w_lhs.base
if not space.issubtype_w(rhs_type, w_ndarray):
rhs_type = space.type(w_rhs.base)
rhs_for_subtype = w_rhs.base
w_highpriority = w_lhs
highpriority_subtype = lhs_for_subtype
if space.is_w(lhs_type, w_ndarray) and not space.is_w(rhs_type, w_ndarray):
highpriority_subtype = rhs_for_subtype
w_highpriority = w_rhs
if is_rhs_priority_higher(space, w_lhs, w_rhs):
highpriority_subtype = rhs_for_subtype
w_highpriority = w_rhs
return w_highpriority, highpriority_subtype
class W_Ufunc(W_Root):
_immutable_fields_ = [
"name", "promote_to_largest", "promote_to_float", "promote_bools", "nin",
"identity", "int_only", "allow_bool", "allow_complex",
"complex_to_float", "nargs", "nout", "signature"
]
w_doc = None
def __init__(self, name, promote_to_largest, promote_to_float, promote_bools,
identity, int_only, allow_bool, allow_complex, complex_to_float):
self.name = name
self.promote_to_largest = promote_to_largest
self.promote_to_float = promote_to_float
self.promote_bools = promote_bools
self.identity = identity
self.int_only = int_only
self.allow_bool = allow_bool
self.allow_complex = allow_complex
self.complex_to_float = complex_to_float
def descr_get_name(self, space):
return space.newtext(self.name)
def descr_repr(self, space):
return space.newtext("<ufunc '%s'>" % self.name)
def get_doc(self, space):
# Note: allows any object to be set as docstring, because why not?
if self.w_doc is None:
return space.w_None
return self.w_doc
def set_doc(self, space, w_doc):
self.w_doc = w_doc
def descr_get_identity(self, space):
if self.identity is None:
return space.w_None
return self.identity
def descr_call(self, space, __args__):
args_w, kwds_w = __args__.unpack()
# sig, extobj are used in generic ufuncs
w_subok, w_out, sig, w_casting, extobj = self.parse_kwargs(space, kwds_w)
out = out_converter(space, w_out)
if (w_subok is not None and space.is_true(w_subok)):
raise oefmt(space.w_NotImplementedError, "parameter subok unsupported")
if kwds_w:
# numpy compatible, raise with only the first of maybe many keys
kw = kwds_w.keys()[0]
raise oefmt(space.w_TypeError,
"'%s' is an invalid keyword to ufunc '%s'", kw, self.name)
if len(args_w) < self.nin:
raise oefmt(space.w_ValueError, "invalid number of arguments"
", expected %d got %d", len(args_w), self.nin)
elif (len(args_w) > self.nin and out is not None) or \
(len(args_w) > self.nin + 1):
raise oefmt(space.w_TypeError, "invalid number of arguments")
# Override the default out value, if it has been provided in w_wargs
if len(args_w) > self.nin:
if out:
raise oefmt(space.w_ValueError, "cannot specify 'out' as both "
"a positional and keyword argument")
out = args_w[-1]
else:
args_w = args_w + [out]
if w_casting is None:
casting = 'unsafe'
else:
casting = space.text_w(w_casting)
retval = self.call(space, args_w, sig, casting, extobj)
keepalive_until_here(args_w)
return retval
def descr_accumulate(self, space, w_obj, w_axis=None, w_dtype=None, w_out=None):
if w_axis is None:
w_axis = space.newint(0)
out = out_converter(space, w_out)
return self.reduce(space, w_obj, w_axis, True, #keepdims must be true
out, w_dtype, variant=ACCUMULATE)
@unwrap_spec(keepdims=bool)
def descr_reduce(self, space, w_obj, w_axis=None, w_dtype=None,
w_out=None, keepdims=False):
from pypy.module.micronumpy.ndarray import W_NDimArray
if w_axis is None:
w_axis = space.newint(0)
out = out_converter(space, w_out)
return self.reduce(space, w_obj, w_axis, keepdims, out, w_dtype)
@specialize.arg(7)
def reduce(self, space, w_obj, w_axis, keepdims=False, out=None, dtype=None,
variant=REDUCE):
if self.nin != 2:
raise oefmt(space.w_ValueError,
"%s only supported for binary functions",
_reduce_type[variant])
assert isinstance(self, W_Ufunc2)
obj = convert_to_array(space, w_obj)
if obj.get_dtype().is_flexible():
raise oefmt(space.w_TypeError,
"cannot perform %s with flexible type",
_reduce_type[variant])
obj_shape = obj.get_shape()
if obj.is_scalar():
return obj.get_scalar_value()
shapelen = len(obj_shape)
if space.is_none(w_axis):
axes = range(shapelen)
axis = maxint
elif space.isinstance_w(w_axis, space.w_tuple):
axes_w = space.listview(w_axis)
axes = [0] * len(axes_w)
for i in range(len(axes_w)):
x = space.int_w(axes_w[i])
if x < 0:
x += shapelen
if x < 0 or x >= shapelen:
raise oefmt(space.w_ValueError, "'axis' entry is out of bounds")
axes[i] = x
else:
if space.isinstance_w(w_axis, space.w_tuple) and space.len_w(w_axis) == 1:
w_axis = space.getitem(w_axis, space.newint(0))
axis = space.int_w(w_axis)
if axis < -shapelen or axis >= shapelen:
raise oefmt(space.w_ValueError, "'axis' entry is out of bounds")
if axis < 0:
axis += shapelen
axes = [axis]
dtype = decode_w_dtype(space, dtype)
if dtype is None and out is not None:
dtype = out.get_dtype()
if dtype is None:
obj_dtype = obj.get_dtype()
num = obj_dtype.num
if ((obj_dtype.is_bool() or obj_dtype.is_int()) and
self.promote_to_largest):
if obj_dtype.is_bool():
num = NPY.LONG
elif obj_dtype.elsize * 8 < LONG_BIT:
if obj_dtype.is_unsigned():
num = NPY.ULONG
else:
num = NPY.LONG
dtype = num2dtype(space, num)
if self.identity is None:
for i in axes:
if obj_shape[i] == 0:
raise oefmt(space.w_ValueError,
"zero-size array to reduction operation %s "
"which has no identity", self.name)
if variant == ACCUMULATE:
if len(axes) != 1:
raise oefmt(space.w_ValueError,
"accumulate does not allow multiple axes")
axis = axes[0]
assert axis >= 0
dtype = self.find_binop_type(space, dtype)
shape = obj_shape[:]
if out:
# There appears to be a lot of accidental complexity in what
# shapes cnumpy allows for out.
# We simply require out.shape == obj.shape
if out.get_shape() != obj_shape:
raise oefmt(space.w_ValueError,
"output parameter shape mismatch, expecting "
"[%s], got [%s]",
",".join([str(x) for x in shape]),
",".join([str(x) for x in out.get_shape()]),
)
dtype = out.get_dtype()
call__array_wrap__ = False
else:
out = W_NDimArray.from_shape(space, shape, dtype,
w_instance=obj)
call__array_wrap__ = True
if shapelen > 1:
if obj.get_size() == 0:
if self.identity is not None:
out.fill(space, self.identity.convert_to(space, dtype))
return out
loop.accumulate(
space, self.func, obj, axis, dtype, out, self.identity)
else:
loop.accumulate_flat(
space, self.func, obj, dtype, out, self.identity)
if call__array_wrap__:
out = space.call_method(obj, '__array_wrap__', out, space.w_None)
return out
axis_flags = [False] * shapelen
for i in axes:
if axis_flags[i]:
raise oefmt(space.w_ValueError, "duplicate value in 'axis'")
axis_flags[i] = True
_, dtype, _ = self.find_specialization(space, dtype, dtype, out,
casting='unsafe')
if shapelen == len(axes):
if out:
if out.ndims() > 0:
raise oefmt(space.w_ValueError,
"output parameter for reduction operation %s has "
"too many dimensions", self.name)
dtype = out.get_dtype()
res = loop.reduce_flat(
space, self.func, obj, dtype, self.done_func, self.identity)
if out:
out.set_scalar_value(res)
return out
w_NDimArray = space.gettypefor(W_NDimArray)
call__array_wrap__ = False
if keepdims:
shape = [1] * len(obj_shape)
out = W_NDimArray.from_shape(space, shape, dtype, w_instance=obj)
out.implementation.setitem(0, res)
call__array_wrap__ = True
res = out
elif (space.issubtype_w(space.type(w_obj), w_NDimArray) and
not space.is_w(space.type(w_obj), w_NDimArray)):
# subtypes return a ndarray subtype, not a scalar
out = W_NDimArray.from_shape(space, [1], dtype, w_instance=obj)
out.implementation.setitem(0, res)
call__array_wrap__ = True
res = out
if call__array_wrap__:
res = space.call_method(obj, '__array_wrap__', res, space.w_None)
return res
else:
temp = None
if keepdims:
shape = obj_shape[:]
for axis in axes:
shape[axis] = 1
else:
shape = [0] * (shapelen - len(axes))
j = 0
for i in range(shapelen):
if not axis_flags[i]:
shape[j] = obj_shape[i]
j += 1
if out:
# Test for shape agreement
# XXX maybe we need to do broadcasting here, although I must
# say I don't understand the details for axis reduce
if out.ndims() > len(shape):
raise oefmt(space.w_ValueError,
"output parameter for reduction operation %s "
"has too many dimensions", self.name)
elif out.ndims() < len(shape):
raise oefmt(space.w_ValueError,
"output parameter for reduction operation %s "
"does not have enough dimensions", self.name)
elif out.get_shape() != shape:
raise oefmt(space.w_ValueError,
"output parameter shape mismatch, expecting "
"[%s], got [%s]",
",".join([str(x) for x in shape]),
",".join([str(x) for x in out.get_shape()]),
)
call__array_wrap__ = False
dtype = out.get_dtype()
else:
out = W_NDimArray.from_shape(space, shape, dtype,
w_instance=obj)
if obj.get_size() == 0:
if self.identity is not None:
out.fill(space, self.identity.convert_to(space, dtype))
return out
loop.reduce(
space, self.func, obj, axis_flags, dtype, out, self.identity)
out = space.call_method(obj, '__array_wrap__', out, space.w_None)
return out
def descr_outer(self, space, args_w):
if self.nin != 2:
raise oefmt(space.w_ValueError,
"outer product only supported for binary functions")
if len(args_w) != 2:
raise oefmt(space.w_ValueError,
"exactly two arguments expected")
args = [convert_to_array(space, w_obj) for w_obj in args_w]
w_outshape = [space.newint(i) for i in args[0].get_shape() + [1]*args[1].ndims()]
args0 = args[0].reshape(space, space.newtuple(w_outshape))
return self.descr_call(space, Arguments.frompacked(space,
space.newlist([args0, args[1]])))
def parse_kwargs(self, space, kwds_w):
w_casting = kwds_w.pop('casting', None)
w_subok = kwds_w.pop('subok', None)
w_out = kwds_w.pop('out', space.w_None)
sig = None
# TODO handle triple of extobj,
# see _extract_pyvals in ufunc_object.c
extobj_w = kwds_w.pop('extobj', get_extobj(space))
if not space.isinstance_w(extobj_w, space.w_list) or space.len_w(extobj_w) != 3:
raise oefmt(space.w_TypeError, "'extobj' must be a list of 3 values")
return w_subok, w_out, sig, w_casting, extobj_w
def get_extobj(space):
extobj_w = space.newlist([space.newint(8192), space.newint(0), space.w_None])
return extobj_w
_reflected_ops = {
'add': 'radd',
'subtract': 'rsub',
'multiply': 'rmul',
'divide': 'rdiv',
'true_divide': 'rtruediv',
'floor_divide': 'rfloordiv',
'remainder': 'rmod',
'power': 'rpow',
'left_shift': 'rlshift',
'right_shift': 'rrshift',
'bitwise_and': 'rand',
'bitwise_xor': 'rxor',
'bitwise_or': 'ror',
#/* Comparisons */
'equal': 'eq',
'not_equal': 'ne',
'greater': 'lt',
'less': 'gt',
'greater_equal': 'le',
'less_equal': 'ge',
}
for key, value in _reflected_ops.items():
_reflected_ops[key] = "__" + value + "__"
del key
del value
def _has_reflected_op(space, w_obj, op):
if op not in _reflected_ops:
return False
return space.getattr(w_obj, space.newtext(_reflected_ops[op])) is not None
def safe_casting_mode(casting):
assert casting is not None
if casting in ('unsafe', 'same_kind'):
return 'safe'
else:
return casting
class W_Ufunc1(W_Ufunc):
_immutable_fields_ = ["func", "bool_result", "dtypes[*]"]
nin = 1
nout = 1
nargs = 2
signature = None
def __init__(self, func, name, promote_to_largest=False, promote_to_float=False,
promote_bools=False, identity=None, bool_result=False, int_only=False,
allow_bool=True, allow_complex=True, complex_to_float=False):
W_Ufunc.__init__(self, name, promote_to_largest, promote_to_float, promote_bools,
identity, int_only, allow_bool, allow_complex, complex_to_float)
self.func = func
self.bool_result = bool_result
def call(self, space, args_w, sig, casting, extobj):
w_obj = args_w[0]
out = None
if len(args_w) > 1:
out = out_converter(space, args_w[1])
w_obj = numpify(space, w_obj)
dtype = w_obj.get_dtype(space)
calc_dtype, dt_out, func = self.find_specialization(space, dtype, out, casting)
if isinstance(w_obj, W_GenericBox):
if out is None:
return self.call_scalar(space, w_obj, calc_dtype)
else:
w_obj = W_NDimArray.from_scalar(space, w_obj)
assert isinstance(w_obj, W_NDimArray)
shape = shape_agreement(space, w_obj.get_shape(), out,
broadcast_down=False)
if out is None:
w_res = W_NDimArray.from_shape(
space, shape, dt_out, w_instance=w_obj)
else:
w_res = out
w_res = loop.call1(space, shape, func, calc_dtype, w_obj, w_res)
if out is None:
if w_res.is_scalar():
return w_res.get_scalar_value()
ctxt = space.newtuple([self, space.newtuple([w_obj]), space.newint(0)])
w_res = space.call_method(w_obj, '__array_wrap__', w_res, ctxt)
return w_res
def call_scalar(self, space, w_arg, in_dtype):
w_val = self.func(in_dtype, w_arg.convert_to(space, in_dtype))
if isinstance(w_val, W_ObjectBox):
return w_val.w_obj
return w_val
def find_specialization(self, space, dtype, out, casting):
if dtype.is_flexible():
raise oefmt(space.w_TypeError, "ufunc '%s' did not contain a loop",
self.name)
if (not self.allow_bool and dtype.is_bool() or
not self.allow_complex and dtype.is_complex()):
raise oefmt(space.w_TypeError,
"ufunc %s not supported for the input type", self.name)
dt_in, dt_out = self._calc_dtype(space, dtype, out, casting)
return dt_in, dt_out, self.func
@jit.unroll_safe
def _calc_dtype(self, space, arg_dtype, out=None, casting='unsafe'):
if arg_dtype.is_object():
return arg_dtype, arg_dtype
in_casting = safe_casting_mode(casting)
for dt_in, dt_out in self.dtypes:
if not can_cast_type(space, arg_dtype, dt_in, in_casting):
continue
if out is not None:
res_dtype = out.get_dtype()
if not can_cast_type(space, dt_out, res_dtype, casting):
continue
return dt_in, dt_out
else:
raise oefmt(space.w_TypeError,
"ufunc '%s' not supported for the input types", self.name)
class W_Ufunc2(W_Ufunc):
_immutable_fields_ = ["func", "bool_result", "done_func", "dtypes[*]",
"simple_binary"]
nin = 2
nout = 1
nargs = 3
signature = None
def __init__(self, func, name, promote_to_largest=False, promote_to_float=False,
promote_bools=False, identity=None, bool_result=False, int_only=False,
allow_bool=True, allow_complex=True, complex_to_float=False):
W_Ufunc.__init__(self, name, promote_to_largest, promote_to_float, promote_bools,
identity, int_only, allow_bool, allow_complex, complex_to_float)
self.func = func
if name == 'logical_and':
self.done_func = done_if_false
elif name == 'logical_or':
self.done_func = done_if_true
else:
self.done_func = None
self.bool_result = bool_result or (self.done_func is not None)
self.simple_binary = (
allow_complex and allow_bool and not self.bool_result and not int_only
and not complex_to_float and not promote_to_float
and not promote_bools)
def are_common_types(self, dtype1, dtype2):
if dtype1.is_bool() or dtype2.is_bool():
return False
if (dtype1.is_int() and dtype2.is_int() or
dtype1.is_float() and dtype2.is_float() or
dtype1.is_complex() and dtype2.is_complex()):
return True
return False
@jit.unroll_safe
def call(self, space, args_w, sig, casting, extobj):
if len(args_w) > 2:
[w_lhs, w_rhs, out] = args_w
out = out_converter(space, out)
else:
[w_lhs, w_rhs] = args_w
out = None
if not isinstance(w_rhs, W_NDimArray):
# numpy implementation detail, useful for things like numpy.Polynomial
# FAIL with NotImplemented if the other object has
# the __r<op>__ method and has __array_priority__ as
# an attribute (signalling it can handle ndarray's)
# and is not already an ndarray or a subtype of the same type.
r_greater = is_rhs_priority_higher(space, w_lhs, w_rhs)
if r_greater and _has_reflected_op(space, w_rhs, self.name):
return space.w_NotImplemented
w_lhs = numpify(space, w_lhs)
w_rhs = numpify(space, w_rhs)
w_ldtype = w_lhs.get_dtype(space)
w_rdtype = w_rhs.get_dtype(space)
if w_ldtype.is_object() or w_rdtype.is_object():
if ((w_ldtype.is_object() and w_ldtype.is_record()) and
(w_rdtype.is_object() and w_rdtype.is_record())):
pass
elif ((w_ldtype.is_object() and w_ldtype.is_record()) or
(w_rdtype.is_object() and w_rdtype.is_record())):
if self.name == 'not_equal':
return space.w_True
elif self.name == 'equal':
return space.w_False
else:
msg = ("ufunc '%s' not supported for the input types, "
"and the inputs could not be safely coerced to "
"any supported types according to the casting "
"rule '%s'")
raise oefmt(space.w_TypeError, msg, self.name, casting)
else:
pass
elif w_ldtype.is_str() and w_rdtype.is_str() and \
self.bool_result:
pass
elif (w_ldtype.is_str()) and \
self.bool_result and out is None:
if self.name in ('equal', 'less_equal', 'less'):
return space.w_False
return space.w_True
elif (w_rdtype.is_str()) and \
self.bool_result and out is None:
if self.name in ('not_equal','less', 'less_equal'):
return space.w_True
return space.w_False
elif w_ldtype.is_flexible() or w_rdtype.is_flexible():
if self.bool_result:
if self.name == 'equal' or self.name == 'not_equal':
res = w_ldtype.eq(space, w_rdtype)
if not res:
return space.newbool(self.name == 'not_equal')
else:
return space.w_NotImplemented
else:
raise oefmt(space.w_TypeError,
'unsupported operand dtypes %s and %s for "%s"',
w_rdtype.get_name(), w_ldtype.get_name(),
self.name)
if (isinstance(w_lhs, W_GenericBox) and
isinstance(w_rhs, W_GenericBox) and out is None):
return self.call_scalar(space, w_lhs, w_rhs, casting)
if isinstance(w_lhs, W_GenericBox):
w_lhs = W_NDimArray.from_scalar(space, w_lhs)
assert isinstance(w_lhs, W_NDimArray)
if isinstance(w_rhs, W_GenericBox):
w_rhs = W_NDimArray.from_scalar(space, w_rhs)
assert isinstance(w_rhs, W_NDimArray)
calc_dtype, dt_out, func = self.find_specialization(
space, w_ldtype, w_rdtype, out, casting, w_lhs, w_rhs)
new_shape = shape_agreement(space, w_lhs.get_shape(), w_rhs)
new_shape = shape_agreement(space, new_shape, out, broadcast_down=False)
w_highpriority, out_subtype = array_priority(space, w_lhs, w_rhs)
if out is None:
w_res = W_NDimArray.from_shape(space, new_shape, dt_out,
w_instance=out_subtype)
else:
w_res = out
w_res = loop.call2(space, new_shape, self.func, calc_dtype,
w_lhs, w_rhs, w_res)
if out is None:
if w_res.is_scalar():
return w_res.get_scalar_value()
ctxt = space.newtuple([self, space.newtuple([w_lhs, w_rhs]), space.newint(0)])
w_res = space.call_method(w_highpriority, '__array_wrap__', w_res, ctxt)
return w_res
def call_scalar(self, space, w_lhs, w_rhs, casting):
in_dtype, out_dtype, func = self.find_specialization(
space, w_lhs.get_dtype(space), w_rhs.get_dtype(space),
out=None, casting=casting)
w_val = self.func(in_dtype,
w_lhs.convert_to(space, in_dtype),
w_rhs.convert_to(space, in_dtype))
if isinstance(w_val, W_ObjectBox):
return w_val.w_obj
return w_val
def _find_specialization(self, space, l_dtype, r_dtype, out, casting,
w_arg1, w_arg2):
if (not self.allow_bool and (l_dtype.is_bool() or
r_dtype.is_bool()) or
not self.allow_complex and (l_dtype.is_complex() or
r_dtype.is_complex())):
raise oefmt(space.w_TypeError,
"ufunc '%s' not supported for the input types", self.name)
if self.bool_result and not self.done_func:
# XXX: should actually pass the arrays
dtype = find_result_type(space, [], [l_dtype, r_dtype])
bool_dtype = get_dtype_cache(space).w_booldtype
return dtype, bool_dtype, self.func
dt_in, dt_out = self._calc_dtype(
space, l_dtype, r_dtype, out, casting, w_arg1, w_arg2)
return dt_in, dt_out, self.func
def find_specialization(self, space, l_dtype, r_dtype, out, casting,
w_arg1=None, w_arg2=None):
if self.simple_binary:
if out is None and not (l_dtype.is_object() or r_dtype.is_object()):
if w_arg1 is not None and w_arg2 is not None:
w_arg1 = convert_to_array(space, w_arg1)
w_arg2 = convert_to_array(space, w_arg2)
dtype = find_result_type(space, [w_arg1, w_arg2], [])
else:
dtype = promote_types(space, l_dtype, r_dtype)
return dtype, dtype, self.func
return self._find_specialization(
space, l_dtype, r_dtype, out, casting, w_arg1, w_arg2)
def find_binop_type(self, space, dtype):
"""Find a valid dtype signature of the form xx->x"""
if dtype.is_object():
return dtype
for dt_in, dt_out in self.dtypes:
if can_cast_to(dtype, dt_in):
if dt_out == dt_in:
return dt_in
else:
dtype = dt_out
break
for dt_in, dt_out in self.dtypes:
if can_cast_to(dtype, dt_in) and dt_out == dt_in:
return dt_in
raise oefmt(space.w_ValueError,
"could not find a matching type for %s.accumulate, "
"requested type has type code '%s'", self.name, dtype.char)
@jit.unroll_safe
def _calc_dtype(self, space, l_dtype, r_dtype, out, casting,
w_arg1, w_arg2):
if l_dtype.is_object() or r_dtype.is_object():
dtype = get_dtype_cache(space).w_objectdtype
return dtype, dtype
use_min_scalar = (w_arg1 is not None and w_arg2 is not None and
((w_arg1.is_scalar() and not w_arg2.is_scalar()) or
(not w_arg1.is_scalar() and w_arg2.is_scalar())))
in_casting = safe_casting_mode(casting)
if use_min_scalar:
w_arg1 = convert_to_array(space, w_arg1)
w_arg2 = convert_to_array(space, w_arg2)
elif (in_casting == 'safe' and l_dtype.num == 7 and r_dtype.num == 7 and
out is None and not self.promote_to_float):
# while long (7) can be cast to int32 (5) on 32 bit, don't do it
return l_dtype, l_dtype
for dt_in, dt_out in self.dtypes:
if use_min_scalar:
if not (can_cast_array(space, w_arg1, dt_in, in_casting) and
can_cast_array(space, w_arg2, dt_in, in_casting)):
continue
else:
if not (can_cast_type(space, l_dtype, dt_in, in_casting) and
can_cast_type(space, r_dtype, dt_in, in_casting)):
continue
if out is not None:
res_dtype = out.get_dtype()
if not can_cast_type(space, dt_out, res_dtype, casting):
continue
return dt_in, dt_out
else:
raise oefmt(space.w_TypeError,
"ufunc '%s' not supported for the input types", self.name)
def _match_dtypes(space, indtypes, targetdtypes, i_target, casting):
allok = True
for i in range(len(indtypes)):
origin = indtypes[i]
target = targetdtypes[i + i_target]
if origin is None:
continue
if target is None:
continue
if not can_cast_type(space, origin, target, casting):
allok = False
break
return allok
def _raise_err_msg(self, space, dtypes0, dtypes1):
dtypesstr = ''
for d in dtypes0:
if d is None:
dtypesstr += 'None,'
else:
dtypesstr += '%s%s%s,' % (d.byteorder, d.kind, d.elsize)
_dtypesstr = ','.join(['%s%s%s' % (d.byteorder, d.kind, d.elsize) \
for d in dtypes1])
raise oefmt(space.w_TypeError,
"input dtype [%s] did not match any known dtypes [%s] ",
dtypesstr,_dtypesstr)
class W_UfuncGeneric(W_Ufunc):
'''
Handle a number of python functions, each with a signature and dtypes.
The signature can specify how to create the inner loop, i.e.
(i,j),(j,k)->(i,k) for a dot-like matrix multiplication, and the dtypes
can specify the input, output args for the function. When called, the actual
function used will be resolved by examining the input arg's dtypes.
If dtypes == 'match', only one argument is provided and the output dtypes
will match the input dtype (not cpython numpy compatible)
This is the parallel to PyUFuncOjbect, see include/numpy/ufuncobject.h
'''
_immutable_fields_ = ["funcs", "dtypes", "data", "match_dtypes"]
def __init__(self, space, funcs, name, identity, nin, nout, dtypes,
signature, match_dtypes=False, stack_inputs=False,
external_loop=False):
# XXX make sure funcs, signature, dtypes, nin, nout are consistent
# These don't matter, we use the signature and dtypes for determining
# output dtype
promote_to_largest = promote_to_float = promote_bools = False
allow_bool = allow_complex = True
int_only = complex_to_float = False
W_Ufunc.__init__(self, name, promote_to_largest, promote_to_float, promote_bools,
identity, int_only, allow_bool, allow_complex, complex_to_float)
self.funcs = funcs
self.dtypes = dtypes
self.nin = nin
self.nout = nout
self.match_dtypes = match_dtypes
self.nargs = nin + max(nout, 1) # ufuncs can always be called with an out=<> kwarg
if not match_dtypes and (len(dtypes) % len(funcs) != 0 or
len(dtypes) / len(funcs) != self.nargs):
raise oefmt(space.w_ValueError,
"generic ufunc with %d functions, %d arguments, but %d dtypes",
len(funcs), self.nargs, len(dtypes))
self.signature = signature
#These will be filled in by _parse_signature
self.core_enabled = True # False for scalar ufunc, True for generalized ufunc
self.stack_inputs = stack_inputs
self.core_num_dim_ix = 0 # number of distinct dimension names in signature
self.core_num_dims = [0] * self.nargs # number of core dimensions of each nargs
self.core_offsets = [0] * self.nargs
self.core_dim_ixs = [] # indices into unique shapes for each arg
self.external_loop = external_loop
def reduce(self, space, w_obj, w_axis, keepdims=False, out=None, dtype=None,
variant=REDUCE):
raise oefmt(space.w_NotImplementedError, 'not implemented yet')
def call(self, space, args_w, sig, casting, extobj):
if len(args_w) < self.nin:
raise oefmt(space.w_ValueError,
'%s called with too few input args, expected at least %d got %d',
self.name, self.nin, len(args_w))
inargs = [convert_to_array(space, args_w[i]) for i in range(self.nin)]
outargs = [None] * self.nout
for i in range(len(args_w)-self.nin):
out = args_w[i+self.nin]
if space.is_w(out, space.w_None) or out is None:
continue
else:
if not isinstance(out, W_NDimArray):
raise oefmt(space.w_TypeError,
'output arg %d must be an array, not %s', i+self.nin, str(args_w[i+self.nin]))
outargs[i] = out
_dtypes = self.dtypes
if self.match_dtypes:
_dtypes = [i.get_dtype() for i in inargs if isinstance(i, W_NDimArray)]
for i in outargs:
if isinstance(i, W_NDimArray):
_dtypes.append(i.get_dtype())
else:
_dtypes.append(_dtypes[0])
index, dtypes = self.type_resolver(space, inargs, outargs, sig, _dtypes)
func = self.funcs[index]
iter_shape, arg_shapes, matched_dims = self.verify_args(space, inargs, outargs)
inargs, outargs, need_to_cast = self.alloc_args(space, inargs, outargs, dtypes,
arg_shapes)
if not self.external_loop:
inargs0 = inargs[0]
outargs0 = outargs[0]
assert isinstance(inargs0, W_NDimArray)
assert isinstance(outargs0, W_NDimArray)
nin = self.nin
assert nin >= 0
res_dtype = outargs0.get_dtype()
new_shape = inargs0.get_shape()
# XXX use _find_array_wrap and wrap outargs using __array_wrap__
if self.stack_inputs:
loop.call_many_to_many(space, new_shape, func,
dtypes, [], inargs + outargs, [])
if len(outargs) < 2:
return outargs[0]
return space.newtuple(outargs)
if len(outargs) < 2:
return loop.call_many_to_one(space, new_shape, func,
dtypes[:nin], dtypes[-1], inargs, outargs[0])
return loop.call_many_to_many(space, new_shape, func,
dtypes[:nin], dtypes[nin:], inargs, outargs)
w_casting = space.w_None
w_op_dtypes = space.w_None
for tf in need_to_cast:
if tf:
w_casting = space.newtext('safe')
w_op_dtypes = space.newtuple([d for d in dtypes])
w_flags = space.w_None # NOT 'external_loop', we do coalescing by core_num_dims
w_ro = space.newtuple([space.newtext('readonly'), space.newtext('copy')])
w_rw = space.newtuple([space.newtext('readwrite'), space.newtext('updateifcopy')])
w_op_flags = space.newtuple([w_ro] * len(inargs) + [w_rw] * len(outargs))
w_op_axes = space.w_None
if isinstance(func, W_GenericUFuncCaller):
# Use GeneralizeUfunc interface with signature
# Unlike numpy, we will not broadcast dims before
# the core_ndims rather we use nditer iteration
# so dims[0] == 1
dims = [1] + matched_dims
steps = []
allargs = inargs + outargs
for i in range(len(allargs)):
steps.append(0)
for i in range(len(allargs)):
_arg = allargs[i]
assert isinstance(_arg, W_NDimArray)
start_dim = len(iter_shape)
steps += _arg.implementation.strides[start_dim:]
func.set_dims_and_steps(space, dims, steps)
else:
# it is a function, ready to be called by the iterator,
# from frompyfunc
pass
# mimic NpyIter_AdvancedNew with a nditer
w_itershape = space.newlist([space.newint(i) for i in iter_shape])
nd_it = W_NDIter(space, space.newlist(inargs + outargs), w_flags,
w_op_flags, w_op_dtypes, w_casting, w_op_axes,
w_itershape, allow_backward=False)
# coalesce each iterators, according to inner_dimensions
for i in range(len(inargs) + len(outargs)):
for j in range(self.core_num_dims[i]):
new_iter = coalesce_iter(nd_it.iters[i][0], nd_it.op_flags[i],
nd_it, nd_it.order, flat=False)
nd_it.iters[i] = (new_iter, new_iter.reset())
# do the iteration
if self.stack_inputs:
while not nd_it.done:
# XXX jit me
for it, st in nd_it.iters:
if not it.done(st):
break
else:
nd_it.done = True
break
args = []
for i, (it, st) in enumerate(nd_it.iters):
args.append(nd_it.getitem(it, st))
nd_it.iters[i] = (it, it.next(st))
space.call_args(func, Arguments.frompacked(space, space.newlist(args)))
else:
# do the iteration
while not nd_it.done:
# XXX jit me
for it, st in nd_it.iters:
if not it.done(st):
break
else:
nd_it.done = True
break
initers = []
outiters = []
nin = len(inargs)
for i, (it, st) in enumerate(nd_it.iters[:nin]):
initers.append(nd_it.getitem(it, st))
nd_it.iters[i] = (it, it.next(st))
for i, (it, st) in enumerate(nd_it.iters[nin:]):
outiters.append(nd_it.getitem(it, st))
nd_it.iters[i + nin] = (it, it.next(st))
outs = space.call_args(func, Arguments.frompacked(space, space.newlist(initers)))
if len(outiters) < 2:
outiters[0].descr_setitem(space, space.w_Ellipsis, outs)
else:
for i in range(self.nout):
w_val = space.getitem(outs, space.newint(i))
outiters[i].descr_setitem(space, space.w_Ellipsis, w_val)
# XXX use _find_array_wrap and wrap outargs using __array_wrap__
if len(outargs) > 1:
return space.newtuple([convert_to_array(space, o) for o in outargs])
return outargs[0]
def parse_kwargs(self, space, kwargs_w):
w_subok, w_out, sig, w_casting, extobj = \
W_Ufunc.parse_kwargs(self, space, kwargs_w)
# do equivalent of get_ufunc_arguments in numpy's ufunc_object.c
dtype_w = kwargs_w.pop('dtype', None)
if not space.is_w(dtype_w, space.w_None) and not dtype_w is None:
if sig:
raise oefmt(space.w_RuntimeError,
"cannot specify both 'sig' and 'dtype'")
dtype = decode_w_dtype(space, dtype_w)
sig = dtype.char
order = kwargs_w.pop('order', None)
if not space.is_w(order, space.w_None) and not order is None:
raise oefmt(space.w_NotImplementedError, '"order" keyword not implemented')
parsed_kw = []
for kw in kwargs_w:
if kw.startswith('sig'):
if sig:
raise oefmt(space.w_RuntimeError,
"cannot specify both 'sig' and 'dtype'")
sig = space.text_w(kwargs_w[kw])
parsed_kw.append(kw)
elif kw.startswith('where'):
raise oefmt(space.w_NotImplementedError,
'"where" keyword not implemented')
parsed_kw.append(kw)
for kw in parsed_kw:
kwargs_w.pop(kw)
return w_subok, w_out, sig, w_casting, extobj
def type_resolver(self, space, inargs, outargs, type_tup, _dtypes):
# Find a match for the inargs.dtype in _dtypes, like
# linear_search_type_resolver in numpy ufunc_type_resolutions.c
# type_tup can be '', a tuple of dtypes, or a string
# of the form 'dt->D' where the letters are dtype specs
# XXX why does the next line not pass translation?
# dtypes = [i.get_dtype() for i in inargs]
dtypes = []
for i in inargs:
if isinstance(i, W_NDimArray):
dtypes.append(i.get_dtype())
else:
dtypes.append(None)
for i in outargs:
if isinstance(i, W_NDimArray):
dtypes.append(i.get_dtype())
else:
dtypes.append(None)
if isinstance(type_tup, str) and len(type_tup) > 0:
try:
if len(type_tup) == 1:
s_dtypes = [get_dtype_cache(space).dtypes_by_name[type_tup]] * self.nargs
elif len(type_tup) == self.nargs + 2:
s_dtypes = []
for i in range(self.nin):
s_dtypes.append(get_dtype_cache(space).dtypes_by_name[type_tup[i]])
#skip the '->' in the signature
for i in range(self.nout):
j = i + self.nin + 2
s_dtypes.append(get_dtype_cache(space).dtypes_by_name[type_tup[j]])
else:
raise oefmt(space.w_TypeError, "a type-string for %s " \
"requires 1 typecode or %d typecode(s) before and %d" \
" after the -> sign, not '%s'", self.name, self.nin,
self.nout, type_tup)
except KeyError:
raise oefmt(space.w_ValueError, "unknown typecode in" \
" call to %s with type-string '%s'", self.name, type_tup)
# Make sure args can be cast to dtypes
if not _match_dtypes(space, dtypes, s_dtypes, 0, "safe"):
_raise_err_msg(self, space, dtypes, s_dtypes)
dtypes = s_dtypes
#Find the first matchup of dtypes with _dtypes
for i in range(0, len(_dtypes), self.nargs):
allok = _match_dtypes(space, dtypes, _dtypes, i, "no")
if allok:
break
else:
# No exact matches, can we cast?
for i in range(0, len(_dtypes), self.nargs):
allok = _match_dtypes(space, dtypes, _dtypes, i, "safe")
if allok:
end = i + self.nargs
assert i >= 0
assert end >=0
dtypes = _dtypes[i:end]
break
else:
if len(self.funcs) > 1:
_raise_err_msg(self, space, dtypes, _dtypes)
i = 0
# Fill in empty dtypes
for j in range(self.nargs):
if dtypes[j] is None:
dtypes[j] = _dtypes[i+j]
return i / self.nargs, dtypes
def alloc_args(self, space, inargs, outargs, dtypes, arg_shapes):
# Any None outarg are allocated, and inargs, outargs may need casting
inargs0 = inargs[0]
assert isinstance(inargs0, W_NDimArray)
order = inargs0.get_order()
need_to_cast = []
for i in range(self.nin):
curarg = inargs[i]
assert isinstance(curarg, W_NDimArray)
if len(arg_shapes[i]) != curarg.ndims():
# reshape
sz = product(curarg.get_shape()) * curarg.get_dtype().elsize
with curarg.implementation as storage:
inargs[i] = W_NDimArray.from_shape_and_storage(
space, arg_shapes[i], storage,
curarg.get_dtype(), storage_bytes=sz, w_base=curarg)
need_to_cast.append(curarg.get_dtype() != dtypes[i])
for i in range(len(outargs)):
j = self.nin + i
curarg = outargs[i]
if not isinstance(curarg, W_NDimArray):
outargs[i] = W_NDimArray.from_shape(space, arg_shapes[j], dtypes[j], order)
curarg = outargs[i]
elif len(arg_shapes[i]) != curarg.ndims():
# reshape
sz = product(curarg.get_shape()) * curarg.get_dtype().elsize
with curarg.implementation as storage:
outargs[i] = W_NDimArray.from_shape_and_storage(
space, arg_shapes[i], storage,
curarg.get_dtype(), storage_bytes=sz, w_base=curarg)
curarg = outargs[i]
assert isinstance(curarg, W_NDimArray)
need_to_cast.append(curarg.get_dtype() != dtypes[j])
return inargs, outargs, need_to_cast
def verify_args(self, space, inargs, outargs):
# Figure out the number of iteration dimensions, which
# is the broadcast result of all the input non-core
# dimensions
iter_shape = []
arg_shapes = []
max_matched_dims = 0
for i in self.core_dim_ixs:
if i > max_matched_dims:
max_matched_dims = i
matched_dims = [-1] * (1 + max_matched_dims)
for i in range(len(inargs) + len(outargs)):
if i < len(inargs):
_i = i
name = 'Input'
curarg = inargs[i]
else:
_i = i - self.nin
name = 'Output'
curarg = outargs[_i]
dim_offset = self.core_offsets[i]
num_dims = self.core_num_dims[i]
if not isinstance(curarg, W_NDimArray):
target_dims = []
for j in range(num_dims):
core_dim_index = self.core_dim_ixs[dim_offset + j]
v = matched_dims[core_dim_index]
if v < 0:
raise oefmt(space.w_ValueError, "%s: %s operand %d "
"is empty but unique core dimension %d in signature "
"%s of gufunc was not specified",
self.name, name, _i, core_dim_index, self.signature)
target_dims.append(v)
arg_shapes.append(iter_shape + target_dims)
continue
n = len(curarg.get_shape()) - num_dims
if n < 0:
raise oefmt(space.w_ValueError, "%s: %s operand %d does "
"not have enough dimensions (has %d, gufunc with "
"signature %s requires %d)", self.name, name, _i,
num_dims+n, self.signature, num_dims)
dims_to_match = curarg.get_shape()[n:]
dims_to_broadcast = curarg.get_shape()[:n]
offset = n - len(iter_shape)
if offset > 0:
# Prepend extra dimensions to iter_shape, matched_dims
iter_shape = dims_to_broadcast[:offset] + iter_shape
arg_shapes = [dims_to_broadcast[:offset] + asp for asp in arg_shapes]
offset = 0
# Make sure iter_shape[offset:] matches dims_to_broadcast
offset = abs(offset) # for translation
for j in range(offset, len(iter_shape)):
x = iter_shape[j + offset]
y = dims_to_broadcast[j]
if y > 1 and x != 0 and ((x > y and x % y) or y %x):
raise oefmt(space.w_ValueError, "%s: %s operand %d has a "
"mismatch in its broadcast dimension %d "
"(size %d is different from %d)",
self.name, name, _i, j, x, y)
iter_shape[offset + j] = max(x, y)
#print 'Find or verify signature ixs',self.core_dim_ixs,
#print 'starting',dim_offset,'n',n,'num_dims',num_dims,'matching',dims_to_match
for j in range(num_dims):
core_dim_index = self.core_dim_ixs[dim_offset + j]
if core_dim_index > len(dims_to_match):
raise oefmt(space.w_ValueError, "%s: %s operand %d has a "
"mismatch in its core dimension %d, with gufunc "
"signature %s (index is larger than input shape)",
self.name, name, _i, j, self.signature, core_dim_index)
if matched_dims[core_dim_index] < 0:
matched_dims[core_dim_index] = dims_to_match[j]
elif matched_dims[core_dim_index] != dims_to_match[j]:
raise oefmt(space.w_ValueError, "%s: %s operand %d has a "
"mismatch in its core dimension %d, with gufunc "
"signature %s (expected %d, got %d)",
self.name, name, _i, j,
self.signature, matched_dims[core_dim_index],
dims_to_match[core_dim_index])
#print 'adding',iter_shape,'+',dims_to_match,'to arg_shapes'
if n < len(iter_shape):
#Broadcast over the len(iter_shape) - n dims of iter_shape
broadcast_dims = len(iter_shape) - n
arg_shapes.append(iter_shape[:n] + [1] * broadcast_dims + dims_to_match)
else:
arg_shapes.append(iter_shape + dims_to_match)
# TODO once we support obejct dtypes,
# FAIL with NotImplementedError if the other object has
# the __r<op>__ method and has a higher priority than
# the current op (signalling it can handle ndarray's).
# TODO parse and handle subok
# TODO handle more flags, op_flags
#print 'iter_shape',iter_shape,'arg_shapes',arg_shapes,'matched_dims',matched_dims
return iter_shape, arg_shapes, matched_dims
W_Ufunc.typedef = TypeDef("numpy.ufunc",
__call__ = interp2app(W_Ufunc.descr_call),
__repr__ = interp2app(W_Ufunc.descr_repr),
__name__ = GetSetProperty(W_Ufunc.descr_get_name),
__doc__ = GetSetProperty(W_Ufunc.get_doc, W_Ufunc.set_doc),
identity = GetSetProperty(W_Ufunc.descr_get_identity),
accumulate = interp2app(W_Ufunc.descr_accumulate),
nin = interp_attrproperty("nin", cls=W_Ufunc,
wrapfn="newint"),
nout = interp_attrproperty("nout", cls=W_Ufunc,
wrapfn="newint"),
nargs = interp_attrproperty("nargs", cls=W_Ufunc,
wrapfn="newint"),
signature = interp_attrproperty("signature", cls=W_Ufunc,
wrapfn="newtext_or_none"),
reduce = interp2app(W_Ufunc.descr_reduce),
outer = interp2app(W_Ufunc.descr_outer),
)
def ufunc_dtype_caller(space, ufunc_name, op_name, nin, bool_result):
def get_op(dtype):
try:
return getattr(dtype.itemtype, op_name)
except AttributeError:
raise oefmt(space.w_NotImplementedError,
"%s not implemented for %s",
ufunc_name, dtype.get_name())
dtype_cache = get_dtype_cache(space)
if nin == 1:
def impl(res_dtype, value):
res = get_op(res_dtype)(value)
if bool_result:
return dtype_cache.w_booldtype.box(res)
return res
elif nin == 2:
def impl(res_dtype, lvalue, rvalue):
res = get_op(res_dtype)(lvalue, rvalue)
if bool_result:
return dtype_cache.w_booldtype.box(res)
return res
return func_with_new_name(impl, ufunc_name)
class UfuncState(object):
def __init__(self, space):
"NOT_RPYTHON"
for ufunc_def in [
("add", "add", 2, {"identity": 0, "promote_to_largest": True}),
("subtract", "sub", 2),
("multiply", "mul", 2, {"identity": 1, "promote_to_largest": True}),
("bitwise_and", "bitwise_and", 2, {"identity": 1,
"int_only": True}),
("bitwise_or", "bitwise_or", 2, {"identity": 0,
"int_only": True}),
("bitwise_xor", "bitwise_xor", 2, {"int_only": True}),
("invert", "invert", 1, {"int_only": True}),
("floor_divide", "floordiv", 2, {"promote_bools": True}),
("divide", "div", 2, {"promote_bools": True}),
("true_divide", "div", 2, {"promote_to_float": True}),
("mod", "mod", 2, {"promote_bools": True, 'allow_complex': False}),
("power", "pow", 2, {"promote_bools": True}),
("left_shift", "lshift", 2, {"int_only": True}),
("right_shift", "rshift", 2, {"int_only": True}),
("equal", "eq", 2, {"bool_result": True}),
("not_equal", "ne", 2, {"bool_result": True}),
("less", "lt", 2, {"bool_result": True}),
("less_equal", "le", 2, {"bool_result": True}),
("greater", "gt", 2, {"bool_result": True}),
("greater_equal", "ge", 2, {"bool_result": True}),
("isnan", "isnan", 1, {"bool_result": True}),
("isinf", "isinf", 1, {"bool_result": True}),
("isfinite", "isfinite", 1, {"bool_result": True}),
('logical_and', 'logical_and', 2, {'identity': 1}),
('logical_or', 'logical_or', 2, {'identity': 0}),
('logical_xor', 'logical_xor', 2, {'bool_result': True}),
('logical_not', 'logical_not', 1, {'bool_result': True}),
("maximum", "max", 2),
("minimum", "min", 2),
("copysign", "copysign", 2, {"promote_to_float": True,
"allow_complex": False}),
("positive", "pos", 1),
("negative", "neg", 1),
("absolute", "abs", 1, {"complex_to_float": True}),
("rint", "rint", 1),
("sign", "sign", 1, {"allow_bool": False}),
("signbit", "signbit", 1, {"bool_result": True,
"allow_complex": False}),
("reciprocal", "reciprocal", 1),
("conjugate", "conj", 1),
("real", "real", 1, {"complex_to_float": True}),
("imag", "imag", 1, {"complex_to_float": True}),
("fabs", "fabs", 1, {"promote_to_float": True,
"allow_complex": False}),
("fmax", "fmax", 2, {"promote_to_float": True}),
("fmin", "fmin", 2, {"promote_to_float": True}),
("fmod", "fmod", 2, {"promote_to_float": True,
'allow_complex': False}),
("floor", "floor", 1, {"promote_to_float": True,
"allow_complex": False}),
("ceil", "ceil", 1, {"promote_to_float": True,
"allow_complex": False}),
("trunc", "trunc", 1, {"promote_to_float": True,
"allow_complex": False}),
("exp", "exp", 1, {"promote_to_float": True}),
("exp2", "exp2", 1, {"promote_to_float": True}),
("expm1", "expm1", 1, {"promote_to_float": True}),
('sqrt', 'sqrt', 1, {'promote_to_float': True}),
('square', 'square', 1, {'promote_to_float': True}),
("sin", "sin", 1, {"promote_to_float": True}),
("cos", "cos", 1, {"promote_to_float": True}),
("tan", "tan", 1, {"promote_to_float": True}),
("arcsin", "arcsin", 1, {"promote_to_float": True}),
("arccos", "arccos", 1, {"promote_to_float": True}),
("arctan", "arctan", 1, {"promote_to_float": True}),
("arctan2", "arctan2", 2, {"promote_to_float": True,
"allow_complex": False}),
("sinh", "sinh", 1, {"promote_to_float": True}),
("cosh", "cosh", 1, {"promote_to_float": True}),
("tanh", "tanh", 1, {"promote_to_float": True}),
("arcsinh", "arcsinh", 1, {"promote_to_float": True}),
("arccosh", "arccosh", 1, {"promote_to_float": True}),
("arctanh", "arctanh", 1, {"promote_to_float": True}),
("radians", "radians", 1, {"promote_to_float": True,
"allow_complex": False}),
("degrees", "degrees", 1, {"promote_to_float": True,
"allow_complex": False}),
("log", "log", 1, {"promote_to_float": True}),
("log2", "log2", 1, {"promote_to_float": True}),
("log10", "log10", 1, {"promote_to_float": True}),
("log1p", "log1p", 1, {"promote_to_float": True}),
("logaddexp", "logaddexp", 2, {"promote_to_float": True,
"allow_complex": False}),
("logaddexp2", "logaddexp2", 2, {"promote_to_float": True,
"allow_complex": False}),
]:
self.add_ufunc(space, *ufunc_def)
def add_ufunc(self, space, ufunc_name, op_name, nin, extra_kwargs=None):
if extra_kwargs is None:
extra_kwargs = {}
identity = extra_kwargs.get("identity")
if identity is not None:
identity = \
get_dtype_cache(space).w_longdtype.box(identity)
extra_kwargs["identity"] = identity
func = ufunc_dtype_caller(space, ufunc_name, op_name, nin,
bool_result=extra_kwargs.get("bool_result", False),
)
if nin == 1:
ufunc = unary_ufunc(space, func, ufunc_name, **extra_kwargs)
elif nin == 2:
ufunc = binary_ufunc(space, func, ufunc_name, **extra_kwargs)
setattr(self, ufunc_name, ufunc)
def unary_ufunc(space, func, ufunc_name, **kwargs):
ufunc = W_Ufunc1(func, ufunc_name, **kwargs)
ufunc.dtypes = _ufunc1_dtypes(ufunc, space)
return ufunc
def _ufunc1_dtypes(ufunc, space):
dtypes = []
cache = get_dtype_cache(space)
if not ufunc.promote_bools and not ufunc.promote_to_float:
dtypes.append((cache.w_booldtype, cache.w_booldtype))
if not ufunc.promote_to_float:
for dt in cache.integer_dtypes:
dtypes.append((dt, dt))
if not ufunc.int_only:
for dt in cache.float_dtypes:
dtypes.append((dt, dt))
for dt in cache.complex_dtypes:
if ufunc.complex_to_float:
if dt.num == NPY.CFLOAT:
dt_out = get_dtype_cache(space).w_float32dtype
else:
dt_out = get_dtype_cache(space).w_float64dtype
dtypes.append((dt, dt_out))
else:
dtypes.append((dt, dt))
if ufunc.bool_result:
dtypes = [(dt_in, cache.w_booldtype) for dt_in, _ in dtypes]
return dtypes
def binary_ufunc(space, func, ufunc_name, **kwargs):
ufunc = W_Ufunc2(func, ufunc_name, **kwargs)
ufunc.dtypes = _ufunc2_dtypes(ufunc, space)
return ufunc
def _ufunc2_dtypes(ufunc, space):
dtypes = []
cache = get_dtype_cache(space)
if not ufunc.promote_bools and not ufunc.promote_to_float:
dtypes.append((cache.w_booldtype, cache.w_booldtype))
if not ufunc.promote_to_float:
for dt in cache.integer_dtypes:
dtypes.append((dt, dt))
if not ufunc.int_only:
for dt in cache.float_dtypes:
dtypes.append((dt, dt))
for dt in cache.complex_dtypes:
if ufunc.complex_to_float:
if dt.num == NPY.CFLOAT:
dt_out = get_dtype_cache(space).w_float32dtype
else:
dt_out = get_dtype_cache(space).w_float64dtype
dtypes.append((dt, dt_out))
else:
dtypes.append((dt, dt))
if ufunc.bool_result:
dtypes = [(dt_in, cache.w_booldtype) for dt_in, _ in dtypes]
return dtypes
def get(space):
return space.fromcache(UfuncState)
@unwrap_spec(nin=int, nout=int, signature='text', w_identity=WrappedDefault(None),
name='text', doc='text', stack_inputs=bool)
def frompyfunc(space, w_func, nin, nout, w_dtypes=None, signature='',
w_identity=None, name='', doc='', stack_inputs=False):
''' frompyfunc(func, nin, nout) #cpython numpy compatible
frompyfunc(func, nin, nout, dtypes=None, signature='',
identity=None, name='', doc='',
stack_inputs=False)
Takes an arbitrary Python function and returns a ufunc.
Can be used, for example, to add broadcasting to a built-in Python
function (see Examples section).
Parameters
----------
func : Python function object
An arbitrary Python function or list of functions (if dtypes is specified).
nin : int
The number of input arguments.
nout : int
The number of arrays returned by `func`.
dtypes: None or [dtype, ...] of the input, output args for each function,
or 'match' to force output to exactly match input dtype
Note that 'match' is a pypy-only extension to allow non-object
return dtypes
signature*: str, default=''
The mapping of input args to output args, defining the
inner-loop indexing. If it is empty, the func operates on scalars
identity*: None (default) or int
For reduce-type ufuncs, the default value
name: str, default=''
doc: str, default=''
stack_inputs*: boolean, whether the function is of the form
out = func(*in) False
or
func(*[in + out]) True
only one of out_dtype or signature may be specified
Returns
-------
out : ufunc
Returns a Numpy universal function (``ufunc``) object.
Notes
-----
If the signature and dtype are both missing, the returned ufunc
always returns PyObject arrays (cpython numpy compatability).
Input arguments marked with a * are pypy-only extensions
Examples
--------
Use frompyfunc to add broadcasting to the Python function ``oct``:
>>> oct_obj_array = np.frompyfunc(oct, 1, 1)
>>> oct_obj_array(np.array((10, 30, 100)))
array([012, 036, 0144], dtype=object)
>>> np.array((oct(10), oct(30), oct(100))) # for comparison
array(['012', '036', '0144'],
dtype='|S4')
>>> oct_array = np.frompyfunc(oct, 1, 1, out_dtype=str)
>>> oct_obj_array(np.array((10, 30, 100)))
array([012, 036, 0144], dtype='|S4')
'''
if (space.isinstance_w(w_func, space.w_tuple) or
space.isinstance_w(w_func, space.w_list)):
func = space.listview(w_func)
for w_f in func:
if not space.is_true(space.callable(w_f)):
raise oefmt(space.w_TypeError, 'func must be callable')
else:
if not space.is_true(space.callable(w_func)):
raise oefmt(space.w_TypeError, 'func must be callable')
func = [w_func]
match_dtypes = False
if space.is_none(w_dtypes) and not signature:
raise oefmt(space.w_NotImplementedError,
'object dtype requested but not implemented')
elif (space.isinstance_w(w_dtypes, space.w_tuple) or
space.isinstance_w(w_dtypes, space.w_list)):
_dtypes = space.listview(w_dtypes)
if space.isinstance_w(_dtypes[0], space.w_text) and space.text_w(_dtypes[0]) == 'match':
dtypes = []
match_dtypes = True
else:
dtypes = [None]*len(_dtypes)
for i in range(len(dtypes)):
dtypes[i] = decode_w_dtype(space, _dtypes[i])
else:
raise oefmt(space.w_ValueError,
'dtypes must be None or a list of dtypes')
if space.is_none(w_identity):
identity = None
elif space.isinstance_w(w_identity, space.w_int):
identity = \
get_dtype_cache(space).w_longdtype.box(space.int_w(w_identity))
else:
raise oefmt(space.w_ValueError,
'identity must be None or an int')
if len(signature) == 0:
external_loop=False
else:
external_loop=True
w_ret = W_UfuncGeneric(space, func, name, identity, nin, nout, dtypes,
signature, match_dtypes=match_dtypes,
stack_inputs=stack_inputs, external_loop=external_loop)
if w_ret.external_loop:
_parse_signature(space, w_ret, w_ret.signature)
if doc:
w_ret.set_doc(space, space.newtext(doc))
return w_ret
# Instantiated in cpyext/ndarrayobject. It is here since ufunc calls
# set_dims_and_steps, otherwise ufunc, ndarrayobject would have circular
# imports
Py_ssize_t = lltype.Typedef(rffi.SSIZE_T, 'Py_ssize_t')
npy_intpp = rffi.CArrayPtr(Py_ssize_t)
LONG_SIZE = LONG_BIT / 8
CCHARP_SIZE = _get_bitsize('P') / 8
class W_GenericUFuncCaller(W_Root):
_attrs_ = ['func', 'data', 'dims', 'steps', 'dims_steps_set']
def __init__(self, func, data):
self.func = func
self.data = data
self.dims = alloc_raw_storage(0, track_allocation=False)
self.steps = alloc_raw_storage(0, track_allocation=False)
self.dims_steps_set = False
@rgc.must_be_light_finalizer
def __del__(self):
free_raw_storage(self.dims, track_allocation=False)
free_raw_storage(self.steps, track_allocation=False)
def descr_call(self, space, __args__):
args_w, kwds_w = __args__.unpack()
# Can be called two ways, as a GenericUfunc or a GeneralizedUfunc.
# The difference is in the meaning of dims and steps,
# a GenericUfunc is a scalar function that flatiters over the array(s).
# a GeneralizedUfunc will iterate over dims[0], but will use dims[1...]
# and steps[1, ...] to call a function on ndarray(s).
# set up via a call to set_dims_and_steps()
dataps = alloc_raw_storage(CCHARP_SIZE * len(args_w), track_allocation=False)
if self.dims_steps_set is False:
self.dims = alloc_raw_storage(LONG_SIZE * len(args_w), track_allocation=False)
self.steps = alloc_raw_storage(LONG_SIZE * len(args_w), track_allocation=False)
for i in range(len(args_w)):
arg_i = args_w[i]
if not isinstance(arg_i, W_NDimArray):
raise OperationError(space.w_NotImplementedError,
space.newtext("cannot mix ndarray and %r (arg %d) in call to ufunc" % (
arg_i, i)))
with arg_i.implementation as storage:
addr = get_storage_as_int(storage, arg_i.get_start())
raw_storage_setitem(dataps, CCHARP_SIZE * i, rffi.cast(rffi.CCHARP, addr))
#This assumes we iterate over the whole array (it should be a view...)
raw_storage_setitem(self.dims, LONG_SIZE * i, rffi.cast(rffi.LONG, arg_i.get_size()))
raw_storage_setitem(self.steps, LONG_SIZE * i, rffi.cast(rffi.LONG, arg_i.get_dtype().elsize))
else:
for i in range(len(args_w)):
arg_i = args_w[i]
assert isinstance(arg_i, W_NDimArray)
with arg_i.implementation as storage:
addr = get_storage_as_int(storage, arg_i.get_start())
raw_storage_setitem(dataps, CCHARP_SIZE * i, rffi.cast(rffi.CCHARP, addr))
try:
arg1 = rffi.cast(rffi.CArrayPtr(rffi.CCHARP), dataps)
arg2 = rffi.cast(npy_intpp, self.dims)
arg3 = rffi.cast(npy_intpp, self.steps)
self.func(arg1, arg2, arg3, self.data)
finally:
free_raw_storage(dataps, track_allocation=False)
keepalive_until_here(args_w)
def set_dims_and_steps(self, space, dims, steps):
if not isinstance(dims, list) or not isinstance(steps, list):
raise oefmt(space.w_RuntimeError,
"set_dims_and_steps called inappropriately")
if self.dims_steps_set:
free_raw_storage(self.dims, track_allocation=False)
free_raw_storage(self.steps, track_allocation=False)
self.dims = alloc_raw_storage(LONG_SIZE * len(dims), track_allocation=False)
self.steps = alloc_raw_storage(LONG_SIZE * len(steps), track_allocation=False)
for i in range(len(dims)):
raw_storage_setitem(self.dims, LONG_SIZE * i, rffi.cast(rffi.LONG, dims[i]))
for i in range(len(steps)):
raw_storage_setitem(self.steps, LONG_SIZE * i, rffi.cast(rffi.LONG, steps[i]))
self.dims_steps_set = True
W_GenericUFuncCaller.typedef = TypeDef("hiddenclass",
__call__ = interp2app(W_GenericUFuncCaller.descr_call),
)
GenericUfunc = lltype.FuncType([rffi.CArrayPtr(rffi.CCHARP), npy_intpp, npy_intpp,
rffi.VOIDP], lltype.Void)
|