1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
|
# spaceconfig = {"usemodules" : ["binascii", "time", "struct", "unicodedata"]}
import os
import sys
from random import random
from math import isnan, copysign
def check_div(x, y):
"""Compute complex z=x*y, and check that z/x==y and z/y==x."""
z = x * y
if x != 0:
q = z / x
assert close(q, y)
q = z.__truediv__(x)
assert close(q, y)
if y != 0:
q = z / y
assert close(q, x)
q = z.__truediv__(y)
assert close(q, x)
def close(x, y):
"""Return true iff complexes x and y "are close\""""
return close_abs(x.real, y.real) and close_abs(x.imag, y.imag)
def close_abs(x, y, eps=1e-9):
"""Return true iff floats x and y "are close\""""
# put the one with larger magnitude second
if abs(x) > abs(y):
x, y = y, x
if y == 0:
return abs(x) < eps
if x == 0:
return abs(y) < eps
# check that relative difference < eps
return abs((x - y) / y) < eps
def almost_equal(a, b, eps=1e-9):
if isinstance(a, complex):
if isinstance(b, complex):
return a.real - b.real < eps and a.imag - b.imag < eps
else:
return a.real - b < eps and a.imag < eps
else:
if isinstance(b, complex):
return a - b.real < eps and b.imag < eps
else:
return a - b < eps
def floats_identical(x, y):
msg = 'floats {!r} and {!r} are not identical'
if isnan(x) or isnan(y):
if isnan(x) and isnan(y):
return
elif x == y:
if x != 0.0:
return
# both zero; check that signs match
elif copysign(1.0, x) == copysign(1.0, y):
return
else:
msg += ': zeros have different signs'
assert False, msg.format(x, y)
def test_div():
# XXX this test passed but took waaaaay to long
# look at dist/lib-python/modified-2.5.2/test/test_complex.py
#simple_real = [float(i) for i in range(-5, 6)]
simple_real = [-2.0, 0.0, 1.0]
simple_complex = [complex(x, y) for x in simple_real for y in simple_real]
for x in simple_complex:
for y in simple_complex:
check_div(x, y)
# A naive complex division algorithm (such as in 2.0) is very prone to
# nonsense errors for these (overflows and underflows).
check_div(complex(1e200, 1e200), 1+0j)
check_div(complex(1e-200, 1e-200), 1+0j)
# Just for fun.
for i in range(100):
check_div(complex(random(), random()), complex(random(), random()))
raises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j)
# FIXME: The following currently crashes on Alpha
raises(OverflowError, pow, 1e200+1j, 1e200+1j)
def test_truediv():
assert almost_equal(complex.__truediv__(2+0j, 1+1j), 1-1j)
raises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j)
def test_floordiv():
with raises(TypeError):
3+0j // 0+0j
def test_convert():
exc = raises(TypeError, complex.__int__, 3j)
assert str(exc.value) == "can't convert complex to int"
exc = raises(TypeError, complex.__float__, 3j)
assert str(exc.value) == "can't convert complex to float"
def test_richcompare():
import operator
assert complex.__lt__(1+1j, None) is NotImplemented
assert complex.__eq__(1+1j, 2+2j) is False
assert complex.__eq__(1+1j, 1+1j) is True
assert complex.__ne__(1+1j, 1+1j) is False
assert complex.__ne__(1+1j, 2+2j) is True
assert complex.__lt__(1+1j, 2+2j) is NotImplemented
assert complex.__le__(1+1j, 2+2j) is NotImplemented
assert complex.__gt__(1+1j, 2+2j) is NotImplemented
assert complex.__ge__(1+1j, 2+2j) is NotImplemented
raises(TypeError, operator.lt, 1+1j, 2+2j)
raises(TypeError, operator.le, 1+1j, 2+2j)
raises(TypeError, operator.gt, 1+1j, 2+2j)
raises(TypeError, operator.ge, 1+1j, 2+2j)
large = 1 << 10000
assert not (5+0j) == large
assert not large == (5+0j)
assert (5+0j) != large
assert large != (5+0j)
def test_richcompare_numbers():
for n in 8, 0.01:
assert complex.__eq__(n+0j, n)
assert not complex.__ne__(n+0j, n)
assert not complex.__eq__(complex(n, n), n)
assert complex.__ne__(complex(n, n), n)
assert complex.__lt__(n+0j, n) is NotImplemented
def test_richcompare_boundaries():
z = 9007199254740992+0j
i = 9007199254740993
assert not complex.__eq__(z, i)
assert complex.__ne__(z, i)
def test_mod():
a = 3.33+4.43j
with raises(TypeError):
a % a
def test_divmod():
raises(TypeError, divmod, 1+1j, 0+0j)
def test_pow():
assert almost_equal(pow(1+1j, 0+0j), 1.0)
assert almost_equal(pow(0+0j, 2+0j), 0.0)
raises(ZeroDivisionError, pow, 0+0j, 1j)
assert almost_equal(pow(1j, -1), 1/1j)
assert almost_equal(pow(1j, 200), 1)
raises(ValueError, pow, 1+1j, 1+1j, 1+1j)
a = 3.33+4.43j
assert a ** 0j == 1
assert a ** 0.+0.j == 1
assert 3j ** 0j == 1
assert 3j ** 0 == 1
with raises(ZeroDivisionError):
0j ** a
with raises(ZeroDivisionError):
0j ** (3-2j)
# The following is used to exercise certain code paths
assert a ** 105 == a ** 105
assert a ** -105 == a ** -105
assert a ** -30 == a ** -30
assert a ** 2 == a * a
assert 0.0j ** 0 == 1
b = 5.1+2.3j
raises(ValueError, pow, a, b, 0)
raises(ZeroDivisionError, pow, complex(float('inf'), 0.0), complex(10., 3.))
# issue 3944
b = pow(1, -1.j)
assert repr(b.imag) == "-0.0"
def test_boolcontext():
for i in range(100):
assert complex(random() + 1e-6, random() + 1e-6)
assert not complex(0.0, 0.0)
def test_conjugate():
assert close(complex(5.3, 9.8).conjugate(), 5.3-9.8j)
def test_constructor():
class NS(object):
def __init__(self, value):
self.value = value
def __complex__(self):
return self.value
assert complex(NS(1+10j)) == 1+10j
assert complex(NS(1+10j), 5) == 1+15j
assert complex(NS(1+10j), 5j) == -4+10j
raises(TypeError, complex, NS(2.0))
raises(TypeError, complex, NS(2))
raises(TypeError, complex, NS(None))
raises(TypeError, complex, b'10')
# -- The following cases are not supported by CPython, but they
# -- are supported by PyPy, which is most probably ok
#raises((TypeError, AttributeError), complex, NS(1+10j), NS(1+10j))
class F(object):
def __float__(self):
return 2.0
assert complex(NS(1+10j), F()) == 1+12j
assert almost_equal(complex("1+10j"), 1+10j)
assert almost_equal(complex(10), 10+0j)
assert almost_equal(complex(10.0), 10+0j)
assert almost_equal(complex(10+0j), 10+0j)
assert almost_equal(complex(1,10), 1+10j)
assert almost_equal(complex(1,10.0), 1+10j)
assert almost_equal(complex(1.0,10), 1+10j)
assert almost_equal(complex(1.0,10.0), 1+10j)
assert almost_equal(complex(3.14+0j), 3.14+0j)
assert almost_equal(complex(3.14), 3.14+0j)
assert almost_equal(complex(314), 314.0+0j)
assert almost_equal(complex(3.14+0j, 0j), 3.14+0j)
assert almost_equal(complex(3.14, 0.0), 3.14+0j)
assert almost_equal(complex(314, 0), 314.0+0j)
assert almost_equal(complex(0j, 3.14j), -3.14+0j)
assert almost_equal(complex(0.0, 3.14j), -3.14+0j)
assert almost_equal(complex(0j, 3.14), 3.14j)
assert almost_equal(complex(0.0, 3.14), 3.14j)
assert almost_equal(complex("1"), 1+0j)
assert almost_equal(complex("1j"), 1j)
assert almost_equal(complex(), 0)
assert almost_equal(complex("-1"), -1)
assert almost_equal(complex("+1"), +1)
assert almost_equal(complex(" ( +3.14-6J ) "), 3.14-6j)
exc = raises(ValueError, complex, " ( +3.14- 6J ) ")
assert str(exc.value) == "complex() arg is a malformed string"
class complex2(complex):
pass
assert almost_equal(complex(complex2(1+1j)), 1+1j)
assert almost_equal(complex(real=17, imag=23), 17+23j)
assert almost_equal(complex(real=17+23j), 17+23j)
assert almost_equal(complex(real=17+23j, imag=23), 17+46j)
assert almost_equal(complex(real=1+2j, imag=3+4j), -3+5j)
c = 3.14 + 1j
assert complex(c) is c
del c
raises(TypeError, complex, "1", "1")
raises(TypeError, complex, 1, "1")
assert complex(" 3.14+J ") == 3.14+1j
#h.assertEqual(complex(unicode(" 3.14+J ")), 3.14+1j)
# SF bug 543840: complex(string) accepts strings with \0
# Fixed in 2.3.
with raises(ValueError):
complex("1+1j\0j")
raises(TypeError, int, 5+3j)
raises(TypeError, float, 5+3j)
raises(ValueError, complex, "")
raises(TypeError, complex, None)
raises(ValueError, complex, "\0")
raises(TypeError, complex, "1", "2")
raises(TypeError, complex, "1", 42)
raises(TypeError, complex, 1, "2")
raises(ValueError, complex, "1+")
raises(ValueError, complex, "1+1j+1j")
raises(ValueError, complex, "--")
# if x_test_support.have_unicode:
# raises(ValueError, complex, unicode("1"*500))
# raises(ValueError, complex, unicode("x"))
#
class EvilExc(Exception):
pass
class evilcomplex:
def __complex__(self):
raise EvilExc
raises(EvilExc, complex, evilcomplex())
class float2:
def __init__(self, value):
self.value = value
def __float__(self):
return self.value
assert almost_equal(complex(float2(42.)), 42)
assert almost_equal(complex(real=float2(17.), imag=float2(23.)), 17+23j)
raises(TypeError, complex, float2(None))
def test_complex_string_underscores():
valid = [
'1_00_00j',
'1_00_00.5j',
'1_00_00e5_1j',
'.1_4j',
'(1_2.5+3_3j)',
'(.5_6j)',
]
for s in valid:
assert complex(s) == complex(s.replace("_", ""))
assert eval(s) == eval(s.replace("_", ""))
invalid = [
# Trailing underscores:
'1.4j_',
# Multiple consecutive underscores:
'0.1__4j',
'1e1__0j',
# Underscore right before a dot:
'1_.4j',
# Underscore right after a dot:
'1._4j',
'._5j',
# Underscore right after a sign:
'1.0e+_1j',
# Underscore right before j:
'1.4e5_j',
# Underscore right before e:
'1.4_e1j',
# Underscore right after e:
'1.4e_1j',
# Complex cases with parens:
'(1+1.5_j_)',
'(1+1.5_j)',
]
for s in invalid:
raises(ValueError, complex, s)
raises(SyntaxError, eval, s)
def test_constructor_bad_error_message():
err = raises(TypeError, complex, {}).value
assert "float" not in str(err)
assert str(err) == "complex() first argument must be a string or a number, not 'dict'"
err = raises(TypeError, complex, 1, {}).value
assert "float" not in str(err)
assert str(err) == "complex() second argument must be a number, not 'dict'"
def test_error_messages():
with raises(ZeroDivisionError) as err:
1+1j / 0
assert str(err.value) == "complex division by zero"
with raises(TypeError) as err:
1+1j // 0
assert str(err.value) == "unsupported operand type(s) for //: 'complex' and 'int'"
def test_hash():
for x in range(-30, 30):
assert hash(x) == hash(complex(x, 0))
x /= 3.0 # now check against floating point
assert hash(x) == hash(complex(x, 0.))
def test_abs():
nums = [complex(x/3., y/7.) for x in range(-9,9) for y in range(-9,9)]
for num in nums:
assert almost_equal((num.real**2 + num.imag**2) ** 0.5, abs(num))
def test_complex_subclass_ctr():
class j(complex):
pass
assert j(100 + 0j) == 100 + 0j
assert isinstance(j(100), j)
assert j("100+0j") == 100 + 0j
exc = raises(ValueError, j, "100 + 0j")
assert str(exc.value) == "complex() arg is a malformed string"
x = j(1+0j)
x.foo = 42
assert x.foo == 42
assert type(complex(x)) == complex
def test_infinity():
inf = 1e200*1e200
assert complex("1"*500) == complex(inf)
assert complex("-inf") == complex(-inf)
def test_repr():
assert repr(1+6j) == '(1+6j)'
assert repr(1-6j) == '(1-6j)'
assert repr(-(1+0j)) == '(-1-0j)'
assert repr(complex( 0.0, 0.0)) == '0j'
assert repr(complex( 0.0, -0.0)) == '-0j'
assert repr(complex(-0.0, 0.0)) == '(-0+0j)'
assert repr(complex(-0.0, -0.0)) == '(-0-0j)'
assert repr(complex(1e45)) == "(" + repr(1e45) + "+0j)"
assert repr(complex(1e200*1e200)) == '(inf+0j)'
assert repr(complex(1,-float("nan"))) == '(1+nanj)'
def test_repr_roundtrip():
# Copied from CPython
INF = float("inf")
NAN = float("nan")
vals = [0.0, 1e-500, 1e-315, 1e-200, 0.0123, 3.1415, 1e50, INF, NAN]
vals += [-v for v in vals]
# complex(repr(z)) should recover z exactly, even for complex
# numbers involving an infinity, nan, or negative zero
for x in vals:
for y in vals:
z = complex(x, y)
roundtrip = complex(repr(z))
floats_identical(z.real, roundtrip.real)
floats_identical(z.imag, roundtrip.imag)
# if we predefine some constants, then eval(repr(z)) should
# also work, except that it might change the sign of zeros
inf, nan = float('inf'), float('nan')
infj, nanj = complex(0.0, inf), complex(0.0, nan)
for x in vals:
for y in vals:
z = complex(x, y)
roundtrip = eval(repr(z))
# adding 0.0 has no effect beside changing -0.0 to 0.0
floats_identical(0.0 + z.real, 0.0 + roundtrip.real)
floats_identical(0.0 + z.imag, 0.0 + roundtrip.imag)
def test_neg():
assert -(1+6j) == -1-6j
def test_file():
import os
import tempfile
a = 3.33+4.43j
b = 5.1+2.3j
fo = None
try:
pth = tempfile.mktemp()
fo = open(pth, "w")
print(a, b, file=fo)
fo.close()
fo = open(pth, "r")
res = fo.read()
assert res == "%s %s\n" % (a, b)
finally:
if (fo is not None) and (not fo.closed):
fo.close()
try:
os.remove(pth)
except (OSError, IOError):
pass
def test_convert():
import warnings
raises(TypeError, int, 1+1j)
raises(TypeError, float, 1+1j)
class complex0(complex):
"""Test usage of __complex__() when inheriting from 'complex'"""
def __complex__(self):
return 42j
assert complex(complex0(1j)) == 42j
class complex1(complex):
"""Test usage of __complex__() with a __new__() method"""
def __new__(self, value=0j):
return complex.__new__(self, 2*value)
def __complex__(self):
return self
with warnings.catch_warnings(record=True) as log:
warnings.simplefilter("always", DeprecationWarning)
assert complex(complex1(1j)) == 2j
assert len(log) == 1
assert log[0].category == DeprecationWarning
class complex1b(complex):
"""Test usage of a complex subclass without __complex__() method"""
def __new__(self, value=0j):
return complex.__new__(self, 2*value)
with warnings.catch_warnings(record=True) as log:
warnings.simplefilter("always", DeprecationWarning)
assert complex(complex1b(1j)) == 2j
assert len(log) == 0
class complex1_proxy:
"""Test usage of __complex__() without subclassing complex"""
def __init__(self, value=0j):
self.value = value
def __complex__(self):
return complex1(self.value)
with warnings.catch_warnings(record=True) as log:
warnings.simplefilter("always", DeprecationWarning)
assert complex(complex1_proxy(1j)) == 2j
assert len(log) == 1
assert log[0].category == DeprecationWarning
class complex2(complex):
"""Make sure that __complex__() calls fail if anything other than a
complex is returned"""
def __complex__(self):
return None
raises(TypeError, complex, complex2(1j))
def test_getnewargs():
assert (1+2j).__getnewargs__() == (1.0, 2.0)
def test_method_not_found_on_newstyle_instance():
class A(object):
pass
a = A()
a.__complex__ = lambda: 5j # ignored
raises(TypeError, complex, a)
A.__complex__ = lambda self: 42j
assert complex(a) == 42j
def test_format():
# empty format string is same as str()
assert format(1+3j, '') == str(1+3j)
assert format(1.5+3.5j, '') == str(1.5+3.5j)
assert format(3j, '') == str(3j)
assert format(3.2j, '') == str(3.2j)
assert format(3+0j, '') == str(3+0j)
assert format(3.2+0j, '') == str(3.2+0j)
# empty presentation type should still be analogous to str,
# even when format string is nonempty (issue #5920).
assert format(3.2, '-') == str(3.2)
assert format(3.2+0j, '-') == str(3.2+0j)
assert format(3.2+0j, '<') == str(3.2+0j)
z = 10/7. - 100j/7.
assert format(z, '') == str(z)
assert format(z, '-') == str(z)
assert format(z, '<') == str(z)
assert format(z, '10') == str(z)
z = complex(0.0, 3.0)
assert format(z, '') == str(z)
assert format(z, '-') == str(z)
assert format(z, '<') == str(z)
assert format(z, '2') == str(z)
z = complex(-0.0, 2.0)
assert format(z, '') == str(z)
assert format(z, '-') == str(z)
assert format(z, '<') == str(z)
assert format(z, '3') == str(z)
assert format(1+3j, 'g') == '1+3j'
assert format(3j, 'g') == '0+3j'
assert format(1.5+3.5j, 'g') == '1.5+3.5j'
assert format(1.5+3.5j, '+g') == '+1.5+3.5j'
assert format(1.5-3.5j, '+g') == '+1.5-3.5j'
assert format(1.5-3.5j, '-g') == '1.5-3.5j'
assert format(1.5+3.5j, ' g') == ' 1.5+3.5j'
assert format(1.5-3.5j, ' g') == ' 1.5-3.5j'
assert format(-1.5+3.5j, ' g') == '-1.5+3.5j'
assert format(-1.5-3.5j, ' g') == '-1.5-3.5j'
assert format(-1.5-3.5e-20j, 'g') == '-1.5-3.5e-20j'
assert format(-1.5-3.5j, 'f') == '-1.500000-3.500000j'
assert format(-1.5-3.5j, 'F') == '-1.500000-3.500000j'
assert format(-1.5-3.5j, 'e') == '-1.500000e+00-3.500000e+00j'
assert format(-1.5-3.5j, '.2e') == '-1.50e+00-3.50e+00j'
assert format(-1.5-3.5j, '.2E') == '-1.50E+00-3.50E+00j'
assert format(-1.5e10-3.5e5j, '.2G') == '-1.5E+10-3.5E+05j'
assert format(1.5+3j, '<20g') == '1.5+3j '
assert format(1.5+3j, '*<20g') == '1.5+3j**************'
assert format(1.5+3j, '>20g') == ' 1.5+3j'
assert format(1.5+3j, '^20g') == ' 1.5+3j '
assert format(1.5+3j, '<20') == '(1.5+3j) '
assert format(1.5+3j, '>20') == ' (1.5+3j)'
assert format(1.5+3j, '^20') == ' (1.5+3j) '
assert format(1.123-3.123j, '^20.2') == ' (1.1-3.1j) '
assert format(1.5+3j, '20.2f') == ' 1.50+3.00j'
assert format(1.5+3j, '>20.2f') == ' 1.50+3.00j'
assert format(1.5+3j, '<20.2f') == '1.50+3.00j '
assert format(1.5e20+3j, '<20.2f') == '150000000000000000000.00+3.00j'
assert format(1.5e20+3j, '>40.2f') == ' 150000000000000000000.00+3.00j'
assert format(1.5e20+3j, '^40,.2f') == ' 150,000,000,000,000,000,000.00+3.00j '
assert format(1.5e21+3j, '^40,.2f') == ' 1,500,000,000,000,000,000,000.00+3.00j '
assert format(1.5e21+3000j, ',.2f') == '1,500,000,000,000,000,000,000.00+3,000.00j'
assert format(1.5+0.5j, '#f') == '1.500000+0.500000j'
# zero padding is invalid
with raises(ValueError):
(1.5+0.5j).__format__("010f")
# '=' alignment is invalid
with raises(ValueError):
(1.5+3j).__format__("=20")
# integer presentation types are an error
for t in 'bcdoxX%':
raises(ValueError, (1.5+0.5j).__format__, t)
# make sure everything works in ''.format()
assert '*{0:.3f}*'.format(3.14159+2.71828j) == '*3.142+2.718j*'
assert '{:-}'.format(1.5+3.5j) == '(1.5+3.5j)'
INF = float("inf")
NAN = float("nan")
# issue 3382: 'f' and 'F' with inf's and nan's
assert '{0:f}'.format(INF+0j) == 'inf+0.000000j'
assert '{0:F}'.format(INF+0j) == 'INF+0.000000j'
assert '{0:f}'.format(-INF+0j) == '-inf+0.000000j'
assert '{0:F}'.format(-INF+0j) == '-INF+0.000000j'
assert '{0:f}'.format(complex(INF, INF)) == 'inf+infj'
assert '{0:F}'.format(complex(INF, INF)) == 'INF+INFj'
assert '{0:f}'.format(complex(INF, -INF)) == 'inf-infj'
assert '{0:F}'.format(complex(INF, -INF)) == 'INF-INFj'
assert '{0:f}'.format(complex(-INF, INF)) == '-inf+infj'
assert '{0:F}'.format(complex(-INF, INF)) == '-INF+INFj'
assert '{0:f}'.format(complex(-INF, -INF)) == '-inf-infj'
assert '{0:F}'.format(complex(-INF, -INF)) == '-INF-INFj'
assert '{0:f}'.format(complex(NAN, 0)) == 'nan+0.000000j'
assert '{0:F}'.format(complex(NAN, 0)) == 'NAN+0.000000j'
assert '{0:f}'.format(complex(NAN, NAN)) == 'nan+nanj'
assert '{0:F}'.format(complex(NAN, NAN)) == 'NAN+NANj'
def test_str_zeros_bug():
assert str(1000000000001j) == '1000000000001j'
assert complex.__str__ is object.__str__
def test_complex_two_arguments():
raises(TypeError, complex, 5, None)
def test_negated_imaginary_literal():
def sign(x):
import math
return math.copysign(1.0, x)
z0 = -0j
z1 = -7j
z2 = -1e1000j
# Note: In versions of Python < 3.2, a negated imaginary literal
# accidentally ended up with real part 0.0 instead of -0.0
assert sign(z0.real) == -1
assert sign(z0.imag) == -1
assert sign(z1.real) == -1
assert sign(z1.imag) == -1
assert sign(z2.real) == -1
assert sign(z2.real) == -1
def test_hash_minus_one():
assert hash(-1.0 + 0j) == -2
assert (-1.0 + 0j).__hash__() == -2
def test_int_override():
class MyComplex(complex):
def __int__(self):
return 42
c = MyComplex(0.j)
assert int(c) == 42
def test_complex_constructor_calls_index():
class A:
def __init__(self, val):
self.val = val
def __index__(self):
return self.val
assert complex(A(1), A(2)) == (1.0+2.0j)
def test_parse_complex_whitespace_bug():
c = complex('\t( -1.23+4.5J )\n\r\v ')
assert c == -1.23+4.5j
def test_has_complex_special_method():
x = 1+1j
assert x.__complex__() is x
class C(complex): pass
x = C(1+1j)
assert x.__complex__() == x
assert x.__complex__().__class__ is complex
class C(complex):
def __complex__(self):
return -10-10j
assert complex(C(1 + 1j)) == -10-10j
|