1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
|
#!/usr/bin/env python
from rpython.jit.backend.llsupport.assembler import BaseAssembler, GuardToken
from rpython.jit.backend.llsupport.descr import CallDescr, unpack_arraydescr
from rpython.jit.backend.llsupport.gcmap import allocate_gcmap
from rpython.jit.backend.riscv import registers as r
from rpython.jit.backend.riscv.arch import (
ABI_STACK_ALIGN, FLEN, INST_SIZE, JITFRAME_FIXED_SIZE, XLEN)
from rpython.jit.backend.riscv.callbuilder import RISCVCallBuilder
from rpython.jit.backend.riscv.codebuilder import (
AbstractRISCVBuilder, BRANCH_BUILDER, OverwritingBuilder)
from rpython.jit.backend.riscv.instruction_util import (
COND_BEQ, COND_BNE, COND_INVALID, check_imm_arg, check_simm21_arg)
from rpython.jit.backend.riscv.rounding_modes import DYN, RTZ
from rpython.jit.metainterp.history import (
AbstractFailDescr, ConstInt, FLOAT, INT, REF, TargetToken, VOID)
from rpython.jit.metainterp.resoperation import rop
from rpython.rlib.objectmodel import we_are_translated
from rpython.rlib.rarithmetic import r_uint
from rpython.rtyper import rclass
from rpython.rtyper.lltypesystem import lltype, rffi
from rpython.rtyper.lltypesystem.lloperation import llop
class OpAssembler(BaseAssembler):
def emit_op_int_add(self, op, arglocs):
l0, l1, res = arglocs
assert not l0.is_imm()
if l1.is_imm():
self.mc.ADDI(res.value, l0.value, l1.value)
else:
self.mc.ADD(res.value, l0.value, l1.value)
emit_op_nursery_ptr_increment = emit_op_int_add
def emit_op_int_sub(self, op, arglocs):
l0, l1, res = arglocs
assert not l0.is_imm()
if l1.is_imm():
self.mc.ADDI(res.value, l0.value, -l1.value)
else:
self.mc.SUB(res.value, l0.value, l1.value)
def emit_op_int_mul(self, op, arglocs):
l0, l1, res = arglocs
self.mc.MUL(res.value, l0.value, l1.value)
def emit_op_uint_mul_high(self, op, arglocs):
l0, l1, res = arglocs
self.mc.MULHU(res.value, l0.value, l1.value)
def emit_op_int_and(self, op, arglocs):
l0, l1, res = arglocs
assert not l0.is_imm()
if l1.is_imm():
self.mc.ANDI(res.value, l0.value, l1.value)
else:
self.mc.AND(res.value, l0.value, l1.value)
def emit_op_int_or(self, op, arglocs):
l0, l1, res = arglocs
assert not l0.is_imm()
if l1.is_imm():
self.mc.ORI(res.value, l0.value, l1.value)
else:
self.mc.OR(res.value, l0.value, l1.value)
def emit_op_int_xor(self, op, arglocs):
l0, l1, res = arglocs
assert not l0.is_imm()
if l1.is_imm():
self.mc.XORI(res.value, l0.value, l1.value)
else:
self.mc.XOR(res.value, l0.value, l1.value)
def emit_op_int_lshift(self, op, arglocs):
l0, l1, res = arglocs
assert not l0.is_imm()
if l1.is_imm():
self.mc.SLLI(res.value, l0.value, l1.value)
else:
self.mc.SLL(res.value, l0.value, l1.value)
def emit_op_int_rshift(self, op, arglocs):
l0, l1, res = arglocs
assert not l0.is_imm()
if l1.is_imm():
self.mc.SRAI(res.value, l0.value, l1.value)
else:
self.mc.SRA(res.value, l0.value, l1.value)
def emit_op_uint_rshift(self, op, arglocs):
l0, l1, res = arglocs
assert not l0.is_imm()
if l1.is_imm():
self.mc.SRLI(res.value, l0.value, l1.value)
else:
self.mc.SRL(res.value, l0.value, l1.value)
def _emit_op_int_lt(self, op, arglocs):
l0, l1, res = arglocs
assert not l0.is_imm()
if l1.is_imm():
self.mc.SLTI(res.value, l0.value, l1.value)
else:
self.mc.SLT(res.value, l0.value, l1.value)
emit_op_int_lt = _emit_op_int_lt
emit_op_int_gt = _emit_op_int_lt
emit_comp_op_int_lt = emit_op_int_lt
emit_comp_op_int_gt = emit_op_int_gt
def _emit_op_int_le(self, op, arglocs):
l0, l1, res = arglocs
if l1.is_imm():
self.mc.SLTI(res.value, l0.value, l1.value + 1)
else:
if l0.is_imm():
self.mc.SLTI(res.value, l1.value, l0.value)
else:
self.mc.SLT(res.value, l1.value, l0.value)
self.mc.XORI(res.value, res.value, 1)
emit_op_int_le = _emit_op_int_le
emit_op_int_ge = _emit_op_int_le
emit_comp_op_int_le = emit_op_int_le
emit_comp_op_int_ge = emit_op_int_ge
def _emit_op_uint_lt(self, op, arglocs):
l0, l1, res = arglocs
assert not l0.is_imm()
if l1.is_imm():
self.mc.SLTIU(res.value, l0.value, l1.value)
else:
self.mc.SLTU(res.value, l0.value, l1.value)
emit_op_uint_lt = _emit_op_uint_lt
emit_op_uint_gt = _emit_op_uint_lt
emit_comp_op_uint_lt = emit_op_uint_lt
emit_comp_op_uint_gt = emit_op_uint_gt
def _emit_op_uint_le(self, op, arglocs):
l0, l1, res = arglocs
if l1.is_imm():
if l1.value == -1:
# uint_le(x, -1) is always true.
self.mc.load_int_imm(res.value, 1)
else:
self.mc.SLTIU(res.value, l0.value, l1.value + 1)
else:
if l0.is_imm():
self.mc.SLTIU(res.value, l1.value, l0.value)
else:
self.mc.SLTU(res.value, l1.value, l0.value)
self.mc.XORI(res.value, res.value, 1)
emit_op_uint_le = _emit_op_uint_le
emit_op_uint_ge = _emit_op_uint_le
emit_comp_op_uint_le = emit_op_uint_le
emit_comp_op_uint_ge = emit_op_uint_ge
def emit_op_int_eq(self, op, arglocs):
l0, l1, res = arglocs
assert not l0.is_imm()
if l1.is_imm():
if l1.value == 0:
self.mc.SEQZ(res.value, l0.value)
else:
self.mc.XORI(res.value, l0.value, l1.value)
self.mc.SEQZ(res.value, res.value)
else:
self.mc.XOR(res.value, l0.value, l1.value)
self.mc.SEQZ(res.value, res.value)
emit_op_ptr_eq = emit_op_instance_ptr_eq = emit_op_int_eq
emit_comp_op_int_eq = emit_op_int_eq
emit_comp_op_ptr_eq = emit_op_int_eq
def emit_op_int_ne(self, op, arglocs):
l0, l1, res = arglocs
assert not l0.is_imm()
if l1.is_imm():
if l1.value == 0:
self.mc.SNEZ(res.value, l0.value)
else:
self.mc.XORI(res.value, l0.value, l1.value)
self.mc.SNEZ(res.value, res.value)
else:
self.mc.XOR(res.value, l0.value, l1.value)
self.mc.SNEZ(res.value, res.value)
emit_op_ptr_ne = emit_op_instance_ptr_ne = emit_op_int_ne
emit_comp_op_int_ne = emit_op_int_ne
emit_comp_op_ptr_ne = emit_op_int_ne
def emit_op_int_is_true(self, op, arglocs):
l0, res = arglocs
self.mc.SNEZ(res.value, l0.value)
emit_comp_op_int_is_true = emit_op_int_is_true
def emit_op_int_neg(self, op, arglocs):
l0, res = arglocs
self.mc.NEG(res.value, l0.value)
def emit_op_int_invert(self, op, arglocs):
l0, res = arglocs
self.mc.NOT(res.value, l0.value)
def emit_op_int_is_zero(self, op, arglocs):
l0, res = arglocs
self.mc.SEQZ(res.value, l0.value)
emit_comp_op_int_is_zero = emit_op_int_is_zero
def emit_op_int_force_ge_zero(self, op, arglocs):
l0, res = arglocs
self.mc.MV(res.value, l0.value)
self.mc.BGEZ(l0.value, 8) # Skip next instruction if l0 >= 0
self.mc.MV(res.value, r.zero.value)
def emit_op_int_signext(self, op, arglocs):
l0, l1, res = arglocs
assert l1.is_imm()
num_bytes = l1.value
if l0.is_stack():
offset = l0.value
if num_bytes == 1:
self.mc.LB(res.value, r.jfp.value, offset)
elif num_bytes == 2:
self.mc.LH(res.value, r.jfp.value, offset)
elif num_bytes == 4:
self.mc.LW(res.value, r.jfp.value, offset)
else:
assert 0, 'unexpected int_signext number of bytes'
else:
# Register-to-register sign extension
assert l0.is_core_reg()
assert num_bytes == 1 or num_bytes == 2 or num_bytes == 4
shift_amount = (XLEN - num_bytes) * 8
self.mc.SLLI(res.value, l0.value, shift_amount)
self.mc.SRAI(res.value, res.value, shift_amount)
def emit_op_float_add(self, op, arglocs):
l0, l1, res = arglocs
self.mc.FADD_D(res.value, l0.value, l1.value)
def emit_op_float_sub(self, op, arglocs):
l0, l1, res = arglocs
self.mc.FSUB_D(res.value, l0.value, l1.value)
def emit_op_float_mul(self, op, arglocs):
l0, l1, res = arglocs
self.mc.FMUL_D(res.value, l0.value, l1.value)
def emit_op_float_truediv(self, op, arglocs):
l0, l1, res = arglocs
self.mc.FDIV_D(res.value, l0.value, l1.value)
def _emit_op_float_lt(self, op, arglocs):
l0, l1, res = arglocs
self.mc.FLT_D(res.value, l0.value, l1.value)
emit_op_float_lt = _emit_op_float_lt
emit_op_float_gt = _emit_op_float_lt
emit_comp_op_float_lt = emit_op_float_lt
emit_comp_op_float_gt = emit_op_float_gt
def _emit_op_float_le(self, op, arglocs):
l0, l1, res = arglocs
self.mc.FLE_D(res.value, l0.value, l1.value)
emit_op_float_le = _emit_op_float_le
emit_op_float_ge = _emit_op_float_le
emit_comp_op_float_le = emit_op_float_le
emit_comp_op_float_ge = emit_op_float_ge
def emit_op_float_eq(self, op, arglocs):
l0, l1, res = arglocs
self.mc.FEQ_D(res.value, l0.value, l1.value)
emit_comp_op_float_eq = emit_op_float_eq
def emit_op_float_ne(self, op, arglocs):
l0, l1, res = arglocs
self.mc.FEQ_D(res.value, l0.value, l1.value)
self.mc.XORI(res.value, res.value, 1)
emit_comp_op_float_ne = emit_op_float_ne
def emit_op_float_neg(self, op, arglocs):
l0, res = arglocs
self.mc.FNEG_D(res.value, l0.value)
def emit_op_float_abs(self, op, arglocs):
l0, res = arglocs
self.mc.FABS_D(res.value, l0.value)
def emit_op_cast_float_to_int(self, op, arglocs):
l0, res = arglocs
self.mc.FCVT_L_D(res.value, l0.value, RTZ.value)
def emit_op_cast_int_to_float(self, op, arglocs):
l0, res = arglocs
self.mc.FCVT_D_L(res.value, l0.value, DYN.value)
def emit_op_convert_float_bytes_to_longlong(self, op, arglocs):
l0, res = arglocs
self.mc.FMV_X_D(res.value, l0.value)
def emit_op_convert_longlong_bytes_to_float(self, op, arglocs):
l0, res = arglocs
self.mc.FMV_D_X(res.value, l0.value)
def emit_op_gc_store(self, op, arglocs):
value_loc, base_loc, ofs_loc, size_loc = arglocs
self._store_to_mem(value_loc, base_loc, ofs_loc, size_loc.value)
def _emit_op_gc_load(self, op, arglocs):
base_loc, ofs_loc, res_loc, nsize_loc = arglocs
nsize = nsize_loc.value
signed = (nsize < 0)
self._load_from_mem(res_loc, base_loc, ofs_loc, abs(nsize), signed)
emit_op_gc_load_i = _emit_op_gc_load
emit_op_gc_load_r = _emit_op_gc_load
emit_op_gc_load_f = _emit_op_gc_load
def _emit_gc_indexed_full_offset(self, index_loc, ofs_loc):
# Compute the full offset.
#
# Note: result = (index * scale) + ofs, where scale == 1
scratch_reg = r.x31
assert index_loc.is_core_reg()
if ofs_loc.is_imm():
if ofs_loc.value == 0:
return index_loc
if check_imm_arg(ofs_loc.value):
self.mc.ADDI(scratch_reg.value, index_loc.value, ofs_loc.value)
else:
assert index_loc is not scratch_reg
self.mc.load_int_imm(scratch_reg.value, ofs_loc.value)
self.mc.ADD(scratch_reg.value, scratch_reg.value,
index_loc.value)
return scratch_reg
self.mc.ADD(scratch_reg.value, index_loc.value, ofs_loc.value)
return scratch_reg
def emit_op_gc_store_indexed(self, op, arglocs):
value_loc, base_loc, index_loc, ofs_loc, size_loc = arglocs
full_ofs_loc = self._emit_gc_indexed_full_offset(index_loc, ofs_loc)
self._store_to_mem(value_loc, base_loc, full_ofs_loc, size_loc.value)
def _emit_op_gc_load_indexed(self, op, arglocs):
base_loc, index_loc, ofs_loc, res_loc, nsize_loc = arglocs
nsize = nsize_loc.value
signed = (nsize < 0)
full_ofs_loc = self._emit_gc_indexed_full_offset(index_loc, ofs_loc)
self._load_from_mem(res_loc, base_loc, full_ofs_loc, abs(nsize),
signed)
emit_op_gc_load_indexed_i = _emit_op_gc_load_indexed
emit_op_gc_load_indexed_r = _emit_op_gc_load_indexed
emit_op_gc_load_indexed_f = _emit_op_gc_load_indexed
def _normalize_base_offset(self, base_loc, ofs_loc, scratch_reg):
# Normalize the calculation of `base + offset`.
if ofs_loc.is_core_reg():
self.mc.ADD(scratch_reg.value, base_loc.value, ofs_loc.value)
return (scratch_reg, 0)
assert ofs_loc.is_imm()
if check_imm_arg(ofs_loc.value):
return (base_loc, ofs_loc.value)
else:
assert base_loc is not scratch_reg
self.mc.load_int_imm(scratch_reg.value, ofs_loc.value)
self.mc.ADD(scratch_reg.value, scratch_reg.value,
base_loc.value)
return (scratch_reg, 0)
def _store_to_mem(self, value_loc, base_loc, ofs_loc, type_size):
# Store a value of size `type_size` at the address
# `base_ofs + ofs_loc`.
#
# Note: `ofs_loc` can be `scratch_reg`. Use with caution.
assert XLEN == 8 and FLEN == 8, 'implementation below assumes 64-bit'
assert base_loc.is_core_reg()
scratch_reg = r.x31
base_loc, ofs_int = self._normalize_base_offset(base_loc, ofs_loc,
scratch_reg)
if type_size == 8:
# 64-bit
if value_loc.is_float():
# 64-bit float
self.mc.FSD(value_loc.value, base_loc.value, ofs_int)
return
# 64-bit int
self.mc.SD(value_loc.value, base_loc.value, ofs_int)
return
if type_size == 4:
# 32-bit int
self.mc.SW(value_loc.value, base_loc.value, ofs_int)
return
if type_size == 2:
# 16-bit int
self.mc.SH(value_loc.value, base_loc.value, ofs_int)
return
assert type_size == 1
self.mc.SB(value_loc.value, base_loc.value, ofs_int)
def _load_from_mem(self, res_loc, base_loc, ofs_loc, type_size, signed):
# Load a value of `type_size` bytes, from the memory location
# `base_loc + ofs_loc`.
assert XLEN == 8 and FLEN == 8, 'implementation below assumes 64-bit'
assert base_loc.is_core_reg()
scratch_reg = r.x31
base_loc, ofs_int = self._normalize_base_offset(base_loc, ofs_loc,
scratch_reg)
if type_size == 8:
# 64-bit
if res_loc.is_float():
# 64-bit float
self.mc.FLD(res_loc.value, base_loc.value, ofs_int)
return
# 64-bit int
self.mc.LD(res_loc.value, base_loc.value, ofs_int)
return
if type_size == 4:
# 32-bit int
if signed:
self.mc.LW(res_loc.value, base_loc.value, ofs_int)
else:
self.mc.LWU(res_loc.value, base_loc.value, ofs_int)
return
if type_size == 2:
# 16-bit int
if signed:
self.mc.LH(res_loc.value, base_loc.value, ofs_int)
else:
self.mc.LHU(res_loc.value, base_loc.value, ofs_int)
return
assert type_size == 1
# 8-bit int
if signed:
self.mc.LB(res_loc.value, base_loc.value, ofs_int)
else:
self.mc.LBU(res_loc.value, base_loc.value, ofs_int)
def _build_guard_token(self, op, frame_depth, arglocs, offset):
descr = op.getdescr()
assert isinstance(descr, AbstractFailDescr)
gcmap = allocate_gcmap(self, frame_depth, JITFRAME_FIXED_SIZE)
faildescrindex = self.get_gcref_from_faildescr(descr)
return GuardToken(self.cpu, gcmap, descr,
failargs=op.getfailargs(), fail_locs=arglocs,
guard_opnum=op.getopnum(), frame_depth=frame_depth,
faildescrindex=faildescrindex)
def _emit_pending_guard(self, op, arglocs, is_guard_not_invalidated=False):
pos = self.mc.get_relative_pos()
guardtok = self._build_guard_token(op, arglocs[0].value, arglocs[1:],
pos)
guardtok.offset = pos
self.pending_guards.append(guardtok)
assert guardtok.guard_not_invalidated() == is_guard_not_invalidated
if is_guard_not_invalidated:
# For `GUARD_NOT_INVALIDATED`, just emit an no-op. It will be
# patched by `invalidate_loop` (in `runner.py`) when invalidation
# is needed.
self.mc.NOP()
else:
# Emit an `EBREAK` here and `process_pending_guards` will patch it
# with a branch to a recovery stub.
self.mc.EBREAK()
def emit_op_guard_true(self, op, arglocs):
l0 = arglocs[0]
self.mc.BNEZ(l0.value, 8)
self._emit_pending_guard(op, arglocs[1:])
emit_op_guard_nonnull = emit_op_guard_true
def emit_op_guard_false(self, op, arglocs):
l0 = arglocs[0]
self.mc.BEQZ(l0.value, 8)
self._emit_pending_guard(op, arglocs[1:])
emit_op_guard_isnull = emit_op_guard_false
def emit_op_guard_value(self, op, arglocs):
l0 = arglocs[0]
l1 = arglocs[1]
if l0.is_fp_reg():
self.mc.FEQ_D(r.x31.value, l0.value, l1.value)
self.mc.BNEZ(r.x31.value, 8)
else:
self.mc.BEQ(l0.value, l1.value, 8)
self._emit_pending_guard(op, arglocs[2:])
def _emit_guard_op_guard_bool_op(self, op, guard_op, arglocs,
guard_branch_inst):
l0 = arglocs[0]
l1 = arglocs[1]
BRANCH_BUILDER[guard_branch_inst](self.mc, l0.value, l1.value, 8)
self._emit_pending_guard(guard_op, arglocs[2:])
emit_guard_op_guard_true = _emit_guard_op_guard_bool_op
emit_guard_op_guard_false = _emit_guard_op_guard_bool_op
def _emit_guard_op_guard_overflow_op(self, op, guard_op, arglocs,
guard_branch_inst):
l0 = arglocs[0]
l1 = arglocs[1]
res = arglocs[2]
tmp0 = arglocs[3]
tmp1 = arglocs[4]
opnum = op.getopnum()
if opnum == rop.INT_ADD_OVF:
self.mc.ADD(res.value, l0.value, l1.value)
self.mc.SLT(tmp0.value, res.value, l0.value)
self.mc.SLTI(tmp1.value, l1.value, 0)
elif opnum == rop.INT_SUB_OVF:
self.mc.SUB(res.value, l0.value, l1.value)
self.mc.SLT(tmp0.value, res.value, l0.value)
self.mc.SGTZ(tmp1.value, l1.value)
elif opnum == rop.INT_MUL_OVF:
self.mc.MUL(res.value, l0.value, l1.value)
self.mc.MULH(tmp0.value, l0.value, l1.value)
self.mc.SRAI(tmp1.value, res.value, XLEN * 8 - 1)
else:
assert 0, 'unexpected overflow op'
BRANCH_BUILDER[guard_branch_inst](self.mc, tmp0.value, tmp1.value, 8)
self._emit_pending_guard(guard_op, arglocs[5:])
emit_guard_op_guard_overflow = _emit_guard_op_guard_overflow_op
emit_guard_op_guard_no_overflow = _emit_guard_op_guard_overflow_op
def _emit_load_typeid_from_obj(self, dest_loc, obj_loc):
# Note that the typeid half-word is at offset 0 on a little-endian
# machine; it would be at offset 2 or 4 on a big-endian machine.
if XLEN == 8:
self.mc.LWU(dest_loc.value, obj_loc.value, 0)
else:
self.mc.LHU(dest_loc.value, obj_loc.value, 0)
def _emit_cmp_guard_gc_type(self, obj_loc, expected_typeid,
success_branch_offset):
assert self.cpu.supports_guard_gc_type
scratch_reg = r.x31
scratch2_reg = r.ra
self._emit_load_typeid_from_obj(scratch_reg, obj_loc)
self.mc.load_int_imm(scratch2_reg.value, expected_typeid)
self.mc.BEQ(scratch_reg.value, scratch2_reg.value,
success_branch_offset)
def emit_op_guard_class(self, op, arglocs):
# Implements guard_class(obj, cls):
#
# if type(obj) != cls:
# goto guard_fail
obj_loc, cls_loc = arglocs[:2]
failargs = arglocs[2:]
scratch_reg = r.x31
scratch2_reg = r.ra
offset = self.cpu.vtable_offset
if offset is not None:
self.mc.load_int_from_base_plus_offset(scratch_reg.value,
obj_loc.value, offset)
self.mc.load_int_imm(scratch2_reg.value, cls_loc.value)
self.mc.BEQ(scratch_reg.value, scratch2_reg.value, 8)
else:
expected_typeid = (self.cpu.gc_ll_descr
.get_typeid_from_classptr_if_gcremovetypeptr(
cls_loc.value))
self._emit_cmp_guard_gc_type(obj_loc, expected_typeid,
success_branch_offset=8)
self._emit_pending_guard(op, failargs)
def emit_op_guard_nonnull_class(self, op, arglocs):
# Implements guard_nonnull_class(obj, cls):
#
# if !obj:
# goto guard_fail
# if type(obj) != cls:
# goto guard_fail
obj_loc, cls_loc = arglocs[:2]
failargs = arglocs[2:]
scratch_reg = r.x31
scratch2_reg = r.ra
# LABEL[guard_nonnull]:
# Patch Location: BEQZ obj, guard_fail
branch_inst_location = self.mc.get_relative_pos()
self.mc.EBREAK()
offset = self.cpu.vtable_offset
if offset is not None:
# Test `type(obj) == cls`
self.mc.load_int_from_base_plus_offset(scratch_reg.value,
obj_loc.value, offset)
self.mc.load_int_imm(scratch2_reg.value, cls_loc.value)
self.mc.BEQ(scratch_reg.value, scratch2_reg.value, 8)
else:
expected_typeid = (self.cpu.gc_ll_descr
.get_typeid_from_classptr_if_gcremovetypeptr(
cls_loc.value))
self._emit_cmp_guard_gc_type(obj_loc, expected_typeid,
success_branch_offset=8)
# LABEL[guard_fail]:
currpos = self.mc.get_relative_pos()
pmc = OverwritingBuilder(self.mc, branch_inst_location, INST_SIZE)
pmc.BEQZ(obj_loc.value, currpos - branch_inst_location)
self._emit_pending_guard(op, failargs)
def emit_op_guard_gc_type(self, op, arglocs):
obj_loc = arglocs[0]
expected_typeid_imm = arglocs[1]
failargs = arglocs[2:]
self._emit_cmp_guard_gc_type(obj_loc, expected_typeid_imm.value,
success_branch_offset=8)
self._emit_pending_guard(op, failargs)
def emit_op_guard_subclass(self, op, arglocs):
assert self.cpu.supports_guard_gc_type
obj_loc = arglocs[0]
check_against_class_loc = arglocs[1]
failargs = arglocs[2:]
scratch_reg = r.x31
scratch2_reg = r.ra
offset = self.cpu.vtable_offset
subclassrange_min_offset = self.cpu.subclassrange_min_offset
if offset is not None:
# Read this field to get the vtable pointer
self.mc.load_int_from_base_plus_offset(scratch_reg.value,
obj_loc.value, offset)
# Read the vtable's subclassrange_min field
self.mc.load_int_from_base_plus_offset(scratch_reg.value,
scratch_reg.value,
subclassrange_min_offset,
tmp=scratch2_reg)
else:
# Read the typeid
self._emit_load_typeid_from_obj(scratch_reg, obj_loc)
# Read the vtable's subclassrange_min field, as a single step with
# the correct offset.
base_type_info, shift_by, sizeof_ti = (
self.cpu.gc_ll_descr.get_translated_info_for_typeinfo())
self.mc.load_int_imm(scratch2_reg.value,
base_type_info + sizeof_ti +
subclassrange_min_offset)
if shift_by > 0:
self.mc.SLLI(scratch_reg.value, scratch_reg.value, shift_by)
self.mc.ADD(scratch_reg.value, scratch_reg.value,
scratch2_reg.value)
self.mc.load_int(scratch_reg.value, scratch_reg.value, 0)
# Get the two bounds to check against
vtable_ptr = check_against_class_loc.value
vtable_ptr = rffi.cast(rclass.CLASSTYPE, vtable_ptr)
check_min = vtable_ptr.subclassrange_min
check_max = vtable_ptr.subclassrange_max
assert check_max > check_min
check_diff = check_max - check_min - 1
# Check by doing the unsigned comparison (max - min - 1) >= (tmp - min)
self.mc.load_int_imm(scratch2_reg.value, check_min)
self.mc.SUB(scratch_reg.value, scratch_reg.value, scratch2_reg.value)
self.mc.load_int_imm(scratch2_reg.value, check_diff)
self.mc.BGEU(scratch2_reg.value, scratch_reg.value, 8)
self._emit_pending_guard(op, failargs)
def emit_op_guard_is_object(self, op, arglocs):
assert self.cpu.supports_guard_gc_type
obj_loc = arglocs[0]
failargs = arglocs[1:]
scratch_reg = r.x31
scratch2_reg = r.ra
# Read the typeid, fetch one byte of the field 'infobits' from the big
# typeinfo table, and check the flag 'T_IS_RPYTHON_INSTANCE'.
self._emit_load_typeid_from_obj(scratch_reg, obj_loc)
base_type_info, shift_by, sizeof_ti = (
self.cpu.gc_ll_descr.get_translated_info_for_typeinfo())
infobits_offset, IS_OBJECT_FLAG = (
self.cpu.gc_ll_descr.get_translated_info_for_guard_is_object())
self.mc.load_int_imm(scratch2_reg.value,
base_type_info + infobits_offset)
if shift_by > 0:
self.mc.SLLI(scratch_reg.value, scratch_reg.value, shift_by)
self.mc.ADD(scratch_reg.value, scratch_reg.value, scratch2_reg.value)
self.mc.LBU(scratch_reg.value, scratch_reg.value, 0)
self.mc.ANDI(scratch_reg.value, scratch_reg.value,
IS_OBJECT_FLAG & 0xff)
self.mc.BNEZ(scratch_reg.value, 8)
self._emit_pending_guard(op, failargs)
def emit_op_guard_not_invalidated(self, op, arglocs):
self._emit_pending_guard(op, arglocs, is_guard_not_invalidated=True)
def emit_op_guard_exception(self, op, arglocs):
expected_exc_tp_loc, res_exc_val_loc = arglocs[:2]
failargs = arglocs[2:]
# Load the type of the pending exception.
scratch_reg = r.x31
self.mc.load_int_imm(scratch_reg.value, self.cpu.pos_exception())
self.mc.load_int(scratch_reg.value, scratch_reg.value, 0)
# Compare the expected type and pending type.
self.mc.BEQ(scratch_reg.value, expected_exc_tp_loc.value, 8)
self._emit_pending_guard(op, failargs)
# Copy the exception value.
self._store_and_reset_exception(self.mc, res_exc_val_loc)
def emit_op_guard_no_exception(self, op, arglocs):
failargs = arglocs # All arglocs are for failargs
scratch_reg = r.x31
self.mc.load_int_imm(scratch_reg.value, self.cpu.pos_exception())
self.mc.load_int(scratch_reg.value, scratch_reg.value, 0)
self.mc.BEQZ(scratch_reg.value, 8)
self._emit_pending_guard(op, failargs)
# If the previous operation was a `COND_CALL`, overwrite its
# conditional jump to jump over this GUARD_NO_EXCEPTION as well.
if self._find_nearby_operation(-1).getopnum() == rop.COND_CALL:
cond_branch_addr, branch_inst, arg = self.previous_cond_call_branch
new_offset = self.mc.get_relative_pos() - cond_branch_addr
pmc = OverwritingBuilder(self.mc, cond_branch_addr, INST_SIZE)
BRANCH_BUILDER[branch_inst](pmc, arg.value, r.x0.value, new_offset)
def emit_op_save_exc_class(self, op, arglocs):
res = arglocs[0]
self.mc.load_int_imm(res.value, self.cpu.pos_exception())
self.mc.load_int(res.value, res.value, 0)
def emit_op_save_exception(self, op, arglocs):
self._store_and_reset_exception(self.mc, arglocs[0])
def emit_op_restore_exception(self, op, arglocs):
exc_tp_loc, exc_val_loc = arglocs
self._restore_exception(self.mc, exc_val_loc, exc_tp_loc)
def emit_op_check_memory_error(self, op, arglocs):
self.propagate_memoryerror_if_reg_is_null(arglocs[0])
def _emit_op_same_as(self, op, arglocs):
l0, res = arglocs
if l0 is not res:
self.regalloc_mov(l0, res)
emit_op_same_as_i = _emit_op_same_as
emit_op_same_as_r = _emit_op_same_as
emit_op_same_as_f = _emit_op_same_as
emit_op_cast_ptr_to_int = _emit_op_same_as
emit_op_cast_int_to_ptr = _emit_op_same_as
def math_sqrt(self, op, arglocs):
l1, res = arglocs
self.mc.FSQRT_D(res.value, l1.value)
def threadlocalref_get(self, op, arglocs):
res_loc = arglocs[0]
# Use `r.ra` as a scratch register.
#
# Note: Don't use `r.x31` here because `_load_from_mem` uses `r.x31` as
# a scratch register when it must add large offset immediate.
tls_reg = r.ra
# Load TLS address
self.mc.load_int(tls_reg.value, r.sp.value,
self.saved_threadlocal_addr)
# TLS field offset as an immediate
ofs_loc = self.imm(op.getarg(1).getint())
# TLS field type
calldescr = op.getdescr()
type_size = calldescr.get_result_size()
signed = calldescr.is_result_signed()
self._load_from_mem(res_loc, tls_reg, ofs_loc, type_size, signed)
def _emit_op_call(self, op, arglocs):
is_call_release_gil = rop.is_call_release_gil(op.getopnum())
# arglocs = [resloc, size, sign, funcloc, args...]
# -- or --
# arglocs = [resloc, size, sign, save_err_loc, funcloc, args...]
resloc = arglocs[0]
sizeloc = arglocs[1]
signloc = arglocs[2]
func_index = 3 + is_call_release_gil
funcloc = arglocs[func_index]
assert sizeloc.is_imm()
assert signloc.is_imm()
descr = op.getdescr()
assert isinstance(descr, CallDescr)
cb = RISCVCallBuilder(self, funcloc, arglocs[func_index + 1:], resloc,
descr.get_result_type(), sizeloc.value)
cb.callconv = descr.get_call_conv()
cb.argtypes = descr.get_arg_types()
cb.restype = descr.get_result_type()
cb.ressize = sizeloc.value
cb.ressign = signloc.value
if is_call_release_gil:
save_err_loc = arglocs[3]
assert save_err_loc.is_imm()
cb.emit_call_release_gil(save_err_loc.value)
else:
effectinfo = descr.get_extra_info()
if effectinfo is None or effectinfo.check_can_collect():
cb.emit()
else:
cb.emit_no_collect()
emit_op_call_i = _emit_op_call
emit_op_call_f = _emit_op_call
emit_op_call_r = _emit_op_call
emit_op_call_n = _emit_op_call
def _emit_op_cond_call(self, op, arglocs):
"""Emit instructions for COND_CALL and COND_CALL_VALUE_I/R.
# cond_call(cond, func, *args)
cond = arglocs[0]
if cond != 0:
func(*args)
# res = cond_call_value(cond, func, *args)
# res = cond or func(*args)
cond, res = arglocs
if cond == 0:
res = func(*args)
"""
if len(arglocs) == 2:
res_loc = arglocs[1] # cond_call_value
else:
res_loc = None # cond_call
# see x86.regalloc for why we skip res_loc in the gcmap
gcmap = self._regalloc.get_gcmap([res_loc])
# Save the conditional branch position (will be overwritten after we
# generate the instructions in the middle).
cond_branch_addr = self.mc.get_relative_pos()
self.mc.EBREAK()
self.push_gcmap(self.mc, gcmap)
# Load callee function address.
callee_func_addr_reg = r.x30
callee_func_addr = rffi.cast(lltype.Signed, op.getarg(1).getint())
self.mc.load_int_imm(callee_func_addr_reg.value, callee_func_addr)
# Check whether there are alive registers that we must reload after
# cond_call.
callee_only = False
floats = False
if self._regalloc is not None:
for reg in self._regalloc.rm.reg_bindings.values():
if reg not in self._regalloc.rm.save_around_call_regs:
break
else:
callee_only = True
if self._regalloc.fprm.reg_bindings:
floats = True
# Jump to cond_call trampoline.
trampoline_addr = self.cond_call_slowpath[floats * 2 + callee_only]
assert trampoline_addr
self.mc.load_int_imm(r.ra.value, trampoline_addr)
self.mc.JALR(r.ra.value, r.ra.value, 0)
# If this is a COND_CALL_VALUE, we need to move the result in place
# from its current location
if res_loc is not None:
self.mc.MV(res_loc.value, r.x30.value)
self.pop_gcmap(self.mc)
# Overwrite the conditional branch offset.
branch_dest_addr = self.mc.get_relative_pos()
branch_offset = branch_dest_addr - cond_branch_addr
pmc = OverwritingBuilder(self.mc, cond_branch_addr, INST_SIZE)
if res_loc is None:
pmc.BEQZ(arglocs[0].value, branch_offset)
self.previous_cond_call_branch = (cond_branch_addr, COND_BEQ,
arglocs[0])
else:
pmc.BNEZ(arglocs[0].value, branch_offset)
self.previous_cond_call_branch = (cond_branch_addr, COND_BNE,
arglocs[0])
emit_op_cond_call = _emit_op_cond_call
emit_op_cond_call_value_i = _emit_op_cond_call
emit_op_cond_call_value_r = _emit_op_cond_call
def emit_guard_op_cond_call(self, cond_op, op, arglocs, guard_branch_inst):
# TODO: Optimize guard_branch_inst when cond_op is using integer
# comparison.
assert guard_branch_inst == COND_INVALID
self._emit_op_cond_call(op, arglocs)
def _write_barrier_fastpath(self, mc, descr, arglocs, tmplocs, array=False,
is_frame=False):
# Emits the fast path for a GC write barrier.
#
# This function emits instructions that is equivalent to
# `write_barrier` or `write_barrier_from_array` in
# `rpython/memory/gc/incminimark.py`.
#
# This fast path `GCFLAG_TRACK_YOUNG_PTRS` (`jit_wb_if_flag`) and
# `GCFLAG_CARDS_SET` (`jit_wb_cards_set`). This is the overall
# structure of this function:
#
# if GCFLAG_TRACK_YOUNG_PTRS | GCFLAG_CARDS_SET:
# if GCFLAG_CARDS_SET:
# update_card_table()
# return
# write_barrier_slowpath()
# if GCFLAG_CARDS_SET:
# update_card_table()
#
# The card table is a utility data structure to assist generational GC.
# It is prepended to *large* arrays so that the garbage collector
# doesn't have to scan the complete array object if only some of them
# are updated. The card table maps `card_page_indices` (default: 128)
# indices into one bit, thus we need the byte/bit index calculation.
#
# The `write_barrier_slowpath` (`jit_remember_young_pointer_from_array`)
# only updates the `GCFLAGS_CARDS_SET` bit in its fast path, thus we
# must update card table afterward.
#
# OTOH, small arrays don't have card tables, thus we need the second
# `if GCFLAG_CARDS_SET` after returning from `write_barrier_slowpath`.
if we_are_translated():
cls = self.cpu.gc_ll_descr.has_write_barrier_class()
assert cls is not None and isinstance(descr, cls)
card_marking = 0
mask = descr.jit_wb_if_flag_singlebyte
if array and descr.jit_wb_cards_set != 0:
# Asserts the assumptions the rest of the `_write_barrier_fastpath`
# function and `self.wb_slowpath[n]`.
assert (descr.jit_wb_cards_set_byteofs ==
descr.jit_wb_if_flag_byteofs)
assert descr.jit_wb_cards_set_singlebyte == -0x80
card_marking = 1
mask |= -0x80
loc_base = arglocs[0]
assert loc_base.is_core_reg()
assert not is_frame or loc_base is r.jfp
scratch_reg = r.x31
mc.LBU(scratch_reg.value, loc_base.value, descr.jit_wb_if_flag_byteofs)
mc.ANDI(scratch_reg.value, scratch_reg.value, mask & 0xff)
# Patch Location: BEQZ scratch_reg, end
jz_location = mc.get_relative_pos()
mc.EBREAK()
# For `cond_call_gc_wb_array`, also add another fast path:
# If `GCFLAG_CARDS_SET`, then we can just update the card table (set
# one bit) and done.
js_location = 0
if card_marking:
# GCFLAG_CARDS_SET is in this byte at 0x80
mc.ANDI(scratch_reg.value, scratch_reg.value, 0x80)
# Patch Location: BNEZ scratch_reg, update_card_table
js_location = mc.get_relative_pos()
mc.EBREAK()
# Write only a CALL to the helper prepared in advance, passing it as
# argument the address of the structure we are writing into
# (the first argument to COND_CALL_GC_WB).
helper_num = card_marking
if is_frame:
helper_num = 4
elif self._regalloc is not None and self._regalloc.fprm.reg_bindings:
helper_num += 2 # Slowpath must spill float registers
if self.wb_slowpath[helper_num] == 0: # Tests only
assert not we_are_translated()
self.cpu.gc_ll_descr.write_barrier_descr = descr
self._build_wb_slowpath(card_marking,
bool(self._regalloc.fprm.reg_bindings))
assert self.wb_slowpath[helper_num] != 0
# Save `r.x10` to stack.
stack_size = 0
if loc_base is not r.x10:
stack_size = ((XLEN * 1) + ABI_STACK_ALIGN - 1) // \
ABI_STACK_ALIGN * ABI_STACK_ALIGN
mc.ADDI(r.sp.value, r.sp.value, -stack_size)
mc.store_int(r.x10.value, r.sp.value, 0)
mc.MV(r.x10.value, loc_base.value)
if is_frame:
assert loc_base is r.jfp
# Call the slow path of the write barrier.
mc.load_int_imm(r.ra.value, self.wb_slowpath[helper_num])
mc.JALR(r.ra.value, r.ra.value, 0)
# Restore `r.x10` from stack.
if loc_base is not r.x10:
mc.load_int(r.x10.value, r.sp.value, 0)
mc.ADDI(r.sp.value, r.sp.value, stack_size)
jns_location = 0
if card_marking:
# The helper ends again with a check of the flag in the object.
# After the `wb_slowpath`, we check `GCFLAG_CARDS_SET` again. If
# `GCFLAG_CARDS_SET` isn't set, it implies that the object doesn't
# have a card table (e.g. small array) and we can skip to the end.
# Patch Location: BEQZ x31, end_update_card_table
jns_location = mc.get_relative_pos()
mc.EBREAK()
# LABEL[update_card_table]:
# Patch the `js_location` above.
offset = mc.get_relative_pos() - js_location
pmc = OverwritingBuilder(mc, js_location, INST_SIZE)
pmc.BNEZ(scratch_reg.value, offset)
# Update the card table if `GCFLAG_CARDS_SET` is set.
loc_index = arglocs[1]
assert loc_index.is_core_reg()
# Allocate scratch registers.
scratch2_reg = r.ra
scratch3_reg = tmplocs[0]
# byte_index:
# scratch_reg = ~(index >> (descr.jit_wb_card_page_shift + lg2(8)))
mc.SRLI(scratch_reg.value, loc_index.value,
descr.jit_wb_card_page_shift + 3)
mc.XORI(scratch_reg.value, scratch_reg.value, -1)
# byte_addr:
mc.ADD(scratch_reg.value, loc_base.value, scratch_reg.value)
# bit_index:
# scratch2_reg = (index >> descr.jit_wb_card_page_shift) & 0x7
mc.SRLI(scratch2_reg.value, loc_index.value,
descr.jit_wb_card_page_shift)
mc.ANDI(scratch2_reg.value, scratch2_reg.value, 0x07)
# bit_mask:
# scratch2_reg = (1 << scratch2_reg)
mc.load_int_imm(scratch3_reg.value, 1)
mc.SLL(scratch2_reg.value, scratch3_reg.value, scratch2_reg.value)
# Set the bit
mc.LBU(scratch3_reg.value, scratch_reg.value, 0)
mc.OR(scratch3_reg.value, scratch3_reg.value, scratch2_reg.value)
mc.SB(scratch3_reg.value, scratch_reg.value, 0)
# LABEL[end_update_card_table]:
# Patch the `jns_location` above.
offset = mc.get_relative_pos() - jns_location
pmc = OverwritingBuilder(mc, jns_location, INST_SIZE)
pmc.BEQZ(r.x31.value, offset)
# LABEL[end]:
# Patch `jz_location` above.
offset = mc.get_relative_pos() - jz_location
pmc = OverwritingBuilder(mc, jz_location, INST_SIZE)
pmc.BEQZ(scratch_reg.value, offset)
def emit_op_cond_call_gc_wb(self, op, arglocs):
tmplocs = arglocs[:1]
arglocs = arglocs[1:]
self._write_barrier_fastpath(self.mc, op.getdescr(), arglocs, tmplocs)
def emit_op_cond_call_gc_wb_array(self, op, arglocs):
tmplocs = arglocs[:1]
arglocs = arglocs[1:]
self._write_barrier_fastpath(self.mc, op.getdescr(), arglocs, tmplocs,
array=True)
def _store_force_index(self, guard_op):
faildescr = guard_op.getdescr()
faildescrindex = self.get_gcref_from_faildescr(faildescr)
ofs = self.cpu.get_ofs_of_frame_field('jf_force_descr')
scratch_reg = r.x31
self.load_from_gc_table(scratch_reg.value, faildescrindex)
self.mc.store_int(scratch_reg.value, r.jfp.value, ofs)
def _find_nearby_operation(self, delta):
regalloc = self._regalloc
return regalloc.operations[regalloc.rm.position + delta]
def emit_guard_op_guard_not_forced(self, call_op, guard_op, arglocs,
num_arglocs):
# arglocs is call_op_arglocs + guard_op_arglocs, split them
if rop.is_call_assembler(call_op.getopnum()):
if num_arglocs == 3:
[argloc, vloc, result_loc] = arglocs[:3]
else:
[argloc, result_loc] = arglocs[:2]
vloc = self.imm(0)
guard_op_arglocs = arglocs[num_arglocs:]
self._store_force_index(guard_op)
# Note: In the `call_assembler` implementation:
#
# `tmploc` refers to the register holding the returned JITFrame
# address, which is `r.x10` in RISC-V.
#
# `result_loc` refers to the register allocated for the returned
# value of the `call_assembler` op. For now, it is the returned by
# `after_call`, which returns `r.x10` for integers and `r.f10` for
# floats.
self.call_assembler(call_op, argloc, vloc, result_loc,
tmploc=r.x10)
else:
assert num_arglocs == call_op.numargs() + 3
call_op_arglocs = arglocs[0:num_arglocs]
guard_op_arglocs = arglocs[num_arglocs:]
self._store_force_index(guard_op)
self._emit_op_call(call_op, call_op_arglocs)
# Implement guard_not_forced:
#
# if frame.jf_descr != 0:
# goto guard_handler
#
ofs = self.cpu.get_ofs_of_frame_field('jf_descr')
scratch_reg = r.x31
self.mc.load_int(scratch_reg.value, r.jfp.value, ofs)
self.mc.BEQZ(scratch_reg.value, 8)
self._emit_pending_guard(guard_op, guard_op_arglocs)
def simple_call(self, fnloc, arglocs, result_loc=r.x10):
if result_loc is None:
result_type = VOID
result_size = 0
elif result_loc.is_fp_reg():
result_type = FLOAT
result_size = FLEN
else:
result_type = INT
result_size = XLEN
cb = RISCVCallBuilder(self, fnloc, arglocs, result_loc, result_type,
result_size)
cb.emit()
# Note: Read the `call_assembler` function in
# `rpython/jit/backend/llsupport/assembler.py` to understand how these
# `_call_assembler_*` functions work.
def _call_assembler_emit_call(self, addr, argloc, tmploc):
# Move the threadlocal to r.x11.
self.mc.load_int(r.x11.value, r.sp.value, self.saved_threadlocal_addr)
assert argloc is r.x10
assert tmploc is r.x10
self.simple_call(addr, [argloc, r.x11], result_loc=tmploc)
def _call_assembler_check_descr(self, expected_descr, tmploc):
scratch_reg = r.x31
ofs = self.cpu.get_ofs_of_frame_field('jf_descr')
self.mc.load_int(scratch_reg.value, tmploc.value, ofs)
if check_imm_arg(-expected_descr):
self.mc.ADDI(scratch_reg.value, scratch_reg.value, -expected_descr)
else:
scratch2_reg = r.ra
self.mc.load_int_imm(scratch2_reg.value, expected_descr)
self.mc.SUB(scratch_reg.value, scratch_reg.value,
scratch2_reg.value)
# Patch Location: BEQZ x31, load_result_fast_path
pos = self.mc.get_relative_pos()
self.mc.EBREAK()
return pos
def _call_assembler_emit_helper_call(self, addr, arglocs, resloc):
self.simple_call(addr, arglocs, result_loc=resloc)
def _call_assembler_patch_je(self, result_loc, jmp_location):
# Patch Location: J end
pos = self.mc.get_relative_pos()
self.mc.EBREAK()
# LABEL[load_result_fast_path]:
# Patch the check_descr patch location.
currpos = self.mc.get_relative_pos()
pmc = OverwritingBuilder(self.mc, jmp_location, INST_SIZE)
pmc.BEQZ(r.x31.value, currpos - jmp_location)
return pos
def _call_assembler_load_result(self, op, result_loc):
# LABEL[load_result_fast_path]:
if op.type != 'v':
# Load the return value from the returned frame.
kind = op.type
descr = self.cpu.getarraydescr_for_frame(kind)
ofs = self.cpu.unpack_arraydescr(descr)
# Note: The code above should be equivalent to
# `ofs = self.cpu.get_baseofs_of_frame_field()` used in
# `OP_FINISH`.
if kind == FLOAT:
assert result_loc.is_fp_reg()
self.mc.load_float(result_loc.value, r.x10.value, ofs)
else:
assert result_loc.is_core_reg()
self.mc.load_int(result_loc.value, r.x10.value, ofs)
def _call_assembler_patch_jmp(self, jmp_location):
# LABEL[end]:
currpos = self.mc.get_relative_pos()
pmc = OverwritingBuilder(self.mc, jmp_location, INST_SIZE)
pmc.J(currpos - jmp_location)
def emit_op_guard_not_forced_2(self, op, arglocs):
frame_depth = arglocs[0].value
fail_locs = arglocs[1:]
pos = self.mc.get_relative_pos()
guardtok = self._build_guard_token(op, frame_depth, fail_locs, pos)
self._finish_gcmap = guardtok.gcmap
self._store_force_index(op)
self.store_info_on_descr(pos, guardtok)
def emit_op_force_token(self, op, arglocs):
self.mc.MV(arglocs[0].value, r.jfp.value)
def emit_op_load_from_gc_table(self, op, arglocs):
res = arglocs[0]
index = op.getarg(0).getint()
self.load_from_gc_table(res.value, index)
def emit_op_zero_array(self, op, arglocs):
# ZERO_ARRAY(base, start, size, scale_start, scale_size)
#
# Assume `base` is a byte pointer. Initialize
# `base + (start * scale_start)` to
# `base + (start * scale_start) + (size * scale_size)` with zeros.
assert len(arglocs) == 0, 'regalloc should not alloc for OP_ZERO_ARRAY'
boxes = op.getarglist()
base, start, size, scale_start, scale_size = boxes
# The scaling arguments should always be `ConstInt(1)` on RISC-V.
assert isinstance(scale_start, ConstInt) and scale_start.getint() == 1
assert isinstance(scale_size, ConstInt) and scale_size.getint() == 1
# Trivial case: size == 0, no code needed.
if isinstance(size, ConstInt) and size.getint() == 0:
return
item_size, base_ofs, _ = unpack_arraydescr(op.getdescr())
base_loc = self._regalloc.rm.make_sure_var_in_reg(base, boxes)
if isinstance(start, ConstInt):
start_loc = None
const_start = start.getint()
assert const_start >= 0
else:
start_loc = self._regalloc.rm.make_sure_var_in_reg(start, boxes)
const_start = -1
# `base_loc` and `start_loc` are in two regs here (or start_loc is an
# immediate). Compute the `dstaddr_loc`, which is the raw address that
# we will pass as first argument to `memset()`.
dstaddr_loc = r.x31 # scratch_reg
if const_start >= 0:
ofs = base_ofs + const_start
reg = base_loc
else:
self.mc.ADD(dstaddr_loc.value, base_loc.value, start_loc.value)
ofs = base_ofs
reg = dstaddr_loc
if check_imm_arg(ofs):
self.mc.ADDI(dstaddr_loc.value, reg.value, ofs)
else:
scratch2_reg = r.ra
self.mc.load_int_imm(scratch2_reg.value, ofs)
self.mc.ADD(dstaddr_loc.value, reg.value, scratch2_reg.value)
# Use SB, SH, SW or SD based on whether the array item size is a
# multiple of 1, 2, 4, or 8.
if item_size & 1: item_size = 1
elif item_size & 2: item_size = 2
elif item_size & 4: item_size = 4
else: item_size = XLEN
pre_align = 0
single_store_size = item_size
if item_size < XLEN and const_start >= 0:
# Optimize SB/SH/SW into SW/SD.
#
# Assume that all arrays are naturally aligned to `XLEN` bytes, we
# can increase the `item_size` to `XLEN` if (1) `start` is a
# constant and (2) we emit pre-alignment zero initialization.
pre_align = (-(const_start + base_ofs)) & (XLEN - 1)
single_store_size = XLEN
# Inline limitation: An estimation on the number of instructions to be
# emited to zero-initialize the array.
#
# RISC-V GCC `__builtin_memset(ptr, 0, n)` inlines up to 15
# instructions. We decrease it by 5 if `pre_align` is not zero becuase
# we need more pre/post-alignment store instructions.
inline_limit = (15 if pre_align == 0 else 10) * single_store_size
if isinstance(size, ConstInt) and size.getint() <= inline_limit:
# Implement zero_array with a series of store instructions,
# starting at 'dstaddr_loc'.
# Note: In RISC-V, misaligned exception will only be raised when
# the effective address (`reg[base] + imm`) is not aligned, thus we
# don't have to insert `ADDI` to align `dstaddr` or `dst_i`.
total_size = size.getint()
# Pre-alignment zero initialization
dst_i = 0
if pre_align > 0:
pre_align = min(pre_align, total_size)
if pre_align & 1:
self.mc.SB(r.x0.value, dstaddr_loc.value, dst_i)
dst_i += 1
if pre_align & 2:
self.mc.SH(r.x0.value, dstaddr_loc.value, dst_i)
dst_i += 2
if pre_align & 4:
self.mc.SW(r.x0.value, dstaddr_loc.value, dst_i)
dst_i += 4
total_size -= pre_align
# Zero initialization
if single_store_size == 8:
emit_store_inst = AbstractRISCVBuilder.SD
elif single_store_size == 4:
emit_store_inst = AbstractRISCVBuilder.SW
elif single_store_size == 2:
emit_store_inst = AbstractRISCVBuilder.SH
else:
emit_store_inst = AbstractRISCVBuilder.SB
while total_size >= single_store_size:
emit_store_inst(self.mc, r.x0.value, dstaddr_loc.value, dst_i)
dst_i += single_store_size
total_size -= single_store_size
# Post-alignment zero initialization
post_align = total_size
if post_align & 4:
self.mc.SW(r.x0.value, dstaddr_loc.value, dst_i)
dst_i += 4
if post_align & 2:
self.mc.SH(r.x0.value, dstaddr_loc.value, dst_i)
dst_i += 2
if post_align & 1:
self.mc.SB(r.x0.value, dstaddr_loc.value, dst_i)
dst_i += 1
else:
if isinstance(size, ConstInt):
size_loc = self.imm(size.getint())
else:
size_loc = self._regalloc.rm.make_sure_var_in_reg(size, boxes)
# Call `memset(dstaddr, 0, size)`
malloc_func_adr = self.imm(self.memset_addr)
malloc_arglocs = [dstaddr_loc, self.imm(0), size_loc]
self._regalloc.before_call()
cb = RISCVCallBuilder(self, malloc_func_adr, malloc_arglocs,
resloc=None, restype=VOID, ressize=0)
cb.emit_no_collect()
def emit_op_enter_portal_frame(self, op, arglocs):
self.enter_portal_frame(op)
def emit_op_leave_portal_frame(self, op, arglocs):
self.leave_portal_frame(op)
def emit_op_keepalive(self, op, arglocs):
pass
def emit_op_jit_debug(self, op, arglocs):
pass
def emit_op_increment_debug_counter(self, op, arglocs):
base_loc = arglocs[0]
scratch_reg = r.x31
self.mc.load_int(scratch_reg.value, base_loc.value, 0)
self.mc.ADDI(scratch_reg.value, scratch_reg.value, 1)
self.mc.store_int(scratch_reg.value, base_loc.value, 0)
def emit_op_label(self, op, arglocs):
pass
def emit_op_jump(self, op, arglocs):
target_token = op.getdescr()
assert isinstance(target_token, TargetToken)
target = target_token._ll_loop_code
if target_token in self.target_tokens_currently_compiling:
relative_offset = target - self.mc.get_relative_pos()
assert check_simm21_arg(relative_offset)
self.mc.J(relative_offset)
else:
# Jump to the destination (absolute address).
scratch_reg = r.x31
self.mc.load_int_imm(scratch_reg.value, target)
self.mc.JR(scratch_reg.value)
def emit_op_finish(self, op, arglocs):
base_ofs = self.cpu.get_baseofs_of_frame_field()
if len(arglocs) > 0:
[return_val] = arglocs
if return_val.is_fp_reg():
self.mc.store_float(return_val.value, r.jfp.value, base_ofs)
else:
self.mc.store_int(return_val.value, r.jfp.value, base_ofs)
# Store `op.getdescr()` to `jf_descr`.
faildescrindex = self.get_gcref_from_faildescr(op.getdescr())
self.store_jf_descr(faildescrindex)
# Update `jf_gcmap`.
if op.numargs() > 0 and op.getarg(0).type == REF:
if self._finish_gcmap:
# We're returning with a `op_guard_not_forced_2`. We need to
# say that frame slot 0 (stored above) contains a reference
# too.
self._finish_gcmap[0] |= r_uint(1) << 0
gcmap = self._finish_gcmap
else:
gcmap = self.gcmap_for_finish
self.push_gcmap(self.mc, gcmap)
elif self._finish_gcmap:
# We're returning with a `op_guard_not_forced_2`.
gcmap = self._finish_gcmap
self.push_gcmap(self.mc, gcmap)
else:
# Note that 0 here is redundant, but I would rather keep that one
# and kill all the others.
ofs = self.cpu.get_ofs_of_frame_field('jf_gcmap')
self.mc.store_int(r.x0.value, r.jfp.value, ofs)
self._call_footer(self.mc)
def not_implemented_op(self, op, arglocs):
llop.debug_print(lltype.Void,
'[riscv/asm] %s not implemented' % op.getopname())
raise NotImplementedError(op)
def not_implemented_comp_op(self, op, arglocs):
llop.debug_print(lltype.Void,
'[riscv/asm] %s not implemented' % op.getopname())
raise NotImplementedError(op)
def not_implemented_guard_op(self, op, guard_op, arglocs, guard_branch_inst):
llop.debug_print(lltype.Void,
'[riscv/asm] %s not implemented' % op.getopname())
raise NotImplementedError(op)
asm_operations = [not_implemented_op] * (rop._LAST + 1)
asm_guard_operations = [not_implemented_guard_op] * (rop._LAST + 1)
asm_comp_operations = [not_implemented_comp_op] * (rop._LAST + 1)
for name, value in OpAssembler.__dict__.iteritems():
if name.startswith('emit_op_'):
opname = name[len('emit_op_'):]
num = getattr(rop, opname.upper())
asm_operations[num] = value
elif name.startswith('emit_guard_op_'):
opname = name[len('emit_guard_op_'):]
num = getattr(rop, opname.upper())
asm_guard_operations[num] = value
elif name.startswith('emit_comp_op_'):
opname = name[len('emit_comp_op_'):]
num = getattr(rop, opname.upper())
asm_comp_operations[num] = value
|