1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
|
import sys
from rpython.jit.metainterp.history import ConstInt
from rpython.jit.metainterp.optimize import InvalidLoop
from rpython.jit.metainterp.optimizeopt.intutils import IntBound
from rpython.jit.metainterp.optimizeopt.optimizer import (Optimization, CONST_1,
CONST_0)
from rpython.jit.metainterp.optimizeopt.util import (
make_dispatcher_method, have_dispatcher_method, get_box_replacement)
from rpython.jit.metainterp.optimizeopt.info import getptrinfo
from rpython.jit.metainterp.resoperation import rop
from rpython.jit.metainterp.optimizeopt import vstring
from rpython.jit.metainterp.optimizeopt import autogenintrules
from rpython.jit.codewriter.effectinfo import EffectInfo
from rpython.rlib.rarithmetic import intmask
from rpython.rlib.debug import debug_print
from rpython.rlib import objectmodel
def get_integer_min(is_unsigned, byte_size):
if is_unsigned:
return 0
else:
return -(1 << ((byte_size << 3) - 1))
def get_integer_max(is_unsigned, byte_size):
if is_unsigned:
return (1 << (byte_size << 3)) - 1
else:
return (1 << ((byte_size << 3) - 1)) - 1
class OptIntBounds(Optimization):
"""Keeps track of the bounds placed on integers by guards and remove
redundant guards"""
def propagate_forward(self, op):
return dispatch_opt(self, op)
def propagate_bounds_backward(self, box):
# FIXME: This takes care of the instruction where box is the result
# but the bounds produced by all instructions where box is
# an argument might also be tighten
b = self.getintbound(box)
if b.is_constant():
self.make_constant_int(box, b.get_constant_int())
box1 = self.optimizer.as_operation(box)
if box1 is not None:
dispatch_bounds_ops(self, box1)
def _postprocess_guard_true_false_value(self, op):
if op.getarg(0).type == 'i':
self.propagate_bounds_backward(op.getarg(0))
postprocess_GUARD_TRUE = _postprocess_guard_true_false_value
postprocess_GUARD_FALSE = _postprocess_guard_true_false_value
postprocess_GUARD_VALUE = _postprocess_guard_true_false_value
def postprocess_INT_OR(self, op):
arg0 = get_box_replacement(op.getarg(0))
arg1 = get_box_replacement(op.getarg(1))
b0 = self.getintbound(arg0)
b1 = self.getintbound(arg1)
if b0.and_bound(b1).known_eq_const(0):
self.pure_from_args2(rop.INT_ADD,
arg0, arg1, op)
self.pure_from_args2(rop.INT_XOR,
arg0, arg1, op)
b = b0.or_bound(b1)
self.getintbound(op).intersect(b)
def postprocess_INT_XOR(self, op):
arg0 = get_box_replacement(op.getarg(0))
arg1 = get_box_replacement(op.getarg(1))
b0 = self.getintbound(arg0)
b1 = self.getintbound(arg1)
if b0.and_bound(b1).known_eq_const(0):
self.pure_from_args2(rop.INT_ADD,
arg0, arg1, op)
self.pure_from_args2(rop.INT_OR,
arg0, arg1, op)
b = b0.xor_bound(b1)
self.getintbound(op).intersect(b)
def postprocess_INT_AND(self, op):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
b = b1.and_bound(b2)
self.getintbound(op).intersect(b)
def postprocess_INT_SUB(self, op):
import sys
arg0 = op.getarg(0)
arg1 = op.getarg(1)
b0 = self.getintbound(arg0)
b1 = self.getintbound(arg1)
b = b0.sub_bound(b1)
self.getintbound(op).intersect(b)
self.optimizer.pure_from_args2(rop.INT_ADD, op, arg1, arg0)
self.optimizer.pure_from_args2(rop.INT_SUB, arg0, op, arg1)
if isinstance(arg1, ConstInt):
# invert the constant
i1 = arg1.getint()
if i1 == -sys.maxint - 1:
return
inv_arg1 = ConstInt(-i1)
self.optimizer.pure_from_args2(rop.INT_ADD, arg0, inv_arg1, op)
self.optimizer.pure_from_args2(rop.INT_ADD, inv_arg1, arg0, op)
self.optimizer.pure_from_args2(rop.INT_SUB, op, inv_arg1, arg0)
self.optimizer.pure_from_args2(rop.INT_SUB, op, arg0, inv_arg1)
def postprocess_INT_ADD(self, op):
import sys
arg0 = op.getarg(0)
arg1 = op.getarg(1)
b0 = self.getintbound(arg0)
b1 = self.getintbound(arg1)
b = b0.add_bound(b1)
self.getintbound(op).intersect(b)
# Synthesize the reverse op for optimize_default to reuse
self.optimizer.pure_from_args2(rop.INT_SUB, op, arg1, arg0)
self.optimizer.pure_from_args2(rop.INT_SUB, op, arg0, arg1)
if isinstance(arg0, ConstInt):
# invert the constant
i0 = arg0.getint()
if i0 == -sys.maxint - 1:
return
inv_arg0 = ConstInt(-i0)
elif isinstance(arg1, ConstInt):
# commutative
i0 = arg1.getint()
if i0 == -sys.maxint - 1:
return
inv_arg0 = ConstInt(-i0)
arg1 = arg0
else:
return
self.optimizer.pure_from_args2(rop.INT_SUB, arg1, inv_arg0, op)
self.optimizer.pure_from_args2(rop.INT_SUB, arg1, op, inv_arg0)
self.optimizer.pure_from_args2(rop.INT_ADD, op, inv_arg0, arg1)
self.optimizer.pure_from_args2(rop.INT_ADD, inv_arg0, op, arg1)
def postprocess_INT_MUL(self, op):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
r = self.getintbound(op)
b = b1.mul_bound(b2)
r.intersect(b)
def postprocess_CALL_PURE_I(self, op):
# dispatch based on 'oopspecindex' to a method that handles
# specifically the given oopspec call.
effectinfo = op.getdescr().get_extra_info()
oopspecindex = effectinfo.oopspecindex
if oopspecindex == EffectInfo.OS_INT_PY_DIV:
self.post_call_INT_PY_DIV(op)
elif oopspecindex == EffectInfo.OS_INT_PY_MOD:
self.post_call_INT_PY_MOD(op)
def post_call_INT_PY_DIV(self, op):
b1 = self.getintbound(op.getarg(1))
b2 = self.getintbound(op.getarg(2))
r = self.getintbound(op)
r.intersect(b1.py_div_bound(b2))
def post_call_INT_PY_MOD(self, op):
b1 = self.getintbound(op.getarg(1))
b2 = self.getintbound(op.getarg(2))
r = self.getintbound(op)
r.intersect(b1.mod_bound(b2))
def postprocess_INT_LSHIFT(self, op):
arg0 = get_box_replacement(op.getarg(0))
b1 = self.getintbound(arg0)
arg1 = get_box_replacement(op.getarg(1))
b2 = self.getintbound(arg1)
r = self.getintbound(op)
b = b1.lshift_bound(b2)
r.intersect(b)
if b1.lshift_bound_cannot_overflow(b2):
# Synthesize the reverse op for optimize_default to reuse.
# This is important because overflow checking for lshift is done
# like this (in ll_int_lshift_ovf in rint.py):
# result = x << y
# if (result >> y) != x:
# raise OverflowError("x<<y loosing bits or changing sign")
self.pure_from_args2(rop.INT_RSHIFT,
op, arg1, arg0)
def postprocess_INT_RSHIFT(self, op):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
b = b1.rshift_bound(b2)
r = self.getintbound(op)
r.intersect(b)
def postprocess_UINT_RSHIFT(self, op):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
b = b1.urshift_bound(b2)
r = self.getintbound(op)
r.intersect(b)
def optimize_GUARD_NO_OVERFLOW(self, op):
lastop = self.last_emitted_operation
if lastop is not None:
opnum = lastop.getopnum()
args = lastop.getarglist()
result = lastop
# If the INT_xxx_OVF was replaced with INT_xxx or removed
# completely, then we can kill the GUARD_NO_OVERFLOW.
if (opnum != rop.INT_ADD_OVF and
opnum != rop.INT_SUB_OVF and
opnum != rop.INT_MUL_OVF):
return
# Else, synthesize the non overflowing op for optimize_default to
# reuse, as well as the reverse op
elif opnum == rop.INT_ADD_OVF:
self.pure_from_args2(rop.INT_SUB, result, args[1], args[0])
self.pure_from_args2(rop.INT_SUB, result, args[0], args[1])
elif opnum == rop.INT_SUB_OVF:
self.pure_from_args2(rop.INT_ADD, result, args[1], args[0])
self.pure_from_args2(rop.INT_SUB, args[0], result, args[1])
return self.emit(op)
def optimize_GUARD_OVERFLOW(self, op):
# If INT_xxx_OVF was replaced by INT_xxx, *but* we still see
# GUARD_OVERFLOW, then the loop is invalid.
lastop = self.last_emitted_operation
if lastop is None:
return # e.g. beginning of the loop
opnum = lastop.getopnum()
if opnum not in (rop.INT_ADD_OVF, rop.INT_SUB_OVF, rop.INT_MUL_OVF):
raise InvalidLoop('An INT_xxx_OVF was proven not to overflow but' +
'guarded with GUARD_OVERFLOW')
return self.emit(op)
def optimize_INT_ADD_OVF(self, op):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
if b1.add_bound_cannot_overflow(b2):
# Transform into INT_ADD. The following guard will be killed
# by optimize_GUARD_NO_OVERFLOW; if we see instead an
# optimize_GUARD_OVERFLOW, then InvalidLoop.
# NB: this case also takes care of int_add_ovf with 0 as one of the
# arguments
op = self.replace_op_with(op, rop.INT_ADD)
return self.optimizer.send_extra_operation(op)
return self.emit(op)
def postprocess_INT_ADD_OVF(self, op):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
# we can always give the result a bound. if the int_add_ovf is followed
# by a guard_no_overflow, then we know no overflow occurred, and the
# bound is correct. Otherwise, it must be followed by a guard_overflow
# and it is also fine to give the result a bound, because the result
# box must never be used in the rest of the trace
resbound = b1.add_bound_no_overflow(b2)
r = self.getintbound(op)
r.intersect(resbound)
def optimize_INT_SUB_OVF(self, op):
arg0 = get_box_replacement(op.getarg(0))
arg1 = get_box_replacement(op.getarg(1))
b0 = self.getintbound(arg0)
b1 = self.getintbound(arg1)
if arg0.same_box(arg1):
self.make_constant_int(op, 0)
return None
if b0.sub_bound_cannot_overflow(b1):
# this case takes care of int_sub_ovf(x, 0) as well
op = self.replace_op_with(op, rop.INT_SUB)
return self.optimizer.send_extra_operation(op)
return self.emit(op)
def postprocess_INT_SUB_OVF(self, op):
arg0 = get_box_replacement(op.getarg(0))
arg1 = get_box_replacement(op.getarg(1))
b0 = self.getintbound(arg0)
b1 = self.getintbound(arg1)
resbound = b0.sub_bound_no_overflow(b1)
r = self.getintbound(op)
r.intersect(resbound)
def optimize_INT_MUL_OVF(self, op):
b0 = self.getintbound(op.getarg(0))
b1 = self.getintbound(op.getarg(1))
if b0.mul_bound_cannot_overflow(b1):
# this case also takes care of multiplication with 0 and 1
op = self.replace_op_with(op, rop.INT_MUL)
return self.optimizer.send_extra_operation(op)
return self.emit(op)
def postprocess_INT_MUL_OVF(self, op):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
resbound = b1.mul_bound_no_overflow(b2)
r = self.getintbound(op)
r.intersect(resbound)
def optimize_INT_LT(self, op):
arg1 = get_box_replacement(op.getarg(0))
arg2 = get_box_replacement(op.getarg(1))
b1 = self.getintbound(arg1)
b2 = self.getintbound(arg2)
if b1.known_lt(b2):
self.make_constant_int(op, 1)
elif b1.known_ge(b2) or arg1 is arg2:
self.make_constant_int(op, 0)
else:
return self.emit(op)
def optimize_INT_GT(self, op):
arg1 = get_box_replacement(op.getarg(0))
arg2 = get_box_replacement(op.getarg(1))
b1 = self.getintbound(arg1)
b2 = self.getintbound(arg2)
if b1.known_gt(b2):
self.make_constant_int(op, 1)
elif b1.known_le(b2) or arg1 is arg2:
self.make_constant_int(op, 0)
else:
return self.emit(op)
def optimize_INT_LE(self, op):
arg1 = get_box_replacement(op.getarg(0))
arg2 = get_box_replacement(op.getarg(1))
b1 = self.getintbound(arg1)
b2 = self.getintbound(arg2)
if b1.known_le(b2) or arg1 is arg2:
self.make_constant_int(op, 1)
elif b1.known_gt(b2):
self.make_constant_int(op, 0)
else:
return self.emit(op)
def optimize_INT_GE(self, op):
arg1 = get_box_replacement(op.getarg(0))
arg2 = get_box_replacement(op.getarg(1))
b1 = self.getintbound(arg1)
b2 = self.getintbound(arg2)
if b1.known_ge(b2) or arg1 is arg2:
self.make_constant_int(op, 1)
elif b1.known_lt(b2):
self.make_constant_int(op, 0)
else:
return self.emit(op)
def optimize_UINT_LT(self, op):
arg1 = get_box_replacement(op.getarg(0))
arg2 = get_box_replacement(op.getarg(1))
b1 = self.getintbound(arg1)
b2 = self.getintbound(arg2)
if b1.known_unsigned_lt(b2):
self.make_constant_int(op, 1)
elif b1.known_unsigned_ge(b2) or arg1 is arg2:
self.make_constant_int(op, 0)
else:
return self.emit(op)
def propagate_bounds_UINT_LT(self, op):
r = self.getintbound(op)
if r.is_constant():
if r.get_constant_int() == 1:
self.make_unsigned_lt(op.getarg(0), op.getarg(1))
else:
assert r.get_constant_int() == 0
self.make_unsigned_ge(op.getarg(0), op.getarg(1))
def optimize_UINT_GT(self, op):
arg1 = get_box_replacement(op.getarg(0))
arg2 = get_box_replacement(op.getarg(1))
b1 = self.getintbound(arg1)
b2 = self.getintbound(arg2)
if b1.known_unsigned_gt(b2):
self.make_constant_int(op, 1)
elif b1.known_unsigned_le(b2) or arg1 is arg2:
self.make_constant_int(op, 0)
else:
return self.emit(op)
def propagate_bounds_UINT_GT(self, op):
r = self.getintbound(op)
if r.is_constant():
if r.get_constant_int() == 1:
self.make_unsigned_gt(op.getarg(0), op.getarg(1))
else:
assert r.get_constant_int() == 0
self.make_unsigned_le(op.getarg(0), op.getarg(1))
def optimize_UINT_LE(self, op):
arg1 = get_box_replacement(op.getarg(0))
arg2 = get_box_replacement(op.getarg(1))
b1 = self.getintbound(arg1)
b2 = self.getintbound(arg2)
if b1.known_unsigned_le(b2) or arg1 is arg2:
self.make_constant_int(op, 1)
elif b1.known_unsigned_gt(b2):
self.make_constant_int(op, 0)
else:
return self.emit(op)
def propagate_bounds_UINT_LE(self, op):
r = self.getintbound(op)
if r.is_constant():
if r.get_constant_int() == 1:
self.make_unsigned_le(op.getarg(0), op.getarg(1))
else:
assert r.get_constant_int() == 0
self.make_unsigned_gt(op.getarg(0), op.getarg(1))
def optimize_UINT_GE(self, op):
arg1 = get_box_replacement(op.getarg(0))
arg2 = get_box_replacement(op.getarg(1))
b1 = self.getintbound(arg1)
b2 = self.getintbound(arg2)
if b1.known_unsigned_ge(b2) or arg1 is arg2:
self.make_constant_int(op, 1)
elif b1.known_unsigned_lt(b2):
self.make_constant_int(op, 0)
else:
return self.emit(op)
def propagate_bounds_UINT_GE(self, op):
r = self.getintbound(op)
if r.is_constant():
if r.get_constant_int() == 1:
self.make_unsigned_ge(op.getarg(0), op.getarg(1))
else:
assert r.get_constant_int() == 0
self.make_unsigned_lt(op.getarg(0), op.getarg(1))
def optimize_INT_SIGNEXT(self, op):
b = self.getintbound(op.getarg(0))
numbits = op.getarg(1).getint() * 8
start = -(1 << (numbits - 1))
stop = 1 << (numbits - 1)
if b.is_within_range(start, stop - 1):
self.make_equal_to(op, op.getarg(0))
else:
return self.emit(op)
def postprocess_INT_SIGNEXT(self, op):
numbits = op.getarg(1).getint() * 8
start = -(1 << (numbits - 1))
stop = 1 << (numbits - 1)
bres = self.getintbound(op)
bres.intersect_const(start, stop - 1)
def postprocess_INT_FORCE_GE_ZERO(self, op):
b = self.getintbound(op)
b.make_ge_const(0)
b1 = self.getintbound(op.getarg(0))
if b1.upper >= 0:
b.make_le(b1)
def postprocess_INT_INVERT(self, op):
b = self.getintbound(op.getarg(0))
bounds = b.invert_bound()
bres = self.getintbound(op)
bres.intersect(bounds)
def propagate_bounds_INT_INVERT(self, op):
arg0 = get_box_replacement(op.getarg(0))
b = self.getintbound(arg0)
bres = self.getintbound(op)
bounds = bres.invert_bound()
if b.intersect(bounds):
self.propagate_bounds_backward(arg0)
def propagate_bounds_INT_NEG(self, op):
arg0 = get_box_replacement(op.getarg(0))
b = self.getintbound(arg0)
bres = self.getintbound(op)
bounds = bres.neg_bound()
if b.intersect(bounds):
self.propagate_bounds_backward(arg0)
def postprocess_INT_NEG(self, op):
b = self.getintbound(op.getarg(0))
bounds = b.neg_bound()
bres = self.getintbound(op)
bres.intersect(bounds)
def postprocess_ARRAYLEN_GC(self, op):
array = self.ensure_ptr_info_arg0(op)
self.optimizer.setintbound(op, array.getlenbound(None))
def postprocess_STRLEN(self, op):
self.make_nonnull_str(op.getarg(0), vstring.mode_string)
array = getptrinfo(op.getarg(0))
self.optimizer.setintbound(op, array.getlenbound(vstring.mode_string))
def postprocess_UNICODELEN(self, op):
self.make_nonnull_str(op.getarg(0), vstring.mode_unicode)
array = getptrinfo(op.getarg(0))
self.optimizer.setintbound(op, array.getlenbound(vstring.mode_unicode))
def postprocess_STRGETITEM(self, op):
v1 = self.getintbound(op)
v2 = getptrinfo(op.getarg(0))
intbound = self.getintbound(op.getarg(1))
if v2 is not None:
lenbound = v2.getlenbound(vstring.mode_string)
if lenbound is not None:
lenbound.make_gt_const(intbound.lower)
v1.intersect_const(0, 255)
def postprocess_GETFIELD_RAW_I(self, op):
descr = op.getdescr()
if descr.is_integer_bounded():
b1 = self.getintbound(op)
b1.intersect_const(descr.get_integer_min(), descr.get_integer_max())
postprocess_GETFIELD_RAW_F = postprocess_GETFIELD_RAW_I
postprocess_GETFIELD_RAW_R = postprocess_GETFIELD_RAW_I
postprocess_GETFIELD_GC_I = postprocess_GETFIELD_RAW_I
postprocess_GETFIELD_GC_R = postprocess_GETFIELD_RAW_I
postprocess_GETFIELD_GC_F = postprocess_GETFIELD_RAW_I
postprocess_GETINTERIORFIELD_GC_I = postprocess_GETFIELD_RAW_I
postprocess_GETINTERIORFIELD_GC_R = postprocess_GETFIELD_RAW_I
postprocess_GETINTERIORFIELD_GC_F = postprocess_GETFIELD_RAW_I
def postprocess_GETARRAYITEM_RAW_I(self, op):
descr = op.getdescr()
if descr and descr.is_item_integer_bounded():
intbound = self.getintbound(op)
intbound.intersect_const(descr.get_item_integer_min(), descr.get_item_integer_max())
postprocess_GETARRAYITEM_RAW_F = postprocess_GETARRAYITEM_RAW_I
postprocess_GETARRAYITEM_GC_I = postprocess_GETARRAYITEM_RAW_I
postprocess_GETARRAYITEM_GC_F = postprocess_GETARRAYITEM_RAW_I
postprocess_GETARRAYITEM_GC_R = postprocess_GETARRAYITEM_RAW_I
def postprocess_UNICODEGETITEM(self, op):
b1 = self.getintbound(op)
b1.make_ge_const(0)
v2 = getptrinfo(op.getarg(0))
intbound = self.getintbound(op.getarg(1))
if v2 is not None:
lenbound = v2.getlenbound(vstring.mode_unicode)
if lenbound is not None:
lenbound.make_gt_const(intbound.lower)
def make_int_lt(self, box1, box2):
b1 = self.getintbound(box1)
b2 = self.getintbound(box2)
if b1.make_lt(b2):
self.propagate_bounds_backward(box1)
if b2.make_gt(b1):
self.propagate_bounds_backward(box2)
def make_int_le(self, box1, box2):
b1 = self.getintbound(box1)
b2 = self.getintbound(box2)
if b1.make_le(b2):
self.propagate_bounds_backward(box1)
if b2.make_ge(b1):
self.propagate_bounds_backward(box2)
def make_int_gt(self, box1, box2):
self.make_int_lt(box2, box1)
def make_int_ge(self, box1, box2):
self.make_int_le(box2, box1)
def make_unsigned_lt(self, box1, box2):
b1 = self.getintbound(box1)
b2 = self.getintbound(box2)
if b1.make_unsigned_lt(b2):
self.propagate_bounds_backward(box1)
if b2.make_unsigned_gt(b1):
self.propagate_bounds_backward(box2)
def make_unsigned_le(self, box1, box2):
b1 = self.getintbound(box1)
b2 = self.getintbound(box2)
if b1.make_unsigned_le(b2):
self.propagate_bounds_backward(box1)
if b2.make_unsigned_ge(b1):
self.propagate_bounds_backward(box2)
def make_unsigned_gt(self, box1, box2):
self.make_unsigned_lt(box2, box1)
def make_unsigned_ge(self, box1, box2):
self.make_unsigned_le(box2, box1)
def propagate_bounds_INT_LT(self, op):
r = self.getintbound(op)
if r.is_constant():
if r.get_constant_int() == 1:
self.make_int_lt(op.getarg(0), op.getarg(1))
else:
assert r.get_constant_int() == 0
self.make_int_ge(op.getarg(0), op.getarg(1))
def propagate_bounds_INT_GT(self, op):
r = self.getintbound(op)
if r.is_constant():
if r.get_constant_int() == 1:
self.make_int_gt(op.getarg(0), op.getarg(1))
else:
assert r.get_constant_int() == 0
self.make_int_le(op.getarg(0), op.getarg(1))
def propagate_bounds_INT_LE(self, op):
r = self.getintbound(op)
if r.is_constant():
if r.get_constant_int() == 1:
self.make_int_le(op.getarg(0), op.getarg(1))
else:
assert r.get_constant_int() == 0
self.make_int_gt(op.getarg(0), op.getarg(1))
def propagate_bounds_INT_GE(self, op):
r = self.getintbound(op)
if r.is_constant():
if r.get_constant_int() == 1:
self.make_int_ge(op.getarg(0), op.getarg(1))
else:
assert r.get_constant_int() == 0
self.make_int_lt(op.getarg(0), op.getarg(1))
def propagate_bounds_INT_EQ(self, op):
r = self.getintbound(op)
if r.known_eq_const(1):
self.make_eq(op.getarg(0), op.getarg(1))
elif r.known_eq_const(0):
self.make_ne(op.getarg(0), op.getarg(1))
def propagate_bounds_INT_NE(self, op):
r = self.getintbound(op)
if r.known_eq_const(0):
self.make_eq(op.getarg(0), op.getarg(1))
elif r.known_eq_const(1):
self.make_ne(op.getarg(0), op.getarg(1))
def make_eq(self, arg0, arg1):
b0 = self.getintbound(arg0)
b1 = self.getintbound(arg1)
if b0.intersect(b1):
self.propagate_bounds_backward(arg0)
if b1.intersect(b0):
self.propagate_bounds_backward(arg1)
def make_ne(self, arg0, arg1):
b0 = self.getintbound(arg0)
b1 = self.getintbound(arg1)
if b1.is_constant():
v1 = b1.get_constant_int()
if b0.make_ne_const(v1):
self.propagate_bounds_backward(arg0)
elif b0.is_constant():
v0 = b0.get_constant_int()
if b1.make_ne_const(v0):
self.propagate_bounds_backward(arg1)
def _propagate_int_is_true_or_zero(self, op, valnonzero, valzero):
if self.is_raw_ptr(op.getarg(0)):
return
r = self.getintbound(op)
if r.is_constant():
if r.get_constant_int() == valnonzero:
b1 = self.getintbound(op.getarg(0))
if b1.known_nonnegative():
b1.make_gt_const(0)
self.propagate_bounds_backward(op.getarg(0))
elif b1.known_le_const(0):
b1.make_lt_const(0)
self.propagate_bounds_backward(op.getarg(0))
elif r.get_constant_int() == valzero:
self.make_constant_int(op.getarg(0), 0)
self.propagate_bounds_backward(op.getarg(0))
def propagate_bounds_INT_IS_TRUE(self, op):
self._propagate_int_is_true_or_zero(op, 1, 0)
def propagate_bounds_INT_IS_ZERO(self, op):
self._propagate_int_is_true_or_zero(op, 0, 1)
def propagate_bounds_INT_ADD(self, op):
if self.is_raw_ptr(op.getarg(0)) or self.is_raw_ptr(op.getarg(1)):
return
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
r = self.getintbound(op)
b = r.sub_bound(b2)
if b1.intersect(b):
self.propagate_bounds_backward(op.getarg(0))
b = r.sub_bound(b1)
if b2.intersect(b):
self.propagate_bounds_backward(op.getarg(1))
def propagate_bounds_INT_SUB(self, op):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
r = self.getintbound(op)
b = r.add_bound(b2)
if b1.intersect(b):
self.propagate_bounds_backward(op.getarg(0))
b = r.sub_bound(b1).neg_bound()
if b2.intersect(b):
self.propagate_bounds_backward(op.getarg(1))
def propagate_bounds_INT_MUL(self, op):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
if op.opnum != rop.INT_MUL_OVF and not b1.mul_bound_cannot_overflow(b2):
# we can only do divide if the operation didn't overflow
return
r = self.getintbound(op)
b = r.py_div_bound(b2)
if b1.intersect(b):
self.propagate_bounds_backward(op.getarg(0))
b = r.py_div_bound(b1)
if b2.intersect(b):
self.propagate_bounds_backward(op.getarg(1))
def propagate_bounds_INT_LSHIFT(self, op):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
if not b1.lshift_bound_cannot_overflow(b2):
return
r = self.getintbound(op)
b = r.lshift_bound_backwards(b2)
if b1.intersect(b):
self.propagate_bounds_backward(op.getarg(0))
def propagate_bounds_UINT_RSHIFT(self, op):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
if not b2.is_constant():
return
r = self.getintbound(op)
b = r.urshift_bound_backwards(b2)
if b1.intersect(b):
self.propagate_bounds_backward(op.getarg(0))
def propagate_bounds_INT_RSHIFT(self, op):
b1 = self.getintbound(op.getarg(0))
b2 = self.getintbound(op.getarg(1))
if not b2.is_constant():
return
r = self.getintbound(op)
b = r.rshift_bound_backwards(b2)
if b1.intersect(b):
self.propagate_bounds_backward(op.getarg(0))
propagate_bounds_INT_ADD_OVF = propagate_bounds_INT_ADD
propagate_bounds_INT_SUB_OVF = propagate_bounds_INT_SUB
propagate_bounds_INT_MUL_OVF = propagate_bounds_INT_MUL
def propagate_bounds_INT_AND(self, op):
r = self.getintbound(op)
b0 = self.getintbound(op.getarg(0))
b1 = self.getintbound(op.getarg(1))
b = b0.and_bound_backwards(r)
if b1.intersect(b):
self.propagate_bounds_backward(op.getarg(1))
b = b1.and_bound_backwards(r)
if b0.intersect(b):
self.propagate_bounds_backward(op.getarg(0))
def propagate_bounds_INT_OR(self, op):
r = self.getintbound(op)
b0 = self.getintbound(op.getarg(0))
b1 = self.getintbound(op.getarg(1))
b = b0.or_bound_backwards(r)
if b1.intersect(b):
self.propagate_bounds_backward(op.getarg(1))
b = b1.or_bound_backwards(r)
if b0.intersect(b):
self.propagate_bounds_backward(op.getarg(0))
def propagate_bounds_INT_XOR(self, op):
r = self.getintbound(op)
b0 = self.getintbound(op.getarg(0))
b1 = self.getintbound(op.getarg(1))
b = b0.xor_bound(r) # xor is its own inverse
if b1.intersect(b):
self.propagate_bounds_backward(op.getarg(1))
b = b1.xor_bound(r)
if b0.intersect(b):
self.propagate_bounds_backward(op.getarg(0))
objectmodel.import_from_mixin(autogenintrules.OptIntAutoGenerated)
dispatch_opt = make_dispatcher_method(OptIntBounds, 'optimize_',
default=OptIntBounds.emit)
dispatch_bounds_ops = make_dispatcher_method(OptIntBounds, 'propagate_bounds_')
OptIntBounds.propagate_postprocess = make_dispatcher_method(OptIntBounds, 'postprocess_')
OptIntBounds.have_postprocess_op = have_dispatcher_method(OptIntBounds, 'postprocess_')
class IntegerAnalysisLogger(object):
def __init__(self, optimizer):
from rpython.jit.metainterp.logger import LogOperations
self.optimizer = optimizer
self.log_operations = LogOperations(
optimizer.metainterp_sd, False, None)
self.last_printed_repr_memo = {}
def log_op(self, op):
# print the intbound of all arguments (they might have changed since
# they were produced)
for i in range(op.numargs()):
arg = get_box_replacement(op.getarg(i))
if arg.type != 'i' or arg.is_constant():
continue
b = arg.get_forwarded()
if not isinstance(b, IntBound) or b.is_unbounded():
continue
argop = self.optimizer.as_operation(arg)
if argop is not None and rop.returns_bool_result(arg.opnum) and b.is_bool():
continue
r = b.__repr__()
if self.last_printed_repr_memo.get(arg, '') == r:
continue
self.last_printed_repr_memo[arg] = r
debug_print("# %s: %s %s" % (
self.log_operations.repr_of_arg(arg), b.__str__(), r))
debug_print(self.log_operations.repr_of_resop(op))
def log_result(self, op):
if op.type == 'i':
b = op.get_forwarded()
if not isinstance(b, IntBound):
return
if rop.returns_bool_result(op.opnum):
return
# print the result bound too
r = b.__repr__()
debug_print("# %s -> %s %s" % (
self.log_operations.repr_of_arg(op), b.__str__(), r))
self.last_printed_repr_memo[op] = r
def log_inputargs(self, inputargs):
args = ", ".join([self.log_operations.repr_of_arg(arg) for arg in inputargs])
debug_print('[' + args + ']')
def print_rewrite_rule_statistics():
from rpython.rlib.debug import debug_start, debug_stop, have_debug_prints
debug_start("jit-intbounds-stats")
if have_debug_prints():
for opname, names, counts in OptIntBounds._all_rules_fired:
debug_print(opname)
for index in range(len(names)):
debug_print(" " + names[index], counts[index])
debug_stop("jit-intbounds-stats")
|