1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
|
"""
This file contains an abstract domain IntBound for word-sized integers. This is
used to perform abstract interpretation on traces, specifically the integer
operations on them.
The abstract domain tracks a (signed) upper and lower bound (both ends
inclusive) for every integer variable in the trace. It also tracks which bits
of a range are known 0 or known 1 (the remaining bits are unknown. The ranges
and the known bits feed back into each other, ie we can improve the range if
some upper bits have known values, and we can learn some known bits from the
range too. Every instance of IntBound represents a set of concrete integers.
We do the analysis at the same time as optimization. We initialize all integer
variables to have an unknown range, with no known bits. Then we proceed along
the trace and improve the ranges. We can shrink ranges if we see integer
comparisons followed by guards. We can learn some bits of an integer if there
are bit-operations such as `and` (masking out some bits), followed by a guard.
For every operation in the trace we use a "transfer function" that computes an
IntBound instance for the result of that operation, given the IntBounds of the
arguments. Those functions are called `..._bound`, eg `add_bound`, `and_bound`,
`neg_bound`, etc. Applying the transfer functions while we encounter them along
the trace is forwards reasoning.
We can also reason backwards (but we only do that in a limited way). Here's an
example:
i1 = int_add(i0, 1)
i2 = int_lt(i1, 100)
guard_true(i2)
At the last guard we learn that i1 < 100 must be true, and from that we can
conclude that i0 < 99 in the rest of the trace (this is not quite true due to
possible overflow of the int_add).
More generally, when we shrink (ie make more precise) an IntBound instance due
to a guard, we can often conclude something about earlier variables in the
trace. To reason backwards we look at the operation that created a variable and
then compute the implications.
The reason for having both a range and known bits are that each of them is good
for different situations. Range knownledge is useful for comparisons and
"linear" operations like additions, subtractions, multiplications, etc.
Knowledge about certain bits is good for bit twiddling code, bitfields, stuff
like that.
"""
import sys
from rpython.rlib.rarithmetic import ovfcheck, LONG_BIT, maxint, is_valid_int, r_uint, intmask
from rpython.rlib.objectmodel import we_are_translated, always_inline
from rpython.rtyper.lltypesystem import lltype
from rpython.rtyper.lltypesystem.lloperation import llop
from rpython.jit.metainterp.resoperation import rop, ResOperation
from rpython.jit.metainterp.optimize import InvalidLoop
from rpython.jit.metainterp.optimizeopt.info import AbstractInfo, INFO_NONNULL,\
INFO_UNKNOWN, INFO_NULL
from rpython.jit.metainterp.history import ConstInt
MAXINT = maxint
MININT = -maxint - 1
IS_64_BIT = sys.maxint > 2**32
TNUM_UNKNOWN = r_uint(0), r_uint(-1)
TNUM_KNOWN_ZERO = r_uint(0), r_uint(0)
TNUM_KNOWN_BITWISEONE = r_uint(-1), r_uint(0)
TNUM_ONLY_VALUE_DEFAULT = r_uint(0)
TNUM_ONLY_MASK_UNKNOWN = r_uint(-1)
TNUM_ONLY_MASK_DEFAULT = TNUM_ONLY_MASK_UNKNOWN
class IntBound(AbstractInfo):
"""
Abstract domain representation of an integer,
approximating via integer bounds and known-bits
tri-state numbers.
"""
_attrs_ = ('upper', 'lower', 'tvalue', 'tmask')
def __init__(self, lower=MININT, upper=MAXINT,
tvalue=TNUM_ONLY_VALUE_DEFAULT,
tmask=TNUM_ONLY_MASK_DEFAULT,
do_shrinking=True):
"""
Instantiates an abstract representation of integer.
The default parameters set this abstract int to
contain all integers.
It is recommended to use the indirect constructors
below instead of this one.
"""
self.lower = lower
self.upper = upper
# known-bit analysis using tristate/knownbits numbers:
# every bit can be either 0, 1, or unknown (?).
# the encoding of these three states is:
# value 0 1 ?
# tvalue bit 0 1 0
# tmask bit 0 0 1
# the combination tvalue=tmask=1 is forbidden
assert is_valid_tnum(tvalue, tmask)
self.tvalue = tvalue
self.tmask = tmask # bit=1 means unknown
# check for unexpected overflows:
if not we_are_translated():
assert type(upper) is not long or is_valid_int(upper)
assert type(lower) is not long or is_valid_int(lower)
if do_shrinking:
self.shrink()
assert self._debug_check()
@staticmethod
def from_constant(value):
"""
Constructs an abstract integer that represents a constant (a completely
known integer).
"""
# this one does NOT require a r_uint for `value`.
assert not isinstance(value, r_uint)
tvalue = value
tmask = 0
bvalue = value
do_shrinking = False
if not isinstance(value, int):
# workaround for AddressAsInt / symbolic ints
# by CF
tvalue = 0
tmask = -1
bvalue = 0
do_shrinking = True
b = IntBound(lower=bvalue,
upper=bvalue,
tvalue=r_uint(tvalue),
tmask=r_uint(tmask), do_shrinking=do_shrinking)
return b
@staticmethod
def unbounded():
"""
Constructs an abstract integer that is completely unknown (e.g. it
contains every integer).
"""
return IntBound(do_shrinking=False)
@staticmethod
def nonnegative():
"""
Construct a non-negative abstract integer.
"""
return IntBound(lower=0)
@staticmethod
def from_knownbits(tvalue, tmask, do_unmask=False):
"""
Constructs an abstract integer where the bits determined by `tvalue`
and `tmask` are (un-)known. tvalue and tmask must be r_uints.
"""
assert isinstance(tvalue, r_uint) and isinstance(tmask, r_uint)
if do_unmask:
tvalue = unmask_zero(tvalue, tmask)
return IntBound(tvalue=tvalue,
tmask=tmask)
# ____________________________________________________________
# a bunch of slightly artificial methods that are needed to make some of
# the Z3 proofs in test_z3intbound possible, they are overridden there
@staticmethod
@always_inline
def new(lower, upper, tvalue, tmask):
""" helper factory to construct a new IntBound. overridden in
test_z3intbound """
return IntBound(lower, upper, tvalue, tmask)
intmask = staticmethod(intmask)
r_uint = staticmethod(r_uint)
@staticmethod
@always_inline
def _add_check_overflow(a, b, value_if_overflow):
""" returns a + b, or value_if_overflow if that (signed) addition would
overflow """
try:
return ovfcheck(a + b)
except OverflowError:
return value_if_overflow
@staticmethod
@always_inline
def _sub_check_overflow(a, b, value_if_overflow):
""" returns a - b, or value_if_overflow if that (signed) subtraction would
overflow """
try:
return ovfcheck(a - b)
except OverflowError:
return value_if_overflow
@staticmethod
@always_inline
def _urshift(a, b):
return r_uint(a) >> r_uint(b)
# ____________________________________________________________
@staticmethod
def _to_dec_or_hex_str_heuristics(num):
# a few formatting heuristics
if -1000 <= num <= 1000:
return str(num)
if num == MININT:
return "MININT"
if num == MAXINT:
return "MAXINT"
if num >= 0:
diff = MAXINT - num
if diff < 1000:
return "MAXINT - %s" % diff
else:
diff = -(MININT - num) # can't overflow because num < 0
if diff < 1000:
return "MININT + %s" % diff
uintnum = r_uint(num)
if uintnum & (uintnum - 1) == 0:
# power of two, use hex
return hex(num)
# format number as decimal if fewer than 6 significant
# digits, otherwise use hex
curr = num
exp10 = 0
while curr % 10 == 0:
curr //= 10
exp10 += 1
s = str(num)
if len(s) - exp10 >= 6:
return hex(num)
return s
def _are_knownbits_implied(self):
""" return True if the knownbits of self are a direct consequence of
the range of self (and thus carry no extra information) """
tvalue, tmask = self._tnum_implied_by_bounds()
return self.tmask == tmask and self.tvalue == tvalue
def _are_bounds_implied(self):
""" return True if the bounds of self are a direct consequence of the
knownbits of self (and thus carry no extra information) """
lower = self._get_minimum_signed_by_knownbits()
upper = self._get_maximum_signed_by_knownbits()
return self.lower == lower and self.upper == upper
def __repr__(self):
if self.is_unbounded():
return "IntBound.unbounded()"
if self.lower == 0 and self.upper == MAXINT and self._are_knownbits_implied():
return "IntBound.nonnegative()"
if self.is_constant():
return "IntBound.from_constant(%s)" % self._to_dec_or_hex_str_heuristics(self.get_constant_int())
s_bounds = "%s, %s" % (self._to_dec_or_hex_str_heuristics(self.lower),
self._to_dec_or_hex_str_heuristics(self.upper))
if self._are_knownbits_implied():
return "IntBound(%s)" % s_bounds
s_tnum = "r_uint(%s), r_uint(%s)" % (bin(intmask(self.tvalue)), bin(intmask(self.tmask)))
if self._are_bounds_implied():
return "IntBound.from_knownbits(%s)" % s_tnum
return "IntBound(%s, %s)" % (s_bounds, s_tnum)
def __str__(self):
if self.is_constant():
return '(%s)' % self._to_dec_or_hex_str_heuristics(self.get_constant_int())
if self.lower == 0 and self.upper == 1:
return '(bool)'
if self.lower == MININT:
lower = ''
else:
lower = '%s <= ' % self._to_dec_or_hex_str_heuristics(self.lower)
if self.upper == MAXINT:
upper = ''
else:
upper = ' <= %s' % self._to_dec_or_hex_str_heuristics(self.upper)
s = self.knownbits_string()
if "0" not in s and "1" not in s:
s = '?'
else:
# replace the longest sequence of same characters by ...
prev_char = s[0]
count = 0
max_length = 0
max_char = '\x00'
start_pos = 0
max_pos = -1
for pos, char in enumerate(s):
if char == prev_char:
count += 1
else:
if count > max_length:
max_length = count
max_char = prev_char
max_pos = start_pos
prev_char = char
count = 1
start_pos = pos
if count > max_length:
max_length = count
max_char = prev_char
max_pos = start_pos
if max_length > 5:
assert max_pos >= 0
s = s[:max_pos] + max_char + "..." + max_char + s[max_pos + max_length:]
s = '0b' + s
return '(%s%s%s)' % (lower, s, upper)
def set_tvalue_tmask(self, tvalue, tmask):
changed = self.tvalue != tvalue or self.tmask != tmask
if changed:
self.tvalue = tvalue
self.tmask = tmask
self.shrink()
return changed
def make_le(self, other):
"""
Sets the bounds of `self` so that it only contains values lower than or
equal to the values contained in `other`. Returns `True` iff the bound
was updated. Will raise InvalidLoop if the resulting interval is empty.
Mutates `self`.
"""
return self.make_le_const(other.upper)
def make_le_const(self, value):
"""
Sets the bounds of `self` so that it only contains values lower than or
equal to `value`. Returns `True` iff the bound was updated. Will raise
InvalidLoop if the resulting interval is empty.
Mutates `self`.
"""
if value < self.upper:
if value < self.lower:
raise InvalidLoop
self.upper = value
self.shrink()
return True
return False
def make_lt(self, other):
"""
Sets the bounds of `self` so that it only contains values lower than
the values contained in `other`. Returns `True` iff the bound was
updated. Will raise InvalidLoop if the resulting interval is empty.
(Mutates `self`.)
"""
return self.make_lt_const(other.upper)
def make_lt_const(self, value):
"""
Sets the bounds of `self` so that it only contains values lower than
`value`. Returns `True` iff the bound was updated. Will raise
InvalidLoop if the resulting interval is empty. (Mutates `self`.)
"""
if value == MININT:
raise InvalidLoop("intbound can't be made smaller than MININT")
return self.make_le_const(value - 1)
def make_ge(self, other):
"""
Sets the bounds of `self` so that it only contains values greater than
or equal to the values contained in `other`. Returns `True` iff the
bound was updated. Will raise InvalidLoop if the resulting interval is
empty. (Mutates `self`.)
"""
return self.make_ge_const(other.lower)
def make_ge_const(self, value):
"""
Sets the bounds of `self` so that it only contains values greater than
or equal to `value`. Returns `True` iff the bound was updated. Will
raise InvalidLoop if the resulting interval is empty. (Mutates `self`.)
"""
if value > self.lower:
if value > self.upper:
raise InvalidLoop
self.lower = value
self.shrink()
return True
return False
def make_gt(self, other):
"""
Sets the bounds of `self` so that it only contains values greater than
the values contained in `other`. Returns `True` iff the bound was
updated. Will raise InvalidLoop if the resulting interval is empty.
(Mutates `self`.)
"""
return self.make_gt_const(other.lower)
def make_gt_const(self, value):
"""
Sets the bounds of `self` so that it only contains values greater than
`value`. Returns `True` iff the bound was updated. Will raise
InvalidLoop if the resulting interval is empty. (Mutates `self`.)
"""
if value == MAXINT:
raise InvalidLoop
return self.make_ge_const(value + 1)
def make_eq_const(self, intval):
"""
Sets the properties of this abstract integer
so that it is constant and equals `intval`.
(Mutates `self`.)
"""
if not self.contains(intval):
raise InvalidLoop("constant int is outside of interval")
self.upper = intval
self.lower = intval
self.tvalue = r_uint(intval)
self.tmask = r_uint(0)
def make_ne_const(self, intval):
if self.lower < intval == self.upper:
self.upper -= 1
self.shrink()
return True
if self.lower == intval < self.upper:
self.lower += 1
self.shrink()
return True
return False
def is_constant(self):
"""
Returns `True` iff this abstract integer
does contain only one concrete integer.
"""
# both the bounds and the tnum encode the concrete integer
res = self.lower == self.upper
assert res == (self.tmask == r_uint(0))
if res:
assert self.lower == intmask(self.tvalue)
return res
def get_constant_int(self):
"""
Returns the only integer contained in this abstract integer. Caller
needs to check that `.is_constant()` returns True, before calling.
"""
assert self.is_constant()
return self.lower
def known_eq_const(self, value):
"""
Returns `True` iff this abstract integer contains only one (1) integer
that does equal `value`.
"""
if not self.is_constant():
return False
else:
return self.lower == value
def known_lt_const(self, value):
"""
Returns `True` iff each number contained in this abstract integer is
lower than `value`.
"""
return self.upper < value
def known_le_const(self, value):
"""
Returns `True` iff each number contained in this abstract integer is
lower than or equal to `value`.
"""
return self.upper <= value
def known_gt_const(self, value):
"""
Returns `True` iff each number contained in this abstract integer is
greater than `value`.
"""
return self.lower > value
def known_ge_const(self, value):
"""
Returns `True` iff each number contained in this abstract integer is
greater than equal to `value`.
"""
return self.lower >= value
def known_lt(self, other):
"""
Returns `True` iff each number contained in this abstract integer is
lower than each integer contained in `other`.
"""
return self.known_lt_const(other.lower)
def known_le(self, other):
"""
Returns `True` iff each number contained in this abstract integer is
lower than or equal to each integer contained in `other`.
"""
return self.known_le_const(other.lower)
def known_gt(self, other):
"""
Returns `True` iff each number contained in this abstract integer is
greater than each integer contained in `other`.
"""
return other.known_lt(self)
def known_ge(self, other):
"""
Returns `True` iff each number contained in this abstract integer is
greater than or equal to each integer contained in `other`.
"""
return other.known_le(self)
def known_ne(self, other):
""" return True if the sets of numbers self and other must be disjoint.
"""
# easy cases part 1: ranges don't overlap
if self.known_lt(other):
return True
if self.known_gt(other):
return True
# easy case part 2: check whether the knownbits contradict
both_known = self.tmask | other.tmask
if unmask_zero(self.tvalue, both_known) != unmask_zero(other.tvalue, both_known):
return True
# for more complicated interactions between ranges and knownbits use
# the logic in intersect
newself = self.clone()
try:
newself.intersect(other)
except InvalidLoop:
return True
return False
def known_nonnegative(self):
"""
Returns `True` if this abstract integer only contains numbers greater
than or equal to `0` (zero).
"""
return 0 <= self.lower
def make_unsigned_le(self, other):
if other.known_nonnegative():
return self.intersect_const(0, other.upper)
return False
def make_unsigned_lt(self, other):
if other.known_nonnegative():
assert other.upper >= 0
if other.upper == 0:
raise InvalidLoop
return self.intersect_const(0, other.upper - 1)
return False
def make_unsigned_ge(self, other):
if other.upper < 0:
changed = self.make_lt_const(0)
return self.make_ge(other) or changed
if self.known_nonnegative() and other.known_nonnegative():
return self.make_ge(other)
return False
def make_unsigned_gt(self, other):
if other.upper < 0:
changed = self.make_lt_const(0)
return self.make_gt(other) or changed
if self.known_nonnegative() and other.known_nonnegative():
return self.make_gt(other)
return False
def _known_same_sign(self, other):
# return True if self and other are both either known non-negative or
# both known negative
if self.known_nonnegative() and other.known_nonnegative():
return True
return self.known_lt_const(0) and other.known_lt_const(0)
def known_unsigned_lt(self, other):
"""
Returns `True` iff each unsigned integer contained in this abstract
integer is lower than each unsigned integer contained in `other`.
"""
# if they have the same sign, we can reason with signed comparison
# see test_uint_cmp_equivalent_int_cmp_if_same_sign
if self._known_same_sign(other) and self.known_lt(other):
return True
other_min_unsigned_by_knownbits = other.get_minimum_unsigned_by_knownbits()
self_max_unsigned_by_knownbits = self.get_maximum_unsigned_by_knownbits()
return self_max_unsigned_by_knownbits < other_min_unsigned_by_knownbits
def known_unsigned_le(self, other):
"""
Returns `True` iff each unsigned integer contained in this abstract
integer is lower or equal than each unsigned integer contained in
`other`. """
# if they have the same sign, we can reason with signed comparison
if self._known_same_sign(other) and self.known_le(other):
return True
other_min_unsigned_by_knownbits = other.get_minimum_unsigned_by_knownbits()
self_max_unsigned_by_knownbits = self.get_maximum_unsigned_by_knownbits()
return self_max_unsigned_by_knownbits <= other_min_unsigned_by_knownbits
def known_unsigned_gt(self, other):
"""
Returns `True` iff each unsigned integer contained in this abstract
integer is greater than each unsigned integer contained in `other`.
"""
return other.known_unsigned_lt(self)
def known_unsigned_ge(self, other):
"""
Returns `True` iff each unsigned integer contained in this abstract
integer is greater or equal than each unsigned integer contained in
`other`.
"""
return other.known_unsigned_le(self)
def get_minimum_unsigned_by_knownbits(self):
"""
Returns the minimum unsigned number, but only using the knownbits as
information."""
return unmask_zero(self.tvalue, self.tmask)
def get_maximum_unsigned_by_knownbits(self):
"""
returns the maximum unsigned number, but only using the knownbits as
information."""
return unmask_one(self.tvalue, self.tmask)
def _get_minimum_signed_by_knownbits(self):
""" for internal use only!
returns the minimum signed number, but only using the knownbits as
information."""
return self.intmask(self.tvalue | msbonly(self.tmask))
def _get_maximum_signed_by_knownbits(self):
""" for internal use only!
returns the maximum signed number, but only using the knownbits as
information."""
unsigned_mask = self.tmask & ~msbonly(self.tmask)
return self.intmask(self.tvalue | unsigned_mask)
def _get_minimum_signed_by_knownbits_atleast(self, threshold=MININT):
""" for internal use only!
return the smallest number permitted by the known bits that is above
(or equal) threshold. will raise InvalidLoop if no such number exists.
"""
if self._get_maximum_signed_by_knownbits() < threshold:
raise InvalidLoop("threshold and knownbits don't overlap")
min_by_knownbits = self._get_minimum_signed_by_knownbits()
if min_by_knownbits > self.upper:
raise InvalidLoop("range and knownbits don't overlap")
if min_by_knownbits >= threshold:
return min_by_knownbits
# see "Sharpening Constraint Programming
# approaches for Bit-Vector Theory"
u_min_threshold = r_uint(threshold)
# create our working value, the to-be minimum
working_min, cl2set, set2cl = self._helper_min_max_prepare(u_min_threshold)
if working_min == u_min_threshold:
return threshold
elif cl2set > set2cl:
return self._helper_min_case1(working_min, cl2set)
else:
return self._helper_min_case2(working_min, set2cl)
@always_inline
def _helper_min_max_prepare(self, u_threshold):
working_value = u_threshold # start at given threshold
working_value &= unmask_one(self.tvalue, self.tmask) # clear known 0s
working_value |= self.tvalue # set known 1s
# inspect changed bits
cl2set = ~u_threshold & working_value
set2cl = u_threshold & ~working_value
return working_value, cl2set, set2cl
@always_inline
def _helper_min_case1(self, working_min, cl2set):
# we have set the correct bit already
clear_mask = leading_zeros_mask(self._urshift(cl2set, 1))
working_min &= clear_mask | ~self.tmask
return self.intmask(working_min)
@always_inline
def _helper_min_case2(self, working_min, set2cl):
# flip the sign bit to handle -1 -> 0 overflow
working_min = flip_msb(working_min)
# we have to find the proper bit to set...
possible_bits = ~working_min \
& self.tmask \
& leading_zeros_mask(set2cl)
bit_to_set = lowest_set_bit_only(possible_bits)
working_min |= bit_to_set
# and clear all lower than that
clear_mask = leading_zeros_mask(bit_to_set) \
| bit_to_set | ~self.tmask
working_min &= clear_mask
return self.intmask(flip_msb(working_min))
def _get_maximum_signed_by_knownbits_atmost(self, threshold=MAXINT):
""" for internal use only!
return the largest number permitted by the known bits that is below or
equal to threshold. will raise InvalidLoop if no such number exists.
"""
if self._get_minimum_signed_by_knownbits() > threshold:
raise InvalidLoop("threshold and knownbits don't overlap")
max_by_knownbits = self._get_maximum_signed_by_knownbits()
if max_by_knownbits < self.lower:
raise InvalidLoop("range and knownbits don't overlap")
if max_by_knownbits <= threshold:
return max_by_knownbits
# see "Sharpening Constraint Programming
# approaches for Bit-Vector Theory"
u_max_threshold = r_uint(threshold)
# now create our working value, the to-be maximum
working_max, cl2set, set2cl = self._helper_min_max_prepare(u_max_threshold)
if working_max == u_max_threshold:
return threshold
elif cl2set < set2cl:
# we have cleared the right bit already
result = self._helper_max_case1(working_max, set2cl)
else:
result = self._helper_max_case2(working_max, cl2set)
assert result <= threshold
return result
def _helper_max_case1(self, working_max, set2cl):
# we have cleared the right bit already
set_mask = next_pow2_m1(self._urshift(set2cl, 1)) & self.tmask
working_max |= set_mask
return self.intmask(working_max)
def _helper_max_case2(self, working_max, cl2set):
# flip the sign bit to handle 1 -> 0 overflow
working_max = flip_msb(working_max)
# find the right bit to clear
possible_bits = working_max \
& self.tmask \
& leading_zeros_mask(cl2set)
bit_to_clear = lowest_set_bit_only(possible_bits)
working_max &= ~bit_to_clear
# and set all lower than that
set_mask = next_pow2_m1(self._urshift(bit_to_clear, 1)) & self.tmask
working_max |= set_mask
return self.intmask(flip_msb(working_max))
def _get_minimum_signed(self):
""" for tests only """
ret_b = self.lower
result = self._get_minimum_signed_by_knownbits_atleast(ret_b)
assert isinstance(result, int)
return result
def _get_maximum_signed(self):
""" for tests only """
ret_b = self.upper
result = self._get_maximum_signed_by_knownbits_atmost(ret_b)
assert isinstance(result, int)
return result
def intersect(self, other):
"""
Mutates `self` so that it contains integers that are contained in
`self` and `other`, and only those. Basically intersection of sets.
Throws InvalidLoop if `self` and `other` "disagree", meaning the result
would not contain any integers.
"""
if self.known_gt(other) or self.known_lt(other):
# they don't overlap, which makes the loop invalid
# this never happens in regular linear traces, but it can happen in
# combination with unrolling/loop peeling
raise InvalidLoop("two integer ranges don't overlap")
r = self.intersect_const(other.lower, other.upper, do_shrinking=False)
tvalue, tmask, valid = self._tnum_intersect(other.tvalue, other.tmask)
if not valid:
raise InvalidLoop("knownbits contradict each other")
# calculate intersect value and mask
if self.tmask != tmask:
# this can also raise InvalidLoop, if the ranges and knownbits
# contradict in more complicated ways
r = self.set_tvalue_tmask(tvalue, tmask) # this shrinks
assert r
elif r:
# we didn't shrink yet
self.shrink()
assert self._debug_check()
return r
@always_inline
def _tnum_intersect(self, other_tvalue, other_tmask):
union_val = self.tvalue | other_tvalue
either_known = self.tmask & other_tmask
both_known = self.tmask | other_tmask
unmasked_self = unmask_zero(self.tvalue, both_known)
unmasked_other = unmask_zero(other_tvalue, both_known)
tvalue = unmask_zero(union_val, either_known)
valid = unmasked_self == unmasked_other
return tvalue, either_known, valid
def intersect_const(self, lower, upper, do_shrinking=True):
"""
Mutates `self` so that it contains integers that are contained in
`self` and the range [`lower`, `upper`], and only those. Basically
intersection of sets.
"""
changed = False
if lower > self.lower:
if lower > self.upper:
raise InvalidLoop
self.lower = lower
changed = True
if upper < self.upper:
if upper < self.lower:
raise InvalidLoop
self.upper = upper
changed = True
if changed and do_shrinking:
self.shrink()
return changed
def add(self, value):
return self.add_bound(self.from_constant(value))
def add_bound(self, other):
"""
Adds the `other` abstract integer to `self` and returns the result.
Must be correct in the presence of possible overflows.
(Does not mutate `self`.)
"""
tvalue, tmask = self._tnum_add(other)
# the lower and upper logic is proven in test_prove_add_bounds_logic
try:
lower = ovfcheck(self.lower + other.lower)
except OverflowError:
return IntBound.from_knownbits(tvalue, tmask)
try:
upper = ovfcheck(self.upper + other.upper)
except OverflowError:
return IntBound.from_knownbits(tvalue, tmask)
return IntBound(lower, upper, tvalue, tmask)
@always_inline
def _tnum_add(self, other):
sum_values = self.tvalue + other.tvalue
sum_masks = self.tmask + other.tmask
all_carries = sum_values + sum_masks
val_carries = all_carries ^ sum_values
tmask = self.tmask | other.tmask | val_carries
tvalue = unmask_zero(sum_values, tmask)
return tvalue, tmask
def add_bound_cannot_overflow(self, other):
""" returns True if self + other can never overflow """
try:
ovfcheck(self.upper + other.upper)
ovfcheck(self.lower + other.lower)
except OverflowError:
return False
return True
def add_bound_no_overflow(self, other):
""" return the bound that self + other must have, if no overflow occured,
eg after an int_add_ovf(...), guard_no_overflow() """
tvalue, tmask = self._tnum_add(other)
# returning add_bound is always correct, but let's improve the range
lower = self._add_check_overflow(self.lower, other.lower, MININT)
upper = self._add_check_overflow(self.upper, other.upper, MAXINT)
return self.new(lower, upper, tvalue, tmask)
def sub_bound(self, other):
"""
Subtracts the `other` abstract integer from `self` and returns the
result. (Does not mutate `self`.)
"""
tvalue, tmask = self._tnum_sub(other)
# the lower and upper logic is proven in test_prove_sub_bound_logic
try:
lower = ovfcheck(self.lower - other.upper)
except OverflowError:
return IntBound.from_knownbits(tvalue, tmask)
try:
upper = ovfcheck(self.upper - other.lower)
except OverflowError:
return IntBound.from_knownbits(tvalue, tmask)
return IntBound(lower, upper, tvalue, tmask)
def _tnum_sub(self, other):
diff_values = self.tvalue - other.tvalue
val_borrows = (diff_values + self.tmask) ^ (diff_values - other.tmask)
tmask = self.tmask | other.tmask | val_borrows
tvalue = unmask_zero(diff_values, tmask)
return tvalue, tmask
def sub_bound_cannot_overflow(self, other):
try:
ovfcheck(self.lower - other.upper)
ovfcheck(self.upper - other.lower)
except OverflowError:
return False
return True
def sub_bound_no_overflow(self, other):
""" return the bound that self - other must have, if no overflow occured,
eg after an int_sub_ovf(...), guard_no_overflow() """
tvalue, tmask = self._tnum_sub(other)
# returning sub_bound is always correct, but let's improve the range
lower = self._sub_check_overflow(self.lower, other.upper, MININT)
upper = self._sub_check_overflow(self.upper, other.lower, MAXINT)
return self.new(lower, upper, tvalue, tmask)
def mul_bound(self, other):
"""
Multiplies the `other` abstract
integer with `self` and returns the
result.
(Does not mutate `self`.)
"""
try:
vals = (ovfcheck(self.upper * other.upper),
ovfcheck(self.upper * other.lower),
ovfcheck(self.lower * other.upper),
ovfcheck(self.lower * other.lower))
return IntBound(min4(vals), max4(vals))
except OverflowError:
return IntBound.unbounded()
mul_bound_no_overflow = mul_bound # can be improved
def mul_bound_cannot_overflow(self, other):
try:
ovfcheck(self.upper * other.upper)
ovfcheck(self.upper * other.lower)
ovfcheck(self.lower * other.upper)
ovfcheck(self.lower * other.lower)
except OverflowError:
return False
return True
def py_div_bound(self, other):
"""
Divides this abstract integer by the
`other` abstract integer and returns
the result.
(Does not mutate `self`.)
"""
# we need to make sure that the 0 is not in the interval because
# otherwise [-4, 4] / [-4, 4] would return [-1, 1], which is nonsense
# see test_knownbits_div_bug. the first part of the check is not
# enough, because 0 could be excluded by the known bits
if not other.contains(0) and not (other.lower < 0 < other.upper):
try:
# this gives the bounds for 'int_py_div', so use the
# Python-style handling of negative numbers and not
# the C-style one
vals = (ovfcheck(self.upper / other.upper),
ovfcheck(self.upper / other.lower),
ovfcheck(self.lower / other.upper),
ovfcheck(self.lower / other.lower))
return IntBound(min4(vals), max4(vals))
except OverflowError:
pass
return IntBound.unbounded()
def mod_bound(self, other):
"""
Calculates the mod of this abstract
integer by the `other` abstract
integer and returns the result.
(Does not mutate `self`.)
"""
r = IntBound.unbounded()
if other.is_constant() and other.get_constant_int() == 0:
return IntBound.unbounded()
# with Python's modulo: 0 <= (x % pos) < pos
# neg < (x % neg) <= 0
# see test_prove_mod_bound_logic
if other.upper > 0:
upper = other.upper - 1
else:
upper = 0
if other.lower < 0:
lower = other.lower + 1
else:
lower = 0
return IntBound(lower, upper)
def lshift_bound(self, other):
"""
Shifts this abstract integer `other`
bits to the left, where `other` is
another abstract integer.
(Does not mutate `self`.)
"""
tvalue, tmask = TNUM_UNKNOWN
if other.is_constant():
c_other = other.get_constant_int()
if c_other >= LONG_BIT:
tvalue, tmask = TNUM_KNOWN_ZERO
elif 0 <= c_other < LONG_BIT:
tvalue, tmask = self._tnum_lshift(c_other)
# else: bits are unknown because arguments invalid
if other.known_nonnegative() and other.known_lt_const(LONG_BIT):
try:
vals = (ovfcheck(self.upper << other.upper),
ovfcheck(self.upper << other.lower),
ovfcheck(self.lower << other.upper),
ovfcheck(self.lower << other.lower))
return IntBound(min4(vals), max4(vals), tvalue, tmask)
except (OverflowError, ValueError):
pass
return IntBound.from_knownbits(tvalue, tmask)
@always_inline
def _tnum_lshift(self, c_other):
# use signed integer sign extension logic
tvalue = self.tvalue << c_other
tmask = self.tmask << c_other
return tvalue, tmask
def rshift_bound(self, other):
"""
Shifts this abstract integer `other` bits to the right, where `other`
is another abstract integer, and extends its sign. This is the
arithmetic shift on signed integers, ie the shifted in values are 0/1,
depending on the sign.
(Does not mutate `self`.)
"""
tvalue, tmask = TNUM_UNKNOWN
if other.is_constant():
c_other = other.get_constant_int()
if c_other >= LONG_BIT:
# shift value out to the right, but do sign extend
if msbonly(self.tmask): # sign-extend mask
tvalue, tmask = TNUM_UNKNOWN
elif msbonly(self.tvalue): # sign-extend value
tvalue, tmask = TNUM_KNOWN_BITWISEONE
else: # sign is 0 on both
tvalue, tmask = TNUM_KNOWN_ZERO
elif c_other >= 0:
tvalue, tmask = self._tnum_rshift(c_other)
# else: bits are unknown because arguments invalid
lower = MININT
upper = MAXINT
if other.known_nonnegative() and other.known_lt_const(LONG_BIT):
vals = (self.upper >> other.upper,
self.upper >> other.lower,
self.lower >> other.upper,
self.lower >> other.lower)
lower = min4(vals)
upper = max4(vals)
return IntBound(lower, upper, tvalue, tmask)
@always_inline
def _tnum_rshift(self, c_other):
# use signed integer sign extension logic
tvalue = self.r_uint(self.intmask(self.tvalue) >> c_other)
tmask = self.r_uint(self.intmask(self.tmask) >> c_other)
return tvalue, tmask
def lshift_bound_cannot_overflow(self, other):
""" returns True if self << other can never overflow """
if other.known_nonnegative() and \
other.known_lt_const(LONG_BIT):
try:
ovfcheck(self.upper << other.upper)
ovfcheck(self.upper << other.lower)
ovfcheck(self.lower << other.upper)
ovfcheck(self.lower << other.lower)
return True
except (OverflowError, ValueError):
pass
return False
def urshift_bound(self, other):
"""
Shifts this abstract integer `other` bits to the right, where `other`
is another abstract integer, *without* extending its sign. (Does not
mutate `self`.)
"""
# this seems to always be the signed variant..?
lower = MININT
upper = MAXINT
tvalue, tmask = TNUM_UNKNOWN
if other.is_constant():
c_other = other.get_constant_int()
if c_other >= LONG_BIT:
# no sign to extend, we get constant 0
tvalue, tmask = TNUM_KNOWN_ZERO
elif c_other >= 0:
tvalue, tmask = self._tnum_urshift(c_other)
if self.lower >= 0:
upper = intmask(r_uint(self.upper) >> c_other)
lower = intmask(r_uint(self.lower) >> c_other)
# else: bits are unknown because arguments invalid
return IntBound(lower, upper, tvalue, tmask)
# we don't do bounds on unsigned
return IntBound.from_knownbits(tvalue, tmask)
@always_inline
def _tnum_urshift(self, c_other):
tvalue = self._urshift(self.tvalue, c_other)
tmask = self._urshift(self.tmask, c_other)
return tvalue, tmask
def and_bound(self, other):
"""
Performs bit-wise AND of this abstract integer and the `other`,
returning its result. (Does not mutate `self`.)
"""
pos1 = self.known_nonnegative()
pos2 = other.known_nonnegative()
# the next three if-conditions are proven by test_prove_and_bound_logic
lower = MININT
upper = MAXINT
if pos1 or pos2:
lower = 0
if pos1:
upper = self.upper
if pos2:
upper = min(upper, other.upper)
res_tvalue, res_tmask = self._tnum_and(other)
return IntBound(lower, upper, res_tvalue, res_tmask)
@always_inline
def _tnum_and(self, other):
self_pmask = self.tvalue | self.tmask
other_pmask = other.tvalue | other.tmask
and_vals = self.tvalue & other.tvalue
return and_vals, self_pmask & other_pmask & ~and_vals
def or_bound(self, other):
"""
Performs bit-wise OR of this abstract integer and the `other`,
returning its result. (Does not mutate `self`.)
"""
tvalue, tmask = self._tnum_or(other)
return self.from_knownbits(tvalue, tmask)
@always_inline
def _tnum_or(self, other):
union_vals = self.tvalue | other.tvalue
union_masks = self.tmask | other.tmask
return union_vals, union_masks & ~union_vals
def xor_bound(self, other):
"""
Performs bit-wise XOR of this abstract integer and the `other`,
returning its result.
(Does not mutate `self`.)
"""
tvalue, tmask = self._tnum_xor(other)
return self.from_knownbits(tvalue, tmask)
@always_inline
def _tnum_xor(self, other):
xor_vals = self.tvalue ^ other.tvalue
union_masks = self.tmask | other.tmask
return unmask_zero(xor_vals, union_masks), union_masks
def neg_bound(self):
"""
Arithmetically negates this abstract integer and returns the result.
(Does not mutate `self`.)
"""
res = self.invert_bound()
res = res.add(1)
return res
def invert_bound(self):
"""
Performs bit-wise NOT on this abstract integer returning its result.
(Does not mutate `self`.)
"""
upper = ~self.lower
lower = ~self.upper
tvalue = unmask_zero(~self.tvalue, self.tmask)
tmask = self.tmask
return self.new(lower, upper, tvalue, tmask)
def contains(self, value):
"""
Returns `True` iff this abstract integer contains the given `value`.
"""
assert not isinstance(value, IntBound)
if not we_are_translated():
assert not isinstance(value, long)
if not isinstance(value, int):
if (self.lower == MININT and self.upper == MAXINT):
return True # workaround for address as int
if value < self.lower:
return False
if value > self.upper:
return False
u_vself = unmask_zero(self.tvalue, self.tmask)
u_value = unmask_zero(r_uint(value), self.tmask)
if u_vself != u_value:
return False
return True
def is_within_range(self, lower, upper):
"""
Check if all the numbers contained in this instance have are between
lower and upper.
"""
return lower <= self.lower and self.upper <= upper
def clone(self):
"""
Returns a copy of this abstract integer.
"""
res = IntBound(self.lower, self.upper,
self.tvalue, self.tmask)
return res
def make_guards(self, box, guards, optimizer):
"""
Generates guards from the information we have about the numbers this
abstract integer contains.
"""
if self.is_constant():
guards.append(ResOperation(rop.GUARD_VALUE,
[box, ConstInt(self.upper)]))
return
if self.lower > MININT:
bound = self.lower
op = ResOperation(rop.INT_GE, [box, ConstInt(bound)])
guards.append(op)
op = ResOperation(rop.GUARD_TRUE, [op])
guards.append(op)
if self.upper < MAXINT:
bound = self.upper
op = ResOperation(rop.INT_LE, [box, ConstInt(bound)])
guards.append(op)
op = ResOperation(rop.GUARD_TRUE, [op])
guards.append(op)
if not self._are_knownbits_implied():
op = ResOperation(rop.INT_AND, [box, ConstInt(intmask(~self.tmask))])
guards.append(op)
op = ResOperation(rop.GUARD_VALUE, [op, ConstInt(intmask(self.tvalue))])
guards.append(op)
def is_bool(self):
"""
Returns `True` iff self is exactly the set {0, 1}
"""
return (self.known_nonnegative() and self.known_le_const(1))
def is_unbounded(self):
return (self.lower == MININT and self.upper == MAXINT and
self.tvalue == r_uint(0) and self.tmask == r_uint(-1))
def make_bool(self):
"""
Mutates this abstract integer so that it does represent a conventional
boolean value.
(Mutates `self`.)
"""
self.intersect_const(0, 1)
def getconst(self):
"""
Returns ConstInt with the only integer contained in this abstract
integer. Caller needs to check that `.is_constant()` returns True,
before calling.
"""
return ConstInt(self.get_constant_int())
def getnullness(self):
"""
Returns information about whether this this abstract integer is known
to be zero or not to be zero.
"""
if self.known_gt_const(0) or \
self.known_lt_const(0) or \
self.tvalue != 0:
return INFO_NONNULL
if self.is_constant() and self.get_constant_int() == 0:
return INFO_NULL
return INFO_UNKNOWN
def widen(self):
info = self.clone()
info.widen_update()
return info
def widen_update(self):
if self.lower < MININT / 2:
self.lower = MININT
if self.upper > MAXINT / 2:
self.upper = MAXINT
self.tvalue, self.tmask = TNUM_UNKNOWN
self.shrink()
def and_bound_backwards(self, result):
"""
result == int_and(self, other)
We want to learn some bits about other, using the information from self
and result_int.
regular &:
other
& 0 1 ?
0 0 0 0
1 0 1 ?
? 0 ? ? <- result
self
backwards & (this one):
self
0 1 ?
0 ? 0 ?
1 X 1 1
? ? ? ? <- other
result
(X marks an inconsistent result).
We can see that we only learn something about other at the places
where a bit from self is 1. At those places, the corresponding bit in
other has to be the corresponding bit in result.
"""
tvalue, tmask, valid = self._tnum_and_backwards(result)
if not valid:
raise InvalidLoop("inconsistency in and_bound_backwards")
return IntBound.from_knownbits(tvalue, tmask)
@always_inline
def _tnum_and_backwards(self, result):
# in all the places where the result is 1 both arguments have to 1. in
# the places where result is 0, other has to be 0 iff self is known 1.
tvalue = result.tvalue
tmask = ((~self.tvalue) | result.tmask) & ~tvalue
# if we have a place where result is 1 but self is 0, then we are
# inconsistent
inconsistent = result.tvalue & ~self.tmask & ~self.tvalue
return tvalue, tmask, inconsistent == 0
def or_bound_backwards(self, result):
"""
result_int == int_or(self, other)
We want to refine our knowledge about other
using this information
regular |:
other
& 0 1 ?
0 0 1 ?
1 1 1 1
? ? 1 ? <- result
self
backwards | (this one):
self
0 1 ?
0 0 X 0
1 1 ? ?
? ? ? ? <- other (where X=invalid)
result
"""
tvalue, tmask, valid = self._tnum_or_backwards(result)
if not valid:
raise InvalidLoop("inconsistency in or_bound_backwards")
return IntBound.from_knownbits(tvalue, tmask)
@always_inline
def _tnum_or_backwards(self, result):
# in all the places where the result is 0 both arguments have to be 0.
zeros = (~result.tmask & ~result.tvalue)
# apart from that, in the places where self is 0 and where result is 1
# other must be 1
tvalue = (result.tvalue & ~self.tvalue & ~self.tmask)
tmask = ~(zeros | tvalue)
# if we have a place where result is 0 but self is 1, then we are
# inconsistent
inconsistent = self.tvalue & zeros
return tvalue, tmask, inconsistent == 0
def rshift_bound_backwards(self, other):
"""
Performs a `urshift`/`rshift` backwards on `self`. Basically
left-shifts `self` by `other` binary digits, filling the lower part
with ?, and returns the result.
"""
if not other.is_constant():
return IntBound.unbounded()
c_other = other.get_constant_int()
tvalue, tmask = TNUM_UNKNOWN
if 0 <= c_other < LONG_BIT:
tvalue = self.tvalue << r_uint(c_other)
tmask = self.tmask << r_uint(c_other)
# shift ? in from the right,
tmask |= (r_uint(1) << r_uint(c_other)) - 1
return IntBound.from_knownbits(tvalue, tmask)
urshift_bound_backwards = rshift_bound_backwards
def lshift_bound_backwards(self, other):
"""
Performs a `lshift` backwards on `self`. Basically right-shifts `self`
by `other` binary digits, filling the upper part with ?, and returns
the result.
"""
if not other.is_constant():
return IntBound.unbounded()
c_other = r_uint(other.get_constant_int())
tvalue, tmask = TNUM_UNKNOWN
if 0 <= c_other < LONG_BIT:
tvalue = self.tvalue >> c_other
tmask = self.tmask >> c_other
# shift ? in from the left,
s_tmask = ~(r_uint(-1) >> c_other)
tmask |= s_tmask
inconsistent = self.tvalue & ((1 << c_other) - 1)
if inconsistent:
raise InvalidLoop("lshift_bound_backwards inconsistent known bits")
return IntBound.from_knownbits(tvalue, tmask)
def shrink(self):
""" Shrink the bounds and the knownbits to be more precise, but without
changing the set of integers that is represented by self.
Here's a diagram to show what is happening. This is the number line:
MININT <---------0-----------------------------------------------> MAXINT
We have a range in the number line
[lower ... upper]
We also known bits, they represent a set of ints maybe looking like this:
X X X X X X X X X X X X X X X X
(an X means the number matches the known bits, ' ' means it doesn't)
Note that the lower and upper bounds could be more precise (ie bigger
and smaller, respectively), because they don't match the known bits.
Also, there are numbers that match the known bits to the left of lower
and the right of upper, that are excluded by the range and thus
unnecessary. We want to fix both of that.
First we shrink the bounds so that they both match the known bits,
then things look like this:
[lower ... upper]
X X X X X X X X X X X X X X X X
This is achieved by moving lower to the right to the first number >=
lower that matches the known bits (and mutatis mutandis for upper).
Afterwards we use the information from the bounds to add more known
bits. Having done that, things look maybe something like this:
[lower ... upper]
X X X X X X X X
Then we're done with shrinking.
The set that is described by these two pieces of information together
is neither expressible as purely a range, nor purely by known bits.
It looks like this:
X X X X X X X
The set did not change through this process, but the bounds and the
known bits becoming more precise makes it possible to compute more
precise results when doing further operations with self.
"""
# there's a proof in test_z3intbound that one pass of shrinking is
# always enough. let's still assert that a second pass doesn't change
# anything.
changed = self._shrink_bounds_by_knownbits()
changed |= self._shrink_knownbits_by_bounds()
if not changed:
return changed
changed_again = self._shrink_bounds_by_knownbits()
changed_again |= self._shrink_knownbits_by_bounds()
assert not changed_again
return changed
def _shrink_bounds_by_knownbits(self):
"""
Shrinks the bounds by the known bits.
"""
# lower bound
min_by_knownbits = self._get_minimum_signed_by_knownbits_atleast(self.lower)
max_by_knownbits = self._get_maximum_signed_by_knownbits_atmost(self.upper)
if min_by_knownbits > max_by_knownbits:
raise InvalidLoop("range and knownbits contradict each other")
changed = self.lower < min_by_knownbits or self.upper > max_by_knownbits
if changed:
self.lower = min_by_knownbits
self.upper = max_by_knownbits
return changed
def _shrink_knownbits_by_bounds(self):
"""
Infers known bits from the bounds. Basically fills a common prefix from
lower and upper bound into the knownbits.
"""
tvalue, tmask, valid = self._tnum_improve_knownbits_by_bounds()
if not valid:
raise InvalidLoop("knownbits and bounds don't agree")
changed = self.tvalue != tvalue or self.tmask != tmask
if changed:
self.tmask = tmask
self.tvalue = tvalue
return changed
@always_inline
def _tnum_implied_by_bounds(self):
# calculate higher bit mask by bounds
hbm_bounds = leading_zeros_mask(
self.r_uint(self.lower) ^ self.r_uint(self.upper))
bounds_common = self.r_uint(self.lower) & hbm_bounds
tmask = ~hbm_bounds
return unmask_zero(bounds_common, tmask), tmask
@always_inline
def _tnum_improve_knownbits_by_bounds(self):
# knownbits that are implied by the bounds
tvalue, tmask = self._tnum_implied_by_bounds()
# intersect them with the current knownbits
return self._tnum_intersect(tvalue, tmask)
def _debug_check(self):
"""
Very simple debug check. Returns `True` iff the span of knownbits and
the span of the bounds have a non-empty intersection. That does not
guarantee for the actual concrete value set to contain any values!
"""
assert self.lower <= self.upper
min_knownbits = self._get_minimum_signed_by_knownbits()
max_knownbits = self._get_maximum_signed_by_knownbits()
if not min_knownbits <= self.upper:
return False
if not max_knownbits >= self.lower:
return False
# just to make sure
if not min_knownbits <= max_knownbits:
return False
# make sure the set is not empty
if self.is_constant():
# does one constraint exclude the constant value?
val = self.get_constant_int()
if min_knownbits > val or max_knownbits < val \
or self.lower > val or self.upper < val:
return False
else:
# we have no constant, so keep checking
u_lower = r_uint(self.lower)
u_upper = r_uint(self.upper)
# check if bounds common prefix agrees with known-bits
hbm_bounds = leading_zeros_mask(u_lower ^ u_upper)
bounds_common_prefix = u_lower & hbm_bounds
if unmask_zero(bounds_common_prefix, self.tmask) != self.tvalue & hbm_bounds:
return False
# for the rest of the bunch, check by minima/maxima with threshold.
# (side note: the whole check can be reduced to this, but for the
# sake of robustness we want to keep the other checks above.)
if self._get_minimum_signed_by_knownbits_atleast(self.lower) > self.upper \
or self._get_maximum_signed_by_knownbits_atmost(self.upper) < self.lower:
return False
return True
def knownbits_string(self, unk_sym='?'):
"""
Returns a string representation about the knownbits part of this
abstract integer. You can give any symbol or string for the "unknown
bits" (default: '?'), the other digits are written as '1' and '0'.
"""
results = []
for bit in range(LONG_BIT):
if self.tmask & (1 << bit):
results.append(unk_sym)
else:
results.append(str((self.tvalue >> bit) & 1))
results.reverse()
return "".join(results)
def flip_msb(val_uint):
return val_uint ^ r_uint(MININT)
def is_valid_tnum(tvalue, tmask):
"""
Returns `True` iff `tvalue` and `tmask` would be valid tri-state number
fields of an abstract integer, meeting all conventions and requirements.
"""
if not isinstance(tvalue, r_uint):
return False
if not isinstance(tmask, r_uint):
return False
return 0 == (r_uint(tvalue) & r_uint(tmask))
def leading_zeros_mask(n):
"""
calculates a bitmask in which only the leading zeros of `n` are set (1).
"""
return ~next_pow2_m1(n)
def lowest_set_bit_only(val_uint):
"""
Returns an val_int, but with all bits deleted but the lowest one that was
set.
"""
#assert isinstance(val_uint, r_uint)
working_val = ~val_uint
increased_val = working_val + 1
result = (working_val^increased_val) & val_uint
return result
def min4(t):
"""
Returns the minimum of the values in the quadruplet t.
"""
return min(min(t[0], t[1]), min(t[2], t[3]))
def max4(t):
"""
Returns the maximum of the values in the quadruplet t.
"""
return max(max(t[0], t[1]), max(t[2], t[3]))
def msbonly(v):
"""
Returns `v` with all bits except the most significant bit set to 0 (zero).
"""
return v & (1 << (LONG_BIT-1))
def next_pow2_m1(n):
"""Calculate next power of 2 minus one, greater than n"""
n |= n >> 1
n |= n >> 2
n |= n >> 4
n |= n >> 8
n |= n >> 16
if IS_64_BIT:
n |= n >> 32
return n
def unmask_one(value, mask):
"""
Sets all unknowns determined by `mask` in `value` bit-wise to 1 (one) and
returns the result.
"""
return value | mask
def unmask_zero(value, mask):
"""
Sets all unknowns determined by `mask` in `value` bit-wise to 0 (zero) and
returns the result.
"""
return value & ~mask
|