1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
|
from rpython.rlib.rarithmetic import LONG_BIT, intmask, longlongmask, r_uint, r_ulonglong
from rpython.rlib.rarithmetic import ovfcheck, r_longlong, widen
from rpython.rlib.rarithmetic import most_neg_value_of_same_type
from rpython.rlib.rarithmetic import check_support_int128
from rpython.rlib.rstring import StringBuilder
from rpython.rlib.debug import make_sure_not_resized, check_regular_int
from rpython.rlib.objectmodel import we_are_translated, specialize, \
not_rpython, newlist_hint, always_inline
from rpython.rlib import jit
from rpython.rtyper.lltypesystem import lltype, rffi
from rpython.rtyper import extregistry
import math, sys
SUPPORT_INT128 = check_support_int128()
BYTEORDER = sys.byteorder
# note about digit sizes:
# In division, the native integer type must be able to hold
# a sign bit plus two digits plus 1 overflow bit.
#SHIFT = (LONG_BIT // 2) - 1
if SUPPORT_INT128:
SHIFT = 63
UDIGIT_TYPE = r_ulonglong
if LONG_BIT >= 64:
UDIGIT_MASK = intmask
else:
UDIGIT_MASK = longlongmask
LONG_TYPE = rffi.__INT128_T
ULONG_TYPE = rffi.__UINT128_T
if LONG_BIT > SHIFT:
STORE_TYPE = lltype.Signed
UNSIGNED_TYPE = lltype.Unsigned
else:
STORE_TYPE = rffi.LONGLONG
UNSIGNED_TYPE = rffi.ULONGLONG
else:
SHIFT = 31
UDIGIT_TYPE = r_uint
UDIGIT_MASK = intmask
STORE_TYPE = lltype.Signed
UNSIGNED_TYPE = lltype.Unsigned
LONG_TYPE = rffi.LONGLONG
ULONG_TYPE = rffi.ULONGLONG
# TODO if LONG_BIT >= 64, it would be best to use r_uint32, but
# int32 and uint32 ops are unimplemented
MASK = int((1 << SHIFT) - 1)
FLOAT_MULTIPLIER = float(1 << SHIFT)
# For BIGINT and INT mix.
#
# The VALID range of an int is different than a valid range of a bigint of length one.
# -1 << LONG_BIT is actually TWO digits, because they are stored without the sign.
if SHIFT == LONG_BIT - 1:
MIN_INT_VALUE = -1 << SHIFT
def int_in_valid_range(x):
if x == MIN_INT_VALUE:
return False
return True
else:
# Means we don't have INT128 on 64bit.
def int_in_valid_range(x):
if x > MASK or x < -MASK:
return False
return True
int_in_valid_range._always_inline_ = True
# Debugging digit array access.
#
# False == no checking at all
# True == check 0 <= value <= MASK
# For long multiplication, use the O(N**2) school algorithm unless
# both operands contain more than KARATSUBA_CUTOFF digits (this
# being an internal Python long digit, in base BASE).
# Karatsuba is O(N**1.585)
USE_KARATSUBA = True # set to False for comparison
if SHIFT > 31:
KARATSUBA_CUTOFF = 19
else:
KARATSUBA_CUTOFF = 38
KARATSUBA_SQUARE_CUTOFF = 2 * KARATSUBA_CUTOFF
# For exponentiation, use the binary left-to-right algorithm
# unless the exponent contains more than FIVEARY_CUTOFF digits.
# In that case, do 5 bits at a time. The potential drawback is that
# a table of 2**5 intermediate results is computed.
FIVEARY_CUTOFF = 8
@specialize.argtype(0)
def _mask_digit(x):
return UDIGIT_MASK(x & MASK)
def _widen_digit(x):
return rffi.cast(LONG_TYPE, x)
def _unsigned_widen_digit(x):
return rffi.cast(ULONG_TYPE, x)
@specialize.argtype(0)
def _store_digit(x):
return rffi.cast(STORE_TYPE, x)
def _load_unsigned_digit(x):
return rffi.cast(UNSIGNED_TYPE, x)
_load_unsigned_digit._always_inline_ = True
NULLDIGIT = _store_digit(0)
ONEDIGIT = _store_digit(1)
NULLDIGITS = [NULLDIGIT]
def _check_digits(l):
for x in l:
assert type(x) is type(NULLDIGIT)
assert UDIGIT_MASK(x) & MASK == UDIGIT_MASK(x)
class InvalidEndiannessError(Exception):
pass
class InvalidSignednessError(Exception):
pass
class MaxIntError(Exception):
pass
class Entry(extregistry.ExtRegistryEntry):
_about_ = _check_digits
def compute_result_annotation(self, s_list):
from rpython.annotator import model as annmodel
assert isinstance(s_list, annmodel.SomeList)
s_DIGIT = self.bookkeeper.valueoftype(type(NULLDIGIT))
assert s_DIGIT.contains(s_list.listdef.listitem.s_value)
def specialize_call(self, hop):
hop.exception_cannot_occur()
def intsign(i):
if i == 0:
return 0
return -1 if i < 0 else 1
class rbigint(object):
"""This is a reimplementation of longs using a list of digits."""
_immutable_ = True
_immutable_fields_ = ["_digits[*]", "_size"]
def __init__(self, digits=NULLDIGITS, sign=0, size=0):
if not we_are_translated():
_check_digits(digits)
make_sure_not_resized(digits)
self._digits = digits
assert size >= 0
self._size = (size or len(digits)) * sign
def get_sign(self):
return intsign(self._size)
def _set_sign(self, sign):
self._size = abs(self._size) * sign
# __eq__ and __ne__ method exist for testing only, they are not RPython!
@not_rpython
def __eq__(self, other):
if not isinstance(other, rbigint):
return NotImplemented
return self.eq(other)
@not_rpython
def __ne__(self, other):
return not (self == other)
@specialize.argtype(1)
def digit(self, x):
"""Return the x'th digit, as an int."""
return self._digits[x]
digit._always_inline_ = True
def widedigit(self, x):
"""Return the x'th digit, as a long long int if needed
to have enough room to contain two digits."""
return _widen_digit(self._digits[x])
widedigit._always_inline_ = True
def uwidedigit(self, x):
"""Return the x'th digit, as a long long int if needed
to have enough room to contain two digits."""
return _unsigned_widen_digit(self._digits[x])
uwidedigit._always_inline_ = True
def udigit(self, x):
"""Return the x'th digit, as an unsigned int."""
return _load_unsigned_digit(self._digits[x])
udigit._always_inline_ = True
@specialize.argtype(2)
def setdigit(self, x, val):
val = _mask_digit(val)
assert val >= 0
self._digits[x] = _store_digit(val)
setdigit._always_inline_ = True
def numdigits(self):
w = abs(self._size)
if not w:
w = 1
assert w > 0
return w
numdigits._always_inline_ = True
@staticmethod
@jit.elidable
def fromint(intval):
# This function is marked as pure, so you must not call it and
# then modify the result.
# for hypothesis testing, we want to be able to set SHIFT to a small
# number to hit edge cases more easily. so use a slower path if SHIFT
# is a nonstandard value
if SHIFT != 63 and SHIFT != 31:
return rbigint.fromrarith_int(intval)
check_regular_int(intval)
if intval < 0:
sign = -1
ival = -r_uint(intval)
carry = ival >> SHIFT
elif intval > 0:
sign = 1
ival = r_uint(intval)
carry = 0
else:
return NULLRBIGINT
if SHIFT != LONG_BIT - 1:
# Means we don't have INT128 on 64bit.
if intval > 0:
carry = ival >> SHIFT
if carry > 0:
carry2 = carry >> SHIFT
else:
carry2 = 0
if carry2:
return rbigint([_store_digit(ival & MASK),
_store_digit(carry & MASK),
_store_digit(carry2)], sign, 3)
if carry:
return rbigint([_store_digit(ival & MASK),
_store_digit(carry)], sign, 2)
else:
return rbigint([_store_digit(ival & MASK)], sign, 1)
@staticmethod
@jit.elidable
def frombool(b):
# You must not call this function and then modify the result.
if b:
return ONERBIGINT
return NULLRBIGINT
@staticmethod
@not_rpython
def fromlong(l):
return rbigint(*args_from_long(l))
@staticmethod
@jit.elidable
def fromfloat(dval):
""" Create a new bigint object from a float """
# This function is not marked as pure because it can raise
if math.isinf(dval):
raise OverflowError("cannot convert float infinity to integer")
if math.isnan(dval):
raise ValueError("cannot convert float NaN to integer")
return rbigint._fromfloat_finite(dval)
@staticmethod
@jit.elidable
def _fromfloat_finite(dval):
sign = 1
if dval < 0.0:
sign = -1
dval = -dval
frac, expo = math.frexp(dval) # dval = frac*2**expo; 0.0 <= frac < 1.0
if expo <= 0:
return NULLRBIGINT
ndig = (expo-1) // SHIFT + 1 # Number of 'digits' in result
v = rbigint([NULLDIGIT] * ndig, sign, ndig)
frac = math.ldexp(frac, (expo-1) % SHIFT + 1)
for i in range(ndig-1, -1, -1):
# use int(int(frac)) as a workaround for a CPython bug:
# with frac == 2147483647.0, int(frac) == 2147483647L
bits = int(int(frac))
v.setdigit(i, bits)
frac -= float(bits)
frac = math.ldexp(frac, SHIFT)
return v
@staticmethod
@jit.elidable
@specialize.argtype(0)
def fromrarith_int(i):
# This function is marked as pure, so you must not call it and
# then modify the result.
return rbigint(*args_from_rarith_int(i))
@staticmethod
@jit.elidable
def fromdecimalstr(s):
# This function is marked as elidable, so you must not call it and
# then modify the result.
return _decimalstr_to_bigint(s)
@staticmethod
@jit.elidable
def fromstr(s, base=0, allow_underscores=False):
"""As string_to_int(), but ignores an optional 'l' or 'L' suffix
and returns an rbigint."""
from rpython.rlib.rstring import NumberStringParser, \
strip_spaces
s = literal = strip_spaces(s) # XXX could get rid of this slice
end = len(s)
if (s.endswith('l') or s.endswith('L')) and base < 22:
# in base 22 and above, 'L' is a valid digit! try: long('L',22)
end -= 1
parser = NumberStringParser(s, literal, base, 'long',
allow_underscores=allow_underscores,
end=end)
return rbigint._from_numberstring_parser(parser)
@staticmethod
def _from_numberstring_parser(parser):
return parse_digit_string(parser)
@staticmethod
@jit.elidable
def frombytes(s, byteorder, signed):
if byteorder not in ('big', 'little'):
raise InvalidEndiannessError()
if not s:
return NULLRBIGINT
if byteorder == 'big':
msb = ord(s[0])
itr = range(len(s)-1, -1, -1)
else:
msb = ord(s[-1])
itr = range(0, len(s))
sign = -1 if msb >= 0x80 and signed else 1
accum = _widen_digit(0)
accumbits = 0
digits = newlist_hint(len(s) * 8 // LONG_BIT + 1)
carry = 1
for i in itr:
c = _widen_digit(ord(s[i]))
if sign == -1:
c = (0xFF ^ c) + carry
carry = c >> 8
c &= 0xFF
accum |= c << accumbits
accumbits += 8
if accumbits >= SHIFT:
digits.append(_store_digit(intmask(accum & MASK)))
accum >>= SHIFT
accumbits -= SHIFT
if accumbits:
digits.append(_store_digit(intmask(accum)))
result = rbigint(digits[:], sign)
result._normalize()
return result
@jit.elidable
def tobytes(self, nbytes, byteorder, signed):
if byteorder not in ('big', 'little'):
raise InvalidEndiannessError()
if not signed and self.get_sign() == -1:
raise InvalidSignednessError()
bswap = byteorder == 'big'
d = _widen_digit(0)
j = 0
imax = self.numdigits()
accum = _widen_digit(0)
accumbits = 0
result = StringBuilder(nbytes)
carry = 1
for i in range(0, imax):
d = self.widedigit(i)
if self.get_sign() == -1:
d = (d ^ MASK) + carry
carry = d >> SHIFT
d &= MASK
accum |= d << accumbits
if i == imax - 1:
# Avoid bogus 0's
s = d ^ MASK if self.get_sign() == -1 else d
while s:
s >>= 1
accumbits += 1
else:
accumbits += SHIFT
while accumbits >= 8:
if j >= nbytes:
raise OverflowError()
j += 1
result.append(chr(accum & 0xFF))
accum >>= 8
accumbits -= 8
if accumbits:
if j >= nbytes:
raise OverflowError()
j += 1
if self.get_sign() == -1:
# Add a sign bit
accum |= (~_widen_digit(0)) << accumbits
result.append(chr(accum & 0xFF))
if j < nbytes:
signbyte = 0xFF if self.get_sign() == -1 else 0
result.append_multiple_char(chr(signbyte), nbytes - j)
digits = result.build()
if j == nbytes and nbytes > 0 and signed:
# If not already set, we cannot contain the sign bit
msb = digits[-1]
if (self.get_sign() == -1) != (ord(msb) >= 0x80):
raise OverflowError()
if bswap:
# Bah, this is very inefficient. At least it's not
# quadratic.
length = len(digits)
if length >= 0:
digits = ''.join([digits[i] for i in range(length-1, -1, -1)])
return digits
@jit.elidable
def toint(self):
"""
Get an integer from a bigint object.
Raises OverflowError if overflow occurs.
"""
if self.numdigits() > MAX_DIGITS_THAT_CAN_FIT_IN_INT:
raise OverflowError
return self._toint_helper()
@jit.elidable
def _toint_helper(self):
x = self._touint_helper()
# Haven't lost any bits so far
if self.get_sign() >= 0:
res = intmask(x)
if res < 0:
raise OverflowError
else:
# Use "-" on the unsigned number, not on the signed number.
# This is needed to produce valid C code.
res = intmask(-x)
if res >= 0:
raise OverflowError
return res
def fits_int(self):
n = self.numdigits()
if n < MAX_DIGITS_THAT_CAN_FIT_IN_INT:
return True
if n > MAX_DIGITS_THAT_CAN_FIT_IN_INT:
return False
try:
x = self._touint_helper()
except OverflowError:
return False
if self.get_sign() >= 0:
res = intmask(x)
return res >= 0
else:
res = intmask(-x)
return res < 0
@jit.elidable
def tolonglong(self):
return _AsLongLong(self)
def tobool(self):
return self.get_sign() != 0
@jit.elidable
def touint(self):
if self.get_sign() == -1:
raise ValueError("cannot convert negative integer to unsigned int")
return self._touint_helper()
@jit.elidable
def _touint_helper(self):
x = r_uint(0)
i = self.numdigits() - 1
while i >= 0:
prev = x
x = (x << SHIFT) + self.udigit(i)
if (x >> SHIFT) != prev:
raise OverflowError("long int too large to convert to unsigned int")
i -= 1
return x
@jit.elidable
def toulonglong(self):
if self.get_sign() == -1:
raise ValueError("cannot convert negative integer to unsigned int")
return _AsULonglong_ignore_sign(self)
@jit.elidable
def uintmask(self):
return _AsUInt_mask(self)
@jit.elidable
def ulonglongmask(self):
"""Return r_ulonglong(self), truncating."""
return _AsULonglong_mask(self)
@jit.elidable
def tofloat(self):
return _AsDouble(self)
@jit.elidable
def format(self, digits, prefix='', suffix='', max_str_digits=0):
# 'digits' is a string whose length is the base to use,
# and where each character is the corresponding digit.
return _format(self, digits, prefix, suffix, max_str_digits)
@jit.elidable
def repr(self):
try:
x = self.toint()
except OverflowError:
return self.format(BASE10, suffix="L")
return str(x) + "L"
@jit.elidable
def str(self, max_str_digits=0):
try:
x = self.toint()
except OverflowError:
return self.format(BASE10, max_str_digits=max_str_digits)
return str(x)
@jit.elidable
def eq(self, other):
if (self.get_sign() != other.get_sign() or
self.numdigits() != other.numdigits()):
return False
i = 0
ld = self.numdigits()
while i < ld:
if self.digit(i) != other.digit(i):
return False
i += 1
return True
@jit.elidable
def int_eq(self, iother):
""" eq with int """
if not int_in_valid_range(iother):
# Fallback to Long.
return self.eq(rbigint.fromint(iother))
if self.numdigits() > 1:
return False
return (self.get_sign() * self.digit(0)) == iother
def ne(self, other):
return not self.eq(other)
def int_ne(self, iother):
return not self.int_eq(iother)
@jit.elidable
def lt(self, other):
selfsign = self.get_sign()
othersign = other.get_sign()
if selfsign > othersign:
return False
if selfsign < othersign:
return True
ld1 = self.numdigits()
ld2 = other.numdigits()
if ld1 > ld2:
if othersign > 0:
return False
else:
return True
elif ld1 < ld2:
if othersign > 0:
return True
else:
return False
i = ld1 - 1
while i >= 0:
d1 = self.digit(i)
d2 = other.digit(i)
if d1 < d2:
if othersign > 0:
return True
else:
return False
elif d1 > d2:
if othersign > 0:
return False
else:
return True
i -= 1
return False
@jit.elidable
def int_lt(self, iother):
""" lt where other is an int """
if not int_in_valid_range(iother):
# Fallback to Long.
return self.lt(rbigint.fromint(iother))
return _x_int_lt(self, iother, False)
def le(self, other):
return not other.lt(self)
def int_le(self, iother):
""" le where iother is an int """
if not int_in_valid_range(iother):
# Fallback to Long.
return self.le(rbigint.fromint(iother))
return _x_int_lt(self, iother, True)
def gt(self, other):
return other.lt(self)
def int_gt(self, iother):
return not self.int_le(iother)
def ge(self, other):
return not self.lt(other)
def int_ge(self, iother):
return not self.int_lt(iother)
@jit.elidable
def hash(self):
return _hash(self)
@jit.elidable
def add(self, other):
selfsign = self.get_sign()
othersign = other.get_sign()
if selfsign == 0:
return other
if othersign == 0:
return self
if selfsign == othersign:
result = _x_add(self, other)
else:
result = _x_sub(other, self)
result._set_sign(result.get_sign() * othersign)
return result
@jit.elidable
def int_add(self, iother):
selfsign = self.get_sign()
if not int_in_valid_range(iother):
# Fallback to long.
return self.add(rbigint.fromint(iother))
elif selfsign == 0:
return rbigint.fromint(iother)
elif iother == 0:
return self
othersign = intsign(iother)
if selfsign == othersign:
result = _x_int_add(self, iother)
else:
result = _x_int_sub(self, iother)
result._set_sign(-result.get_sign())
result._set_sign(result.get_sign() * othersign)
return result
@jit.elidable
def sub(self, other):
selfsign = self.get_sign()
othersign = other.get_sign()
if othersign == 0:
return self
elif selfsign == 0:
return rbigint(other._digits[:other.numdigits()], -othersign, other.numdigits())
elif selfsign == othersign:
result = _x_sub(self, other)
else:
result = _x_add(self, other)
result._set_sign(result.get_sign() * selfsign)
return result
@jit.elidable
def int_sub(self, iother):
selfsign = self.get_sign()
if not int_in_valid_range(iother):
# Fallback to long.
return self.sub(rbigint.fromint(iother))
elif iother == 0:
return self
elif selfsign == 0:
return rbigint.fromint(-iother)
elif selfsign == intsign(iother):
result = _x_int_sub(self, iother)
else:
result = _x_int_add(self, iother)
result._set_sign(result.get_sign() * selfsign)
return result
@jit.elidable
def mul(self, other):
selfsize = self.numdigits()
othersize = other.numdigits()
selfsign = self.get_sign()
othersign = other.get_sign()
if selfsize > othersize:
self, other, selfsize, othersize = other, self, othersize, selfsize
if selfsign == 0 or othersign == 0:
return NULLRBIGINT
if selfsize == 1:
if self._digits[0] == ONEDIGIT:
return rbigint(other._digits[:othersize], selfsign * othersign, othersize)
elif othersize == 1:
res = other.uwidedigit(0) * self.udigit(0)
carry = res >> SHIFT
if carry:
return rbigint([_store_digit(res & MASK), _store_digit(carry)], selfsign * othersign, 2)
else:
return rbigint([_store_digit(res & MASK)], selfsign * othersign, 1)
result = _x_mul(self, other, self.digit(0))
elif USE_KARATSUBA:
if self is other:
i = KARATSUBA_SQUARE_CUTOFF
else:
i = KARATSUBA_CUTOFF
if selfsize <= i:
result = _x_mul(self, other)
else:
result = _k_mul(self, other)
else:
result = _x_mul(self, other)
result._set_sign(selfsign * othersign)
return result
@jit.elidable
def int_mul(self, iother):
if not int_in_valid_range(iother):
# Fallback to long.
return self.mul(rbigint.fromint(iother))
selfsign = self.get_sign()
if selfsign == 0 or iother == 0:
return NULLRBIGINT
asize = self.numdigits()
digit = abs(iother)
othersign = intsign(iother)
if digit == 1:
if othersign == 1:
return self
return rbigint(self._digits[:asize], selfsign * othersign, asize)
elif asize == 1:
udigit = r_uint(digit)
res = self.uwidedigit(0) * udigit
carry = res >> SHIFT
if carry:
return rbigint([_store_digit(res & MASK), _store_digit(carry)], selfsign * othersign, 2)
else:
return rbigint([_store_digit(res & MASK)], selfsign * othersign, 1)
elif digit & (digit - 1) == 0:
result = self.lqshift(ptwotable[digit])
else:
result = _muladd1(self, digit)
result._set_sign(selfsign * othersign)
return result
@staticmethod
@jit.elidable
def mul_int_int_bigint_result(iself, iother):
if not SUPPORT_INT128 or SHIFT != 63 or not int_in_valid_range(iself):
return rbigint.fromint(iself).int_mul(iother)
if iself == 0 or iother == 0:
return NULLRBIGINT
selfsign = intsign(iself)
othersign = intsign(iother)
otherdigit = r_uint(iother)
if iother < 0: # can use abs because of minint
otherdigit = -otherdigit
res = _unsigned_widen_digit(abs(iself)) * otherdigit
carry = res >> SHIFT
if carry:
return rbigint([_store_digit(res & MASK), _store_digit(carry)], selfsign * othersign, 2)
else:
return rbigint([_store_digit(res & MASK)], selfsign * othersign, 1)
@jit.elidable
def truediv(self, other):
div = _bigint_true_divide(self, other)
return div
def floordiv(self, other):
div, mod = self.divmod(other)
return div
def div(self, other):
return self.floordiv(other)
@jit.elidable
def int_floordiv(self, iother):
if not int_in_valid_range(iother):
# Fallback to long.
return self.floordiv(rbigint.fromint(iother))
if iother == 0:
raise ZeroDivisionError("long division by zero")
digit = abs(iother)
assert digit > 0
selfsign = self.get_sign()
if selfsign == 1 and iother > 0:
if digit == 1:
return self
elif digit & (digit - 1) == 0:
return self.rqshift(ptwotable[digit])
div, mod = _divrem1(self, digit)
othersign = intsign(iother)
if mod != 0 and selfsign * othersign == -1:
if div.get_sign() == 0:
return ONENEGATIVERBIGINT
div = div.int_add(1)
div._set_sign(selfsign * othersign)
div._normalize()
return div
def int_div(self, iother):
return self.int_floordiv(iother)
def mod(self, other):
div, mod = self.divmod(other)
return mod
@jit.elidable
def int_mod(self, iother):
if iother == 0:
raise ZeroDivisionError("long division or modulo by zero")
selfsign = self.get_sign()
if selfsign == 0:
return NULLRBIGINT
elif not int_in_valid_range(iother):
# Fallback to long.
return self.mod(rbigint.fromint(iother))
if 1: # preserve indentation to preserve history
digit = abs(iother)
if digit == 1:
return NULLRBIGINT
elif digit == 2:
modm = self.digit(0) & 1
if modm:
return ONENEGATIVERBIGINT if iother < 0 else ONERBIGINT
return NULLRBIGINT
elif digit & (digit - 1) == 0:
mod = self.int_and_(digit - 1)
else:
rem = _int_rem_core(self, digit)
if rem == 0:
return NULLRBIGINT
mod = rbigint([rem], -1 if selfsign < 0 else 1, 1)
if mod.get_sign() * intsign(iother) == -1:
mod = mod.int_add(iother)
return mod
@jit.elidable
def int_mod_int_result(self, iother):
selfsign = self.get_sign()
if iother == 0:
raise ZeroDivisionError("long division or modulo by zero")
if selfsign == 0:
return 0
elif not int_in_valid_range(iother):
# Fallback to long.
return self.mod(rbigint.fromint(iother)).toint() # cannot raise
assert iother != -sys.maxint-1 # covered by int_in_valid_range above
digit = abs(iother)
if digit == 1:
return 0
elif digit == 2:
modm = self.digit(0) & 1
if modm:
return -1 if iother < 0 else 1
return 0
elif digit & (digit - 1) == 0:
mod = self.int_and_(digit - 1).toint() # XXX improve
else:
mod = _int_rem_core(self, digit) * selfsign
if intsign(mod) * intsign(iother) == -1:
mod = mod + iother
return mod
@jit.elidable
def divmod(self, other):
"""
The / and % operators are now defined in terms of divmod().
The expression a mod b has the value a - b*floor(a/b).
The _divrem function gives the remainder after division of
|a| by |b|, with the sign of a. This is also expressed
as a - b*trunc(a/b), if trunc truncates towards zero.
Some examples:
a b a rem b a mod b
13 10 3 3
-13 10 -3 7
13 -10 3 -7
-13 -10 -3 -3
So, to get from rem to mod, we have to add b if a and b
have different signs. We then subtract one from the 'div'
part of the outcome to keep the invariant intact.
"""
selfsign = self.get_sign()
othersign = other.get_sign()
if othersign == 0:
raise ZeroDivisionError("long division or modulo by zero")
if selfsign == 0:
return TWO_NULLRBIGINTS
if other.numdigits() == 1 and not (-1 == othersign != selfsign):
otherint = other.digit(0) * othersign
assert int_in_valid_range(otherint)
return self.int_divmod(otherint)
if self.numdigits() > 1.2 * other.numdigits() and \
other.numdigits() > HOLDER.DIV_LIMIT * 2: # * 2 to offset setup cost
res = divmod_big(self, other)
# be paranoid: keep the assert here for a bit
div, mod = res
assert div.mul(other).add(mod).eq(self)
return res
return self._divmod_small(other)
def _divmod_small(self, other):
div, mod = _divrem(self, other)
if mod.get_sign() * other.get_sign() == -1:
mod = mod.add(other)
if div.get_sign() == 0:
return ONENEGATIVERBIGINT, mod
div = div.int_sub(1)
return div, mod
@jit.elidable
def int_divmod(self, iother):
""" Divmod with int """
if iother == 0:
raise ZeroDivisionError("long division or modulo by zero")
selfsign = self.get_sign()
othersign = intsign(iother)
if not int_in_valid_range(iother) or (othersign == -1 and selfsign != othersign):
# Just fallback.
return self.divmod(rbigint.fromint(iother))
digit = abs(iother)
assert digit > 0
div, mod = _divrem1(self, digit)
# _divrem1 doesn't fix the sign
if div._size == 0:
assert div.get_sign() == 0
else:
div._set_sign(selfsign * othersign)
if selfsign < 0:
mod = -mod
if mod and selfsign * othersign == -1:
mod += iother
if div.get_sign() == 0:
div = ONENEGATIVERBIGINT
else:
div = div.int_sub(1)
mod = rbigint.fromint(mod)
return div, mod
@jit.elidable
def pow(self, other, modulus=None):
selfsign = self.get_sign()
othersign = other.get_sign()
negativeOutput = False # if x<0 return negative output
# 5-ary values. If the exponent is large enough, table is
# precomputed so that table[i] == self**i % modulus for i in range(32).
# python translation: the table is computed when needed.
if othersign < 0: # if exponent is negative
if modulus is not None:
raise TypeError(
"pow() 2nd argument "
"cannot be negative when 3rd argument specified")
raise ValueError("bigint pow() too negative")
size_b = UDIGIT_TYPE(other.numdigits())
if modulus is not None:
modulussign = modulus.get_sign()
if modulussign == 0:
raise ValueError("pow() 3rd argument cannot be 0")
if modulussign < 0:
negativeOutput = True
modulus = modulus.neg()
# if modulus == 1:
# return 0
if modulus.numdigits() == 1 and modulus._digits[0] == ONEDIGIT:
return NULLRBIGINT
# Reduce base by modulus in some cases:
# 1. If base < 0. Forcing the base non-neg makes things easier.
# 2. If base is obviously larger than the modulus. The "small
# exponent" case later can multiply directly by base repeatedly,
# while the "large exponent" case multiplies directly by base 31
# times. It can be unboundedly faster to multiply by
# base % modulus instead.
# We could _always_ do this reduction, but mod() isn't cheap,
# so we only do it when it buys something.
if selfsign < 0 or self.numdigits() > modulus.numdigits():
self = self.mod(modulus)
elif othersign == 0:
return ONERBIGINT
elif selfsign == 0:
return NULLRBIGINT
elif size_b == 1:
if other._digits[0] == ONEDIGIT:
return self
elif self.numdigits() == 1 and modulus is None:
adigit = self.digit(0)
digit = other.digit(0)
if adigit == 1:
if selfsign == -1 and digit % 2:
return ONENEGATIVERBIGINT
return ONERBIGINT
elif adigit & (adigit - 1) == 0:
ret = self.lshift(((digit-1)*(ptwotable[adigit]-1)) + digit-1)
if selfsign == -1 and not digit % 2:
ret._set_sign(1)
return ret
# At this point self, other, and modulus are guaranteed non-negative UNLESS
# modulus is NULL, in which case self may be negative. */
z = ONERBIGINT
# python adaptation: moved macros REDUCE(X) and MULT(X, Y, result)
# into helper function result = _help_mult(x, y, c)
if size_b <= FIVEARY_CUTOFF:
# Left-to-right binary exponentiation (HAC Algorithm 14.79)
# http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
while size_b > 0:
size_b -= 1
bi = other.digit(size_b)
j = 1 << (SHIFT-1)
while j != 0:
z = _help_mult(z, z, modulus)
if bi & j:
z = _help_mult(z, self, modulus)
j >>= 1
else:
# Left-to-right 5-ary exponentiation (HAC Algorithm 14.82)
# This is only useful in the case where modulus != None.
# z still holds 1L
table = [z] * 32
table[0] = z
for i in range(1, 32):
table[i] = _help_mult(table[i-1], self, modulus)
# Note that here SHIFT is not a multiple of 5. The difficulty
# is to extract 5 bits at a time from 'other', starting from the
# most significant digits, so that at the end of the algorithm
# it falls exactly to zero.
# m = max number of bits = i * SHIFT
# m+ = m rounded up to the next multiple of 5
# j = (m+) % SHIFT = (m+) - (i * SHIFT)
# (computed without doing "i * SHIFT", which might overflow)
j = size_b % 5
j = _jmapping[j]
if not we_are_translated():
assert j == (size_b*SHIFT+4)//5*5 - size_b*SHIFT
#
accum = r_uint(0)
while True:
j -= 5
if j >= 0:
index = (accum >> j) & 0x1f
else:
# 'accum' does not have enough digit.
# must get the next digit from 'other' in order to complete
if size_b == 0:
break # Done
size_b -= 1
assert size_b >= 0
bi = other.udigit(size_b)
index = ((accum << (-j)) | (bi >> (j+SHIFT))) & 0x1f
accum = bi
j += SHIFT
#
for k in range(5):
z = _help_mult(z, z, modulus)
if index:
z = _help_mult(z, table[index], modulus)
#
assert j == -5
if negativeOutput and z.get_sign() != 0:
z = z.sub(modulus)
return z
@jit.elidable
def int_pow(self, iother, modulus=None):
negativeOutput = False # if x<0 return negative output
# 5-ary values. If the exponent is large enough, table is
# precomputed so that table[i] == self**i % modulus for i in range(32).
# python translation: the table is computed when needed.
if iother < 0: # if exponent is negative
if modulus is not None:
raise TypeError(
"pow() 2nd argument "
"cannot be negative when 3rd argument specified")
raise ValueError("bigint pow() too negative")
selfsign = self.get_sign()
assert iother >= 0
if modulus is not None:
modulussign = modulus.get_sign()
if modulussign == 0:
raise ValueError("pow() 3rd argument cannot be 0")
if modulussign < 0:
negativeOutput = True
modulus = modulus.neg()
# if modulus == 1:
# return 0
if modulus.numdigits() == 1 and modulus._digits[0] == ONEDIGIT:
return NULLRBIGINT
# Reduce base by modulus in some cases:
# 1. If base < 0. Forcing the base non-neg makes things easier.
# 2. If base is obviously larger than the modulus. The "small
# exponent" case later can multiply directly by base repeatedly,
# while the "large exponent" case multiplies directly by base 31
# times. It can be unboundedly faster to multiply by
# base % modulus instead.
# We could _always_ do this reduction, but mod() isn't cheap,
# so we only do it when it buys something.
if selfsign < 0 or self.numdigits() > modulus.numdigits():
self = self.mod(modulus)
elif iother == 0:
return ONERBIGINT
elif selfsign == 0:
return NULLRBIGINT
elif iother == 1:
return self
elif self.numdigits() == 1:
adigit = self.digit(0)
if adigit == 1:
if selfsign == -1 and iother % 2:
return ONENEGATIVERBIGINT
return ONERBIGINT
elif adigit & (adigit - 1) == 0:
ret = self.lshift(((iother-1)*(ptwotable[adigit]-1)) + iother-1)
if selfsign == -1 and not iother % 2:
ret._set_sign(1)
return ret
# At this point self, iother, and modulus are guaranteed non-negative UNLESS
# modulus is NULL, in which case self may be negative. */
z = ONERBIGINT
# Left-to-right binary exponentiation (HAC Algorithm 14.79)
# http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
j = 1 << (LONG_BIT-2)
while j != 0:
z = _help_mult(z, z, modulus)
if iother & j:
z = _help_mult(z, self, modulus)
j >>= 1
if negativeOutput and z.get_sign() != 0:
z = z.sub(modulus)
return z
@jit.elidable
def neg(self):
return rbigint(self._digits, -self.get_sign(), self.numdigits())
@jit.elidable
def abs(self):
selfsign = self.get_sign()
if selfsign != -1:
return self
return rbigint(self._digits, abs(selfsign), self.numdigits())
@jit.elidable
def invert(self): #Implement ~x as -(x + 1)
if self.get_sign() == 0:
return ONENEGATIVERBIGINT
ret = self.int_add(1)
ret._set_sign(-ret.get_sign())
return ret
@jit.elidable
def lshift(self, int_other):
selfsign = self.get_sign()
if int_other < 0:
raise ValueError("negative shift count")
elif int_other == 0 or selfsign == 0:
return self
# wordshift, remshift = divmod(int_other, SHIFT)
wordshift = int_other // SHIFT
remshift = int_other - wordshift * SHIFT
if not remshift:
# So we can avoid problems with eq, AND avoid the need for normalize.
return rbigint([NULLDIGIT] * wordshift + self._digits, selfsign, self.numdigits() + wordshift)
oldsize = self.numdigits()
newsize = oldsize + wordshift + 1
z = rbigint([NULLDIGIT] * newsize, selfsign, newsize)
accum = _unsigned_widen_digit(0)
j = 0
while j < oldsize:
accum += self.uwidedigit(j) << remshift
z.setdigit(wordshift, accum)
accum >>= SHIFT
wordshift += 1
j += 1
newsize -= 1
assert newsize >= 0
z.setdigit(newsize, accum)
z._normalize()
return z
lshift._always_inline_ = True # It's so fast that it's always beneficial.
@jit.elidable
def lqshift(self, int_other):
" A quicker one with much less checks, int_other is valid and for the most part constant."
assert int_other > 0
oldsize = self.numdigits()
selfsign = self.get_sign()
z = rbigint([NULLDIGIT] * (oldsize + 1), selfsign, (oldsize + 1))
accum = _unsigned_widen_digit(0)
i = 0
while i < oldsize:
accum += self.uwidedigit(i) << int_other
z.setdigit(i, accum)
accum >>= SHIFT
i += 1
z.setdigit(oldsize, accum)
z._normalize()
return z
lqshift._always_inline_ = True # It's so fast that it's always beneficial.
@jit.elidable
def rshift(self, int_other, dont_invert=False):
if int_other < 0:
raise ValueError("negative shift count")
elif int_other == 0:
return self
selfsign = self.get_sign()
if selfsign == -1 and not dont_invert:
a = self.invert().rshift(int_other)
return a.invert()
wordshift = int_other / SHIFT
newsize = self.numdigits() - wordshift
if newsize <= 0:
return NULLRBIGINT
loshift = int_other % SHIFT
hishift = SHIFT - loshift
z = rbigint([NULLDIGIT] * newsize, selfsign, newsize)
i = 0
while i < newsize:
newdigit = (self.digit(wordshift) >> loshift)
if i+1 < newsize:
newdigit |= (self.digit(wordshift+1) << hishift)
z.setdigit(i, newdigit)
i += 1
wordshift += 1
z._normalize()
return z
rshift._always_inline_ = 'try' # It's so fast that it's always benefitial.
@jit.elidable
def rqshift(self, int_other):
wordshift = int_other / SHIFT
loshift = int_other % SHIFT
newsize = self.numdigits() - wordshift
if newsize <= 0:
return NULLRBIGINT
hishift = SHIFT - loshift
selfsign = self.get_sign()
z = rbigint([NULLDIGIT] * newsize, selfsign, newsize)
i = 0
while i < newsize:
digit = self.udigit(wordshift)
newdigit = (digit >> loshift)
if i+1 < newsize:
newdigit |= (self.udigit(wordshift+1) << hishift)
z.setdigit(i, newdigit)
i += 1
wordshift += 1
z._normalize()
return z
rshift._always_inline_ = 'try' # It's so fast that it's always beneficial.
@jit.elidable
def abs_rshift_and_mask(self, bigshiftcount, mask):
assert isinstance(bigshiftcount, r_ulonglong)
assert mask >= 0
wordshift = bigshiftcount / SHIFT
numdigits = self.numdigits()
if wordshift >= numdigits:
return 0
wordshift = intmask(wordshift)
loshift = intmask(intmask(bigshiftcount) - intmask(wordshift * SHIFT))
lastdigit = self.digit(wordshift) >> loshift
if mask > (MASK >> loshift) and wordshift + 1 < numdigits:
hishift = SHIFT - loshift
lastdigit |= self.digit(wordshift+1) << hishift
if SHIFT != LONG_BIT - 1:
# Means we don't have INT128 on 64bit.
if mask > (MASK << (SHIFT - loshift)) and wordshift + 2 < numdigits:
hishift = 2*SHIFT - loshift
lastdigit |= self.digit(wordshift+2) << hishift
return lastdigit & mask
@staticmethod
def from_list_n_bits(list, nbits):
if len(list) == 0:
return NULLRBIGINT
if nbits == SHIFT:
z = rbigint(list, 1)
else:
if not (1 <= nbits < SHIFT):
raise ValueError
lllength = (r_ulonglong(len(list)) * nbits) // SHIFT
length = intmask(lllength) + 1
z = rbigint([NULLDIGIT] * length, 1)
out = 0
i = 0
accum = 0
for input in list:
accum |= (input << i)
original_i = i
i += nbits
if i > SHIFT:
z.setdigit(out, accum)
out += 1
accum = input >> (SHIFT - original_i)
i -= SHIFT
assert out < length
z.setdigit(out, accum)
z._normalize()
return z
@jit.elidable
def and_(self, other):
return _bitwise(self, '&', other)
@jit.elidable
def int_and_(self, iother):
return _int_bitwise(self, '&', iother)
@jit.elidable
def xor(self, other):
return _bitwise(self, '^', other)
@jit.elidable
def int_xor(self, iother):
return _int_bitwise(self, '^', iother)
@jit.elidable
def or_(self, other):
return _bitwise(self, '|', other)
@jit.elidable
def int_or_(self, iother):
return _int_bitwise(self, '|', iother)
@jit.elidable
def oct(self):
if self.get_sign() == 0:
return '0L'
else:
return _format(self, BASE8, '0', 'L')
@jit.elidable
def hex(self):
return _format(self, BASE16, '0x', 'L')
@jit.elidable
def log(self, base):
# base is supposed to be positive or 0.0, which means we use e
if base == 10.0:
return _loghelper(math.log10, self)
if base == 2.0:
from rpython.rlib import rfloat
return _loghelper(rfloat.log2, self)
ret = _loghelper(math.log, self)
if base != 0.0:
ret /= math.log(base)
return ret
@not_rpython
def tolong(self):
l = 0L
digits = list(self._digits)
digits.reverse()
for d in digits:
l = l << SHIFT
l += intmask(d)
result = l * self.get_sign()
if result == 0:
assert self.get_sign() == 0
return result
def _normalize(self):
i = self.numdigits()
while i > 1 and self._digits[i - 1] == NULLDIGIT:
i -= 1
assert i > 0
self._size = i * self.get_sign()
if i == 1 and self._digits[0] == NULLDIGIT:
self._size = 0
self._digits = NULLDIGITS
_normalize._always_inline_ = True
@jit.elidable
def bit_length(self):
i = self.numdigits()
if i == 1 and self._digits[0] == NULLDIGIT:
return 0
msd = self.digit(i - 1)
msd_bits = bits_in_digit(msd)
# yes, this can overflow: a huge number which fits 3 gigabytes of
# memory has around 24 gigabits!
bits = ovfcheck((i-1) * SHIFT) + msd_bits
return bits
@jit.elidable
def bit_count(self):
res = 0
for i in range(self.numdigits()):
res = ovfcheck(res + bit_count_digit(self.digit(i)))
return res
def gcd(self, other):
""" Compute the (always positive) greatest common divisor of self and
other """
return gcd_lehmer(self.abs(), other.abs())
def isqrt(self):
""" Compute the integer square root of self """
if self.int_lt(0):
raise ValueError("isqrt() argument must be nonnegative")
if self.int_eq(0):
return NULLRBIGINT
c = (self.bit_length() - 1) // 2
a = ONERBIGINT
d = 0
for s in range(bits_in_digit(_store_digit(c)) - 1, -1, -1):
# Loop invariant: (a-1)**2 < (self >> 2*(c - d)) < (a+1)**2
e = d
d = c >> s
a = a.lshift(d - e - 1).add(self.rshift(2*c - e - d + 1).floordiv(a))
return a.int_sub(a.mul(a).gt(self))
def __repr__(self):
return "<rbigint digits=%s, sign=%s, size=%d, len=%d, %s>" % (self._digits,
self.get_sign(), self.numdigits(), len(self._digits),
self.tolong())
ONERBIGINT = rbigint([ONEDIGIT], 1, 1)
ONENEGATIVERBIGINT = rbigint([ONEDIGIT], -1, 1)
NULLRBIGINT = rbigint()
TWO_NULLRBIGINTS = (NULLRBIGINT, NULLRBIGINT)
_jmapping = [(5 * SHIFT) % 5,
(4 * SHIFT) % 5,
(3 * SHIFT) % 5,
(2 * SHIFT) % 5,
(1 * SHIFT) % 5]
#_________________________________________________________________
# Helper Functions
def _help_mult(x, y, c):
"""
Multiply two values, then reduce the result:
result = X*Y % c. If c is None, skip the mod.
"""
res = x.mul(y)
# Perform a modular reduction, X = X % c, but leave X alone if c
# is NULL.
if c is not None:
res = res.mod(c)
return res
@specialize.argtype(0)
def digits_from_nonneg_long(l):
digits = []
while True:
digits.append(_store_digit(_mask_digit(l & MASK)))
l = l >> SHIFT
if not l:
return digits[:] # to make it non-resizable
@specialize.argtype(0)
def digits_for_most_neg_long(l):
# This helper only works if 'l' is the most negative integer of its
# type, which in base 2 looks like: 1000000..0000
digits = []
while _mask_digit(l) == 0:
digits.append(NULLDIGIT)
l = l >> SHIFT
# now 'l' looks like: ...111100000
# turn it into: ...000100000
# to drop the extra unwanted 1's introduced by the signed right shift
l = -intmask(l)
assert l & MASK == l
digits.append(_store_digit(l))
return digits[:] # to make it non-resizable
@specialize.argtype(0)
def args_from_rarith_int1(x):
if x > 0:
return digits_from_nonneg_long(x), 1
elif x == 0:
return NULLDIGITS, 0
elif x != most_neg_value_of_same_type(x):
# normal case
return digits_from_nonneg_long(-x), -1
else:
# the most negative integer! hacks needed...
return digits_for_most_neg_long(x), -1
@specialize.argtype(0)
def args_from_rarith_int(x):
return args_from_rarith_int1(widen(x))
# ^^^ specialized by the precise type of 'x', which is typically a r_xxx
# instance from rlib.rarithmetic
@not_rpython
def args_from_long(x):
if x >= 0:
if x == 0:
return NULLDIGITS, 0
else:
return digits_from_nonneg_long(x), 1
else:
return digits_from_nonneg_long(-x), -1
def _x_add(a, b):
""" Add the absolute values of two bigint integers. """
size_a = a.numdigits()
size_b = b.numdigits()
# Ensure a is the larger of the two:
if size_a < size_b:
a, b = b, a
size_a, size_b = size_b, size_a
z = rbigint([NULLDIGIT] * (size_a + 1), 1)
i = UDIGIT_TYPE(0)
carry = UDIGIT_TYPE(0)
while i < size_b:
carry += a.udigit(i) + b.udigit(i)
z.setdigit(i, carry)
carry >>= SHIFT
i += 1
while i < size_a:
carry += a.udigit(i)
z.setdigit(i, carry)
carry >>= SHIFT
i += 1
z.setdigit(i, carry)
z._normalize()
return z
def _x_int_add(a, b):
""" Add the absolute values of one bigint and one integer. """
size_a = a.numdigits()
z = rbigint([NULLDIGIT] * (size_a + 1), 1)
i = UDIGIT_TYPE(1)
carry = a.udigit(0) + abs(b)
z.setdigit(0, carry)
carry >>= SHIFT
while i < size_a:
carry += a.udigit(i)
z.setdigit(i, carry)
carry >>= SHIFT
i += 1
z.setdigit(i, carry)
z._normalize()
return z
def _x_sub(a, b):
""" Subtract the absolute values of two integers. """
size_a = a.numdigits()
size_b = b.numdigits()
sign = 1
# Ensure a is the larger of the two:
if size_a < size_b:
sign = -1
a, b = b, a
size_a, size_b = size_b, size_a
elif size_a == size_b:
# Find highest digit where a and b differ:
i = size_a - 1
while i >= 0 and a.digit(i) == b.digit(i):
i -= 1
if i < 0:
return NULLRBIGINT
if a.digit(i) < b.digit(i):
sign = -1
a, b = b, a
size_a = size_b = i+1
z = rbigint([NULLDIGIT] * size_a, sign, size_a)
borrow = UDIGIT_TYPE(0)
i = _load_unsigned_digit(0)
while i < size_b:
# The following assumes unsigned arithmetic
# works modulo 2**N for some N>SHIFT.
borrow = a.udigit(i) - b.udigit(i) - borrow
z.setdigit(i, borrow)
borrow >>= SHIFT
borrow &= 1 # Keep only one sign bit
i += 1
while i < size_a:
borrow = a.udigit(i) - borrow
z.setdigit(i, borrow)
borrow >>= SHIFT
borrow &= 1
i += 1
assert borrow == 0
z._normalize()
return z
def _x_int_sub(a, b):
""" Subtract the absolute values of two integers. """
size_a = a.numdigits()
bdigit = abs(b)
if size_a == 1:
# Find highest digit where a and b differ:
adigit = a.digit(0)
if adigit == bdigit:
return NULLRBIGINT
return rbigint.fromint(adigit - bdigit)
z = rbigint([NULLDIGIT] * size_a, 1, size_a)
i = _load_unsigned_digit(1)
# The following assumes unsigned arithmetic
# works modulo 2**N for some N>SHIFT.
borrow = a.udigit(0) - bdigit
z.setdigit(0, borrow)
borrow >>= SHIFT
borrow &= 1 # Keep only one sign bit
while i < size_a:
borrow = a.udigit(i) - borrow
z.setdigit(i, borrow)
borrow >>= SHIFT
borrow &= 1
i += 1
assert borrow == 0
z._normalize()
return z
# A neat little table of power of twos.
ptwotable = {}
for x in range(SHIFT-1):
ptwotable[r_longlong(2 << x)] = x+1
ptwotable[r_longlong(-2 << x)] = x+1
def _x_mul(a, b, digit=0):
"""
Grade school multiplication, ignoring the signs.
Returns the absolute value of the product, or None if error.
"""
size_a = a.numdigits()
size_b = b.numdigits()
if a is b:
# Efficient squaring per HAC, Algorithm 14.16:
# http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
# Gives slightly less than a 2x speedup when a == b,
# via exploiting that each entry in the multiplication
# pyramid appears twice (except for the size_a squares).
z = rbigint([NULLDIGIT] * (size_a + size_b), 1)
i = UDIGIT_TYPE(0)
while i < size_a:
f = a.uwidedigit(i)
pz = i << 1
pa = i + 1
carry = z.uwidedigit(pz) + f * f
z.setdigit(pz, carry)
pz += 1
carry >>= SHIFT
assert carry <= MASK
# Now f is added in twice in each column of the
# pyramid it appears. Same as adding f<<1 once.
f <<= 1
while pa < size_a:
carry += z.uwidedigit(pz) + a.uwidedigit(pa) * f
pa += 1
z.setdigit(pz, carry)
pz += 1
carry >>= SHIFT
if carry:
carry += z.udigit(pz)
z.setdigit(pz, carry)
pz += 1
carry >>= SHIFT
if carry:
z.setdigit(pz, z.udigit(pz) + carry)
assert (carry >> SHIFT) == 0
i += 1
z._normalize()
return z
elif digit:
if digit & (digit - 1) == 0:
return b.lqshift(ptwotable[digit])
# Even if it's not power of two it can still be useful.
return _muladd1(b, digit)
# a is not b
# use the following identity to reduce the number of operations
# a * b = a_0*b_0 + sum_{i=1}^n(a_0*b_i + a_1*b_{i-1}) + a_1*b_n
z = rbigint([NULLDIGIT] * (size_a + size_b), 1)
i = UDIGIT_TYPE(0)
size_a1 = UDIGIT_TYPE(size_a - 1)
size_b1 = UDIGIT_TYPE(size_b - 1)
while i < size_a1:
f0 = a.uwidedigit(i)
f1 = a.uwidedigit(i + 1)
pz = i
carry = z.uwidedigit(pz) + b.uwidedigit(0) * f0
z.setdigit(pz, carry)
pz += 1
carry >>= SHIFT
j = UDIGIT_TYPE(0)
while j < size_b1:
# this operation does not overflow using
# SHIFT = (LONG_BIT // 2) - 1 = B - 1; in fact before it
# carry and z.widedigit(pz) are less than 2**(B - 1);
# b.widedigit(j + 1) * f0 < (2**(B-1) - 1)**2; so
# carry + z.widedigit(pz) + b.widedigit(j + 1) * f0 +
# b.widedigit(j) * f1 < 2**(2*B - 1) - 2**B < 2**LONG)BIT - 1
carry += z.uwidedigit(pz) + b.uwidedigit(j + 1) * f0 + \
b.uwidedigit(j) * f1
z.setdigit(pz, carry)
pz += 1
carry >>= SHIFT
j += 1
# carry < 2**(B + 1) - 2
carry += z.uwidedigit(pz) + b.uwidedigit(size_b1) * f1
z.setdigit(pz, carry)
pz += 1
carry >>= SHIFT
# carry < 4
if carry:
z.setdigit(pz, carry)
assert (carry >> SHIFT) == 0
i += 2
if size_a & 1:
pz = size_a1
f = a.uwidedigit(pz)
pb = 0
carry = _unsigned_widen_digit(0)
while pb < size_b:
carry += z.uwidedigit(pz) + b.uwidedigit(pb) * f
pb += 1
z.setdigit(pz, carry)
pz += 1
carry >>= SHIFT
if carry:
z.setdigit(pz, z.udigit(pz) + carry)
z._normalize()
return z
def _kmul_split(n, size):
"""
A helper for Karatsuba multiplication (k_mul).
Takes a bigint "n" and an integer "size" representing the place to
split, and sets low and high such that abs(n) == (high << size) + low,
viewing the shift as being by digits. The sign bit is ignored, and
the return values are >= 0.
"""
size_n = n.numdigits()
size_lo = min(size_n, size)
# We use "or" her to avoid having a check where list can be empty in _normalize.
lo = rbigint(n._digits[:size_lo] or NULLDIGITS, 1)
hi = rbigint(n._digits[size_lo:size_n] or NULLDIGITS, 1)
lo._normalize()
hi._normalize()
return hi, lo
def _k_mul(a, b):
"""
Karatsuba multiplication. Ignores the input signs, and returns the
absolute value of the product (or raises if error).
See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295).
"""
asize = a.numdigits()
bsize = b.numdigits()
# (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl
# Let k = (ah+al)*(bh+bl) = ah*bl + al*bh + ah*bh + al*bl
# Then the original product is
# ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl
# By picking X to be a power of 2, "*X" is just shifting, and it's
# been reduced to 3 multiplies on numbers half the size.
# allocate result for both paths, asize + bsize is always enough
ret = rbigint([NULLDIGIT] * (asize + bsize), 1)
# Split a & b into hi & lo pieces.
shift = bsize >> 1
bh, bl = _kmul_split(b, shift)
if a is b:
ah = bh
al = bl
elif asize <= shift:
# a is more than 2x smaller than b. it's important that we still use
# .mul to get karatsuba for sub-parts. the computation is just:
# a*(bh*X+bl) = a*bh*X + a*bl
# multiply lower bits, copy into result
t1 = a.mul(bl)
for i in range(t1.numdigits()):
ret._digits[i] = t1._digits[i]
t2 = a.mul(bh)
i = ret.numdigits() - shift # digits after shift
carry = _v_iadd(ret, shift, i, t2, t2.numdigits())
ret._normalize()
return ret
else:
ah, al = _kmul_split(a, shift)
# The plan:
# 1. Allocate result space (asize + bsize digits: that's always
# enough).
# 2. Compute ah*bh, and copy into result at 2*shift.
# 3. Compute al*bl, and copy into result at 0. Note that this
# can't overlap with #2.
# 4. Subtract al*bl from the result, starting at shift. This may
# underflow (borrow out of the high digit), but we don't care:
# we're effectively doing unsigned arithmetic mod
# BASE**(sizea + sizeb), and so long as the *final* result fits,
# borrows and carries out of the high digit can be ignored.
# 5. Subtract ah*bh from the result, starting at shift.
# 6. Compute (ah+al)*(bh+bl), and add it into the result starting
# at shift.
# 1. Allocate result space. (done, see above)
# 2. t1 <- ah*bh, and copy into high digits of result.
t1 = ah.mul(bh)
assert t1.get_sign() >= 0
assert 2*shift + t1.numdigits() <= ret.numdigits()
for i in range(t1.numdigits()):
ret._digits[2*shift + i] = t1._digits[i]
# 3. t2 <- al*bl, and copy into the low digits.
t2 = al.mul(bl)
assert t2.get_sign() >= 0
assert t2.numdigits() <= 2*shift # no overlap with high digits
for i in range(t2.numdigits()):
ret._digits[i] = t2._digits[i]
# 4 & 5. Subtract ah*bh (t1) and al*bl (t2). We do al*bl first
# because it's fresher in cache.
i = ret.numdigits() - shift # # digits after shift
_v_isub(ret, shift, i, t2, t2.numdigits())
_v_isub(ret, shift, i, t1, t1.numdigits())
# 6. t3 <- (ah+al)(bh+bl), and add into result.
t1 = _x_add(ah, al)
if a is b:
t2 = t1
else:
t2 = _x_add(bh, bl)
t3 = t1.mul(t2)
assert t3.get_sign() >= 0
# Add t3. It's not obvious why we can't run out of room here.
# See the (*) comment after this function.
_v_iadd(ret, shift, i, t3, t3.numdigits())
ret._normalize()
return ret
""" (*) Why adding t3 can't "run out of room" above.
Let f(x) mean the floor of x and c(x) mean the ceiling of x. Some facts
to start with:
1. For any integer i, i = c(i/2) + f(i/2). In particular,
bsize = c(bsize/2) + f(bsize/2).
2. shift = f(bsize/2)
3. asize <= bsize
4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this
routine, so asize > bsize/2 >= f(bsize/2) in this routine.
We allocated asize + bsize result digits, and add t3 into them at an offset
of shift. This leaves asize+bsize-shift allocated digit positions for t3
to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) =
asize + c(bsize/2) available digit positions.
bh has c(bsize/2) digits, and bl at most f(size/2) digits. So bh+hl has
at most c(bsize/2) digits + 1 bit.
If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2)
digits, and al has at most f(bsize/2) digits in any case. So ah+al has at
most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit.
The product (ah+al)*(bh+bl) therefore has at most
c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits
and we have asize + c(bsize/2) available digit positions. We need to show
this is always enough. An instance of c(bsize/2) cancels out in both, so
the question reduces to whether asize digits is enough to hold
(asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits. If asize < bsize,
then we're asking whether asize digits >= f(bsize/2) digits + 2 bits. By #4,
asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1
digit is enough to hold 2 bits. This is so since SHIFT=15 >= 2. If
asize == bsize, then we're asking whether bsize digits is enough to hold
c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits
is enough to hold 2 bits. This is so if bsize >= 2, which holds because
bsize >= KARATSUBA_CUTOFF >= 2.
Note that since there's always enough room for (ah+al)*(bh+bl), and that's
clearly >= each of ah*bh and al*bl, there's always enough room to subtract
ah*bh and al*bl too.
"""
def _inplace_divrem1(pout, pin, n):
"""
Divide bigint pin by non-zero digit n, storing quotient
in pout, and returning the remainder. It's OK for pin == pout on entry.
"""
rem = _unsigned_widen_digit(0)
assert n > 0 and n <= MASK
size = pin.numdigits() - 1
while size >= 0:
rem = (rem << SHIFT) | pin.udigit(size)
hi = rem // n
pout.setdigit(size, hi)
rem -= hi * n
size -= 1
return rffi.cast(lltype.Signed, rem)
@jit.elidable
def _divrem1(a, n):
"""
Divide a bigint integer by a digit, returning both the quotient
and the remainder as a tuple.
The sign of a is ignored; n should not be zero.
"""
assert n > 0 and n <= MASK
size = a.numdigits()
z = rbigint([NULLDIGIT] * size, 1, size)
rem = _inplace_divrem1(z, a, n)
z._normalize()
return z, rem
def _int_rem_core(a, digit):
# digit must be positive
size = UDIGIT_TYPE(a.numdigits() - 1)
if size > 0:
wrem = a.widedigit(size)
while size > 0:
size -= 1
wrem = ((wrem << SHIFT) | a.digit(size)) % digit
rem = _store_digit(wrem)
else:
rem = _store_digit(a.digit(0) % digit)
return rem
def _v_iadd(x, xofs, m, y, n):
"""
x and y are rbigints, m >= n required. x.digits[0:n] is modified in place,
by adding y.digits[0:m] to it. Carries are propagated as far as
x[m-1], and the remaining carry (0 or 1) is returned.
Python adaptation: x is addressed relative to xofs!
"""
carry = UDIGIT_TYPE(0)
assert m >= n
i = _load_unsigned_digit(xofs)
iend = xofs + n
while i < iend:
carry += x.udigit(i) + y.udigit(i-xofs)
x.setdigit(i, carry)
carry >>= SHIFT
i += 1
iend = xofs + m
while carry and i < iend:
carry += x.udigit(i)
x.setdigit(i, carry)
carry >>= SHIFT
i += 1
return carry
def _v_isub(x, xofs, m, y, n):
"""
x and y are rbigints, m >= n required. x.digits[0:n] is modified in place,
by substracting y.digits[0:m] to it. Borrows are propagated as
far as x[m-1], and the remaining borrow (0 or 1) is returned.
Python adaptation: x is addressed relative to xofs!
"""
borrow = UDIGIT_TYPE(0)
assert m >= n
i = _load_unsigned_digit(xofs)
iend = xofs + n
while i < iend:
borrow = x.udigit(i) - y.udigit(i-xofs) - borrow
x.setdigit(i, borrow)
borrow >>= SHIFT
borrow &= 1 # keep only 1 sign bit
i += 1
iend = xofs + m
while borrow and i < iend:
borrow = x.udigit(i) - borrow
x.setdigit(i, borrow)
borrow >>= SHIFT
borrow &= 1
i += 1
return borrow
@specialize.argtype(2)
def _muladd1(a, n, extra=0):
"""Multiply by a single digit and add a single digit, ignoring the sign.
"""
assert n > 0
size_a = a.numdigits()
z = rbigint([NULLDIGIT] * (size_a+1), 1)
assert extra & MASK == extra
carry = _unsigned_widen_digit(extra)
i = 0
while i < size_a:
carry += a.uwidedigit(i) * n
z.setdigit(i, carry)
carry >>= SHIFT
i += 1
z.setdigit(i, carry)
z._normalize()
return z
def _v_lshift(z, a, m, d):
""" Shift digit vector a[0:m] d bits left, with 0 <= d < SHIFT. Put
* result in z[0:m], and return the d bits shifted out of the top.
"""
carry = 0
#assert 0 <= d and d < SHIFT
i = 0
while i < m:
acc = a.uwidedigit(i) << d | carry
z.setdigit(i, acc)
carry = acc >> SHIFT
i += 1
return carry
def _v_rshift(z, a, m, d):
""" Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT. Put
* result in z[0:m], and return the d bits shifted out of the bottom.
"""
carry = _unsigned_widen_digit(0)
acc = _unsigned_widen_digit(0)
mask = (1 << d) - 1
#assert 0 <= d and d < SHIFT
i = m-1
while i >= 0:
acc = (carry << SHIFT) | a.udigit(i)
carry = acc & mask
z.setdigit(i, acc >> d)
i -= 1
return carry
def _x_divrem(v1, w1):
""" Unsigned bigint division with remainder -- the algorithm """
size_v = v1.numdigits()
size_w = w1.numdigits()
assert size_v >= size_w and size_w > 1
v = rbigint([NULLDIGIT] * (size_v + 1), 1, size_v + 1)
w = rbigint([NULLDIGIT] * size_w, 1, size_w)
""" normalize: shift w1 left so that its top digit is >= PyLong_BASE/2.
shift v1 left by the same amount. Results go into w and v. """
d = SHIFT - bits_in_digit(w1.digit(abs(size_w-1)))
carry = _v_lshift(w, w1, size_w, d)
assert carry == 0
carry = _v_lshift(v, v1, size_v, d)
if carry != 0 or v.digit(abs(size_v-1)) >= w.digit(abs(size_w-1)):
v.setdigit(size_v, carry)
size_v += 1
""" Now v->ob_digit[size_v-1] < w->ob_digit[size_w-1], so quotient has
at most (and usually exactly) k = size_v - size_w digits. """
k = size_v - size_w
if k == 0:
# We can't use v1, nor NULLRBIGINT here as some function modify the result.
assert _v_rshift(w, v, size_w, d) == 0
w._normalize()
return rbigint([NULLDIGIT]), w
assert k > 0
a = rbigint([NULLDIGIT] * k, 1, k)
wm1 = w.widedigit(abs(size_w-1))
wm2 = w.widedigit(abs(size_w-2))
j = size_v - 1
k -= 1
while k >= 0:
assert j >= 0
""" inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving
single-digit quotient q, remainder in vk[0:size_w]. """
# estimate quotient digit q; may overestimate by 1 (rare)
if j >= size_v:
vtop = 0
else:
vtop = v.widedigit(j)
assert vtop <= wm1
vv = (vtop << SHIFT) | v.widedigit(abs(j-1))
# Hints to make division just as fast as doing it unsigned. But avoids casting to get correct results.
assert vv >= 0
assert wm1 >= 1
q = vv / wm1
r = vv % wm1 # This seems to be slightly faster on widen digits than vv - wm1 * q.
vj2 = v.digit(abs(j-2))
while wm2 * q > ((r << SHIFT) | vj2):
q -= 1
r += wm1
#assert q <= MASK+1, We need to compare to BASE <=, but ehm, it gives a buildin long error. So we ignore this.
# subtract q*w0[0:size_w] from vk[0:size_w+1]
zhi = 0
i = 0
while i < size_w:
z = v.widedigit(k+i) + zhi - q * w.widedigit(i)
v.setdigit(k+i, z)
zhi = z >> SHIFT
i += 1
# add w back if q was too large (this branch taken rarely)
if vtop + zhi < 0:
carry = UDIGIT_TYPE(0)
i = 0
while i < size_w:
carry += v.udigit(k+i) + w.udigit(i)
v.setdigit(k+i, carry)
carry >>= SHIFT
i += 1
q -= 1
# store quotient digit
a.setdigit(k, q)
k -= 1
j -= 1
carry = _v_rshift(w, v, size_w, d)
assert carry == 0
a._normalize()
w._normalize()
return a, w
@jit.elidable
def _divrem(a, b):
""" Long division with remainder, top-level routine """
size_a = a.numdigits()
size_b = b.numdigits()
if b.get_sign() == 0:
raise ZeroDivisionError("long division or modulo by zero")
if (size_a < size_b or
(size_a == size_b and
a.digit(abs(size_a-1)) < b.digit(abs(size_b-1)))):
# |a| < |b|
return NULLRBIGINT, a# result is 0
if size_b == 1:
z, urem = _divrem1(a, b.digit(0))
rem = rbigint([_store_digit(urem)], int(urem != 0), 1)
else:
z, rem = _x_divrem(a, b)
# Set the signs.
# The quotient z has the sign of a*b;
# the remainder r has the sign of a,
# so a = b*z + r.
if a.get_sign() != b.get_sign():
z._set_sign(-z.get_sign())
if a.get_sign() < 0 and rem.get_sign() != 0:
rem._set_sign(-rem.get_sign())
return z, rem
class LimitHolder:
pass
HOLDER = LimitHolder()
HOLDER.DIV_LIMIT = 21
HOLDER.STR2INT_LIMIT = 2048
HOLDER.MINSIZE_STR2INT = 4000
def _extract_digits(a, startindex, numdigits):
assert startindex >= 0
if startindex >= a.numdigits():
return NULLRBIGINT
stop = min(startindex + numdigits, a.numdigits())
assert stop >= 0
digits = a._digits[startindex: stop]
if not digits:
return NULLRBIGINT
r = rbigint(digits, 1)
r._normalize()
return r
def div2n1n(a_container, a_startindex, b, n_S):
"""Divide a 2*n_S-digit nonnegative integer a by an n_S-digit positive integer
b, using a recursive divide-and-conquer algorithm.
Inputs:
n_S is a positive integer
b is a positive rbigint with exactly n_S digits
a is a nonnegative integer such that a < 2**(n_S * SHIFT) * b
Output:
(q, r) such that a = b*q+r and 0 <= r < b.
a is represented as a slice of a bigger number a_container, 2 * n_S digits
wide, starting at a_startindex
"""
if n_S <= HOLDER.DIV_LIMIT:
a = _extract_digits(a_container, a_startindex, 2 * n_S)
if a.get_sign() == 0:
return NULLRBIGINT, NULLRBIGINT
res = _divrem(a, b)
return res
assert n_S & 1 == 0
half_n_S = n_S >> 1
# school division: (diagram from Burnikel & Ziegler, p 3)
#
# size half_n_S size n_S
# | |
# v v
# +----+----+----+----+ +----+----+ +----+----+ +---------+
# | a1 | a2 | a3 | a4 | / | b1 | b2 | = | q1 | q2 | = | q |
# +====+====+====+====+ +----+----+ +----+----+ +---------+
# | q1 * b1 |
# +----+----+----+ <
# | q1 * b2 | subtracting < first call to div3n2n
# +---------+----+ <
# | r1 | a4 |
# +---------+----+
# | q2 * b1 |
# +----+----+----+ <
# | q2 * b2 | subtracing < second call to div3n2n
# +---------+ <
# | r |
# +---------+
b1, b2 = _extract_digits(b, half_n_S, half_n_S), _extract_digits(b, 0, half_n_S)
q1, r1 = div3n2n(a_container, a_startindex + n_S, a_container, a_startindex + half_n_S, b, b1, b2, half_n_S)
q2, r = div3n2n(r1, 0, a_container, a_startindex, b, b1, b2, half_n_S)
return _full_digits_lshift_then_or(q1, half_n_S, q2), r
def div3n2n(a12_container, a12_startindex, a3_container, a3_startindex, b, b1, b2, n_S):
"""Helper function for div2n1n; not intended to be called directly."""
q, r = div2n1n(a12_container, a12_startindex, b1, n_S)
# equivalent to r = _full_digits_lshift_then_or(r, n_S, _extract_digits(a_container, a3_startindex, n_S))
if r.get_sign() == 0:
r = _extract_digits(a3_container, a3_startindex, n_S)
else:
digits = [NULLDIGIT] * (n_S + r.numdigits())
index = 0
for i in range(a3_startindex, min(a3_startindex + n_S, a3_container.numdigits())):
digits[index] = a3_container._digits[i]
index += 1
index = n_S
for i in range(r.numdigits()):
digits[index] = r._digits[i]
index += 1
r = rbigint(digits, 1)
r._normalize()
if q.get_sign() == 0:
return q, r
r = r.sub(q.mul(b2))
# loop runs at most twice
while r.get_sign() < 0:
q = q.int_sub(1)
r = r.add(b)
return q, r
def _full_digits_lshift_then_or(a, n, b):
""" equivalent to a.lshift(n * SHIFT).or_(b)
the size of b must be smaller than n
"""
if a.get_sign() == 0:
return b
bdigits = b.numdigits()
assert bdigits <= n
# b._digits + [NULLDIGIT] * (n - bdigits) + a._digits
digits = [NULLDIGIT] * (a.numdigits() + n)
for i in range(b.numdigits()):
digit = b._digits[i]
digits[i] = digit
index = n
for i in range(a.numdigits()):
digits[index] = a._digits[i]
index += 1
return rbigint(digits, 1)
def _divmod_fast_pos(a, b):
"""Divide a positive integer a by a positive integer b, giving
quotient and remainder."""
# Use grade-school algorithm in base 2**n, n = nbits(b)
n = b.bit_length()
m = a.bit_length()
if m < n:
return NULLRBIGINT, a
# make n of the form SHIFT * HOLDER.DIV_LIMIT * 2 ** x
new_n = SHIFT * HOLDER.DIV_LIMIT
while new_n < n:
new_n <<= 1
rest_shift = new_n - n
if rest_shift:
a = a.lshift(rest_shift)
b = b.lshift(rest_shift)
assert b.bit_length() == new_n
n = new_n
n_S = n // SHIFT
r = range(0, a.numdigits(), n_S)
a_digits_base_two_pow_n = [None] * len(r)
index = 0
for i in r:
assert i >= 0
stop = i + n_S
assert stop >= 0
a_digits_base_two_pow_n[index] = rbigint(a._digits[i: stop], 1)
index += 1
a_digits_index = len(a_digits_base_two_pow_n) - 1
if a_digits_base_two_pow_n[a_digits_index].ge(b):
r = NULLRBIGINT
else:
r = a_digits_base_two_pow_n[a_digits_index]
a_digits_index -= 1
q_digits = None
q_index_start = a_digits_index * n_S
while a_digits_index >= 0:
arg1 = _full_digits_lshift_then_or(r, n_S, a_digits_base_two_pow_n[a_digits_index])
q_digitbase_two_pow_n, r = div2n1n(arg1, 0, b, n_S)
if q_digits is None:
q_digits = [NULLDIGIT] * (a_digits_index * n_S + q_digitbase_two_pow_n.numdigits())
for i in range(q_digitbase_two_pow_n.numdigits()):
q_digits[q_index_start + i] = q_digitbase_two_pow_n._digits[i]
q_index_start -= n_S
a_digits_index -= 1
if rest_shift:
r = r.rshift(rest_shift)
if q_digits is None:
q = NULLRBIGINT
else:
q = rbigint(q_digits, 1)
q._normalize()
r._normalize()
return q, r
def divmod_big(a, b):
# code from Mark Dickinson via https://bugs.python.org/file11060/fast_div.py
# follows cr.yp.to/bib/1998/burnikel.ps
if b.eq(NULLRBIGINT):
raise ZeroDivisionError
elif b.get_sign() < 0:
q, r = divmod_big(a.neg(), b.neg())
return q, r.neg()
elif a.get_sign() < 0:
q, r = divmod_big(a.invert(), b)
return q.invert(), b.add(r.invert())
elif a.get_sign() == 0:
return TWO_NULLRBIGINTS
else:
return _divmod_fast_pos(a, b)
def _x_int_lt(a, b, eq=False):
""" Compare bigint a with int b for less than or less than or equal """
osign = 1
if b == 0:
osign = 0
elif b < 0:
osign = -1
if a.get_sign() > osign:
return False
elif a.get_sign() < osign:
return True
digits = a.numdigits()
if digits > 1:
if osign == 1:
return False
else:
return True
d1 = a.get_sign() * a.digit(0)
if eq:
if d1 <= b:
return True
else:
if d1 < b:
return True
return False
# ______________ conversions to double _______________
def _AsScaledDouble(v):
"""
NBITS_WANTED should be > the number of bits in a double's precision,
but small enough so that 2**NBITS_WANTED is within the normal double
range. nbitsneeded is set to 1 less than that because the most-significant
Python digit contains at least 1 significant bit, but we don't want to
bother counting them (catering to the worst case cheaply).
57 is one more than VAX-D double precision; I (Tim) don't know of a double
format with more precision than that; it's 1 larger so that we add in at
least one round bit to stand in for the ignored least-significant bits.
"""
NBITS_WANTED = 57
if v.get_sign() == 0:
return 0.0, 0
i = v.numdigits() - 1
sign = v.get_sign()
x = float(v.digit(i))
nbitsneeded = NBITS_WANTED - 1
# Invariant: i Python digits remain unaccounted for.
while i > 0 and nbitsneeded > 0:
i -= 1
x = x * FLOAT_MULTIPLIER + float(v.digit(i))
nbitsneeded -= SHIFT
# There are i digits we didn't shift in. Pretending they're all
# zeroes, the true value is x * 2**(i*SHIFT).
exponent = i
assert x > 0.0
return x * sign, exponent
##def ldexp(x, exp):
## assert type(x) is float
## lb1 = LONG_BIT - 1
## multiplier = float(1 << lb1)
## while exp >= lb1:
## x *= multiplier
## exp -= lb1
## if exp:
## x *= float(1 << exp)
## return x
# note that math.ldexp checks for overflows,
# while the C ldexp is not guaranteed to do.
# XXX make sure that we don't ignore this!
# YYY no, we decided to do ignore this!
@jit.dont_look_inside
def _AsDouble(n):
""" Get a C double from a bigint object. """
# This is a "correctly-rounded" version from Python 2.7.
#
from rpython.rlib import rfloat
DBL_MANT_DIG = rfloat.DBL_MANT_DIG # 53 for IEEE 754 binary64
DBL_MAX_EXP = rfloat.DBL_MAX_EXP # 1024 for IEEE 754 binary64
assert DBL_MANT_DIG < r_ulonglong.BITS
# Reduce to case n positive.
sign = n.get_sign()
if sign == 0:
return 0.0
elif sign < 0:
n = n.neg()
# Find exponent: 2**(exp - 1) <= n < 2**exp
exp = n.bit_length()
# Get top DBL_MANT_DIG + 2 significant bits of n, with a 'sticky'
# last bit: that is, the least significant bit of the result is 1
# iff any of the shifted-out bits is set.
shift = DBL_MANT_DIG + 2 - exp
if shift >= 0:
q = _AsULonglong_mask(n) << shift
if not we_are_translated():
assert q == n.tolong() << shift # no masking actually done
else:
shift = -shift
n2 = n.rshift(shift)
q = _AsULonglong_mask(n2)
if not we_are_translated():
assert q == n2.tolong() # no masking actually done
if not n.eq(n2.lshift(shift)):
q |= 1
# Now remove the excess 2 bits, rounding to nearest integer (with
# ties rounded to even).
q = (q >> 2) + r_uint((bool(q & 2) and bool(q & 5)))
if exp > DBL_MAX_EXP or (exp == DBL_MAX_EXP and
q == r_ulonglong(1) << DBL_MANT_DIG):
raise OverflowError("integer too large to convert to float")
ad = math.ldexp(float(q), exp - DBL_MANT_DIG)
if sign < 0:
ad = -ad
return ad
@specialize.arg(0)
def _loghelper(func, arg):
"""
A decent logarithm is easy to compute even for huge bigints, but libm can't
do that by itself -- loghelper can. func is log or log10.
Note that overflow isn't possible: a bigint can contain
no more than INT_MAX * SHIFT bits, so has value certainly less than
2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
small enough to fit in an IEEE single. log and log10 are even smaller.
"""
x, e = _AsScaledDouble(arg)
if x <= 0.0:
raise ValueError
# Value is ~= x * 2**(e*SHIFT), so the log ~=
# log(x) + log(2) * e * SHIFT.
# CAUTION: e*SHIFT may overflow using int arithmetic,
# so force use of double. */
return func(x) + (e * float(SHIFT) * func(2.0))
# ____________________________________________________________
BASE_AS_FLOAT = float(1 << SHIFT) # note that it may not fit an int
BitLengthTable = ''.join(map(chr, [
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]))
def bits_in_digit(d):
# returns the unique integer k such that 2**(k-1) <= d <
# 2**k if d is nonzero, else 0.
d_bits = 0
while d >= 32:
d_bits += 6
d >>= 6
d_bits += ord(BitLengthTable[d])
return d_bits
def bit_count_digit(val):
count = 0
while val:
count += val & 1
val >>= 1
return count
def _truediv_result(result, negate):
if negate:
result = -result
return result
def _truediv_overflow():
raise OverflowError("integer division result too large for a float")
def _bigint_true_divide(a, b):
# A longish method to obtain the floating-point result with as much
# precision as theoretically possible. The code is almost directly
# copied from CPython. See there (Objects/longobject.c,
# long_true_divide) for detailled comments. Method in a nutshell:
#
# 0. reduce to case a, b > 0; filter out obvious underflow/overflow
# 1. choose a suitable integer 'shift'
# 2. use integer arithmetic to compute x = floor(2**-shift*a/b)
# 3. adjust x for correct rounding
# 4. convert x to a double dx with the same value
# 5. return ldexp(dx, shift).
from rpython.rlib import rfloat
DBL_MANT_DIG = rfloat.DBL_MANT_DIG # 53 for IEEE 754 binary64
DBL_MAX_EXP = rfloat.DBL_MAX_EXP # 1024 for IEEE 754 binary64
DBL_MIN_EXP = rfloat.DBL_MIN_EXP
MANT_DIG_DIGITS = DBL_MANT_DIG // SHIFT
MANT_DIG_BITS = DBL_MANT_DIG % SHIFT
# Reduce to case where a and b are both positive.
negate = (a.get_sign() < 0) ^ (b.get_sign() < 0)
if not b.tobool():
raise ZeroDivisionError("long division or modulo by zero")
if not a.tobool():
return _truediv_result(0.0, negate)
a_size = a.numdigits()
b_size = b.numdigits()
# Fast path for a and b small (exactly representable in a double).
# Relies on floating-point division being correctly rounded; results
# may be subject to double rounding on x86 machines that operate with
# the x87 FPU set to 64-bit precision.
a_is_small = (a_size <= MANT_DIG_DIGITS or
(a_size == MANT_DIG_DIGITS+1 and
a.digit(MANT_DIG_DIGITS) >> MANT_DIG_BITS == 0))
b_is_small = (b_size <= MANT_DIG_DIGITS or
(b_size == MANT_DIG_DIGITS+1 and
b.digit(MANT_DIG_DIGITS) >> MANT_DIG_BITS == 0))
if a_is_small and b_is_small:
a_size -= 1
da = float(a.digit(a_size))
while True:
a_size -= 1
if a_size < 0:
break
da = da * BASE_AS_FLOAT + a.digit(a_size)
b_size -= 1
db = float(b.digit(b_size))
while True:
b_size -= 1
if b_size < 0:
break
db = db * BASE_AS_FLOAT + b.digit(b_size)
return _truediv_result(da / db, negate)
# Catch obvious cases of underflow and overflow
diff = a_size - b_size
if diff > sys.maxint/SHIFT - 1:
return _truediv_overflow() # Extreme overflow
elif diff < 1 - sys.maxint/SHIFT:
return _truediv_result(0.0, negate) # Extreme underflow
# Next line is now safe from overflowing integers
diff = (diff * SHIFT + bits_in_digit(a.digit(a_size - 1)) -
bits_in_digit(b.digit(b_size - 1)))
# Now diff = a_bits - b_bits.
if diff > DBL_MAX_EXP:
return _truediv_overflow()
elif diff < DBL_MIN_EXP - DBL_MANT_DIG - 1:
return _truediv_result(0.0, negate)
# Choose value for shift; see comments for step 1 in CPython.
shift = max(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2
inexact = False
# x = abs(a * 2**-shift)
if shift <= 0:
x = a.lshift(-shift)
else:
x = a.rshift(shift, dont_invert=True)
# set inexact if any of the bits shifted out is nonzero
if not a.eq(x.lshift(shift)):
inexact = True
# x //= b. If the remainder is nonzero, set inexact.
x, rem = _divrem(x, b)
if rem.tobool():
inexact = True
assert x.tobool() # result of division is never zero
x_size = x.numdigits()
x_bits = (x_size-1)*SHIFT + bits_in_digit(x.digit(x_size-1))
# The number of extra bits that have to be rounded away.
extra_bits = max(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG
assert extra_bits == 2 or extra_bits == 3
# Round by remembering a modified copy of the low digit of x
mask = r_uint(1 << (extra_bits - 1))
low = x.udigit(0) | r_uint(inexact)
if (low & mask) != 0 and (low & (3*mask-1)) != 0:
low += mask
x_digit_0 = low & ~(mask-1)
# Convert x to a double dx; the conversion is exact.
x_size -= 1
dx = 0.0
while x_size > 0:
dx += x.digit(x_size)
dx *= BASE_AS_FLOAT
x_size -= 1
dx += x_digit_0
# Check whether ldexp result will overflow a double.
if (shift + x_bits >= DBL_MAX_EXP and
(shift + x_bits > DBL_MAX_EXP or dx == math.ldexp(1.0, x_bits))):
return _truediv_overflow()
return _truediv_result(math.ldexp(dx, shift), negate)
# ____________________________________________________________
BASE8 = '01234567'
BASE10 = '0123456789'
BASE16 = '0123456789abcdef'
def _format_base2_notzero(a, digits, prefix='', suffix='', max_str_digits=0):
base = len(digits)
# JRH: special case for power-of-2 bases
accum = 0
accumbits = 0 # # of bits in accum
basebits = 0
i = base
while i > 1:
basebits += 1
i >>= 1
# Compute a rough upper bound for the length of the string
size_a = a.numdigits()
i = 5 + len(prefix) + len(suffix) + (size_a*SHIFT + basebits-1) // basebits
result = [chr(0)] * i
next_char_index = i
j = len(suffix)
while j > 0:
next_char_index -= 1
j -= 1
result[next_char_index] = suffix[j]
i = 0
while i < size_a:
accum |= a.widedigit(i) << accumbits
accumbits += SHIFT
assert accumbits >= basebits
while 1:
cdigit = intmask(accum & (base - 1))
next_char_index -= 1
assert next_char_index >= 0
result[next_char_index] = digits[cdigit]
accumbits -= basebits
accum >>= basebits
if i < size_a - 1:
if accumbits < basebits:
break
else:
if accum <= 0:
break
i += 1
j = len(prefix)
while j > 0:
next_char_index -= 1
j -= 1
result[next_char_index] = prefix[j]
if a.get_sign() < 0:
next_char_index -= 1
result[next_char_index] = '-'
assert next_char_index >= 0 # otherwise, buffer overflow (this is also a
# hint for the annotator for the slice below)
return ''.join(result[next_char_index:])
class PartsCacheBase(object):
def __init__(self, base):
mindigits = 1
curr = base
while 1:
try:
next = ovfcheck(curr * base)
except OverflowError:
break
if next >= MASK:
break
curr = next
mindigits += 1
self.mindigits = mindigits
part = rbigint.fromint(curr)
self.lowest_part = curr
self.parts_cache = [part]
class _PartsCache(object):
def __init__(self):
# 36 - 3, because bases 0, 1 make no sense
# and 2 is handled differently
self.parts_cache = [None] * 34
def get_cached_parts(self, base):
index = base - 3
res = self.parts_cache[index]
if res is None:
res = PartsCacheBase(base)
self.parts_cache[index] = res
return res
_parts_cache = _PartsCache()
_parts_cache_10 = _parts_cache.get_cached_parts(10)
def _format_int_general(val, digits):
base = len(digits)
out = []
while val:
out.append(digits[val % base])
val //= base
out.reverse()
return "".join(out)
def _format_int10(val, digits):
return str(val)
_format10_table2 = "".join(str(i // 10) + str(i % 10) for i in range(100))
def _format_int10_18digits(val, builder):
assert 0 <= val < 10**18
top2 = val // 10**16
assert top2 < 100
val = val % 10**16
a = val // 10**8
b = val % 10**8
aa = a // 10**4
ab = a % 10**4
ba = b // 10**4
bb = b % 10**4
aaa = aa // 10**2
aab = aa % 10**2
aba = ab // 10**2
abb = ab % 10**2
baa = ba // 10**2
bab = ba % 10**2
bba = bb // 10**2
bbb = bb % 10**2
builder.append_slice(_format10_table2, 2*top2, 2*top2 + 2)
builder.append_slice(_format10_table2, 2*aaa, 2*aaa + 2)
builder.append_slice(_format10_table2, 2*aab, 2*aab + 2)
builder.append_slice(_format10_table2, 2*aba, 2*aba + 2)
builder.append_slice(_format10_table2, 2*abb, 2*abb + 2)
builder.append_slice(_format10_table2, 2*baa, 2*baa + 2)
builder.append_slice(_format10_table2, 2*bab, 2*bab + 2)
builder.append_slice(_format10_table2, 2*bba, 2*bba + 2)
builder.append_slice(_format10_table2, 2*bbb, 2*bbb + 2)
@specialize.arg(6)
def _format_recursive(x, i, output, pcb, digits, size_prefix, _format_int, max_str_digits):
while i > 0:
top, x = x.divmod(pcb.parts_cache[i]) # split the number
if not top.tobool() and output.getlength() == size_prefix:
# the top half can often be 0, because the number isn't perfectly a
# power of the base
pass
else:
_format_recursive(top, i-1, output, pcb, digits, size_prefix, _format_int, max_str_digits)
# do the second recursive call by means of manual tail calling
i -= 1
# bottomed out with mindigits sized pieces
# use str of ints
mindigits = pcb.mindigits
curlen = output.getlength()
# the last divmod is guaranteed to return two ints
high, low = _format_lowest_level_divmod_int_results(x, pcb.lowest_part)
# this checks whether any digit has been appended yet
lowdone = False
if curlen == size_prefix:
if high:
s = _format_int(high, digits)
output.append(s)
curlen += len(s)
else:
if low:
s = _format_int(low, digits)
output.append(s)
curlen += len(s)
lowdone = True
else:
if SHIFT == 63 and _format_int is _format_int10 and mindigits == 18:
_format_int10_18digits(high, output)
else:
s = _format_int(high, digits)
output.append_multiple_char(digits[0], mindigits - len(s))
output.append(s)
curlen += mindigits
if not lowdone:
if SHIFT == 63 and _format_int is _format_int10 and mindigits == 18:
_format_int10_18digits(low, output)
else:
s = _format_int(low, digits)
output.append_multiple_char(digits[0], mindigits - len(s))
output.append(s)
curlen += mindigits
if max_str_digits > 0 and curlen - size_prefix > max_str_digits:
raise MaxIntError("requested output too large")
@always_inline
def _format_lowest_level_divmod_int_results(x, iother):
# this is only useful in the context of _format_recursive, where we know
# that at the lowest levels the division leaves a result that fits into an
# int (and the mod does anyway fit into an int)
# x must be smaller than iother**2
# iother must be positive
if not x.tobool():
return 0, 0
assert iother > 0 and iother <= MASK
size = x.numdigits() - 1
if size == 1:
rem = x.uwidedigit(1)
assert rem < iother # otherwise iother ** 2 >= x
else:
rem = _unsigned_widen_digit(0)
rem = (rem << SHIFT) | x.uwidedigit(0)
div = rem // iother
rem -= div * iother
return rffi.cast(lltype.Signed, div), rffi.cast(lltype.Signed, rem)
def _format(x, digits, prefix='', suffix='', max_str_digits=0):
if x.get_sign() == 0:
return prefix + "0" + suffix
base = len(digits)
assert base >= 2 and base <= 36
if (base & (base - 1)) == 0:
# base is 2, 4, 8, 16, ...
return _format_base2_notzero(x, digits, prefix, suffix, max_str_digits)
negative = x.get_sign() < 0
if negative:
x = x.neg()
pcb = _parts_cache.get_cached_parts(base)
mindigits = pcb.mindigits
stringsize = mindigits
startindex = 0
pts = pcb.parts_cache
for startindex, part in enumerate(pts):
if not part.lt(x):
break
stringsize *= 2 # XXX can this overflow on 32 bit?
else:
# not enough parts computed yet
while pts[-1].lt(x):
pts.append(pts[-1].int_pow(2))
stringsize *= 2
startindex = len(pts) - 1
# remove first base**2**i greater than x
startindex -= 1
stringsize += len(prefix) + len(suffix) + negative
output = StringBuilder(stringsize)
if negative:
output.append('-')
output.append(prefix)
if startindex < 0:
if digits == BASE10:
s = _format_int10(x.toint(), digits)
else:
s = _format_int_general(x.toint(), digits)
output.append(s)
else:
if digits == BASE10:
_format_recursive(
x, startindex, output, pcb, digits, output.getlength(),
_format_int10, max_str_digits)
else:
_format_recursive(
x, startindex, output, pcb, digits, output.getlength(),
_format_int_general, max_str_digits)
output.append(suffix)
return output.build()
@specialize.arg(1)
def _bitwise(a, op, b): # '&', '|', '^'
""" Bitwise and/or/xor operations """
if a.get_sign() < 0:
a = a.invert()
maska = MASK
else:
maska = 0
if b.get_sign() < 0:
b = b.invert()
maskb = MASK
else:
maskb = 0
negz = 0
if op == '^':
if maska != maskb:
maska ^= MASK
negz = -1
elif op == '&':
if maska and maskb:
op = '|'
maska ^= MASK
maskb ^= MASK
negz = -1
elif op == '|':
if maska or maskb:
op = '&'
maska ^= MASK
maskb ^= MASK
negz = -1
else:
assert 0, "unreachable"
# JRH: The original logic here was to allocate the result value (z)
# as the longer of the two operands. However, there are some cases
# where the result is guaranteed to be shorter than that: AND of two
# positives, OR of two negatives: use the shorter number. AND with
# mixed signs: use the positive number. OR with mixed signs: use the
# negative number. After the transformations above, op will be '&'
# iff one of these cases applies, and mask will be non-0 for operands
# whose length should be ignored.
size_a = a.numdigits()
size_b = b.numdigits()
if op == '&':
if maska:
size_z = size_b
else:
if maskb:
size_z = size_a
else:
size_z = min(size_a, size_b)
else:
size_z = max(size_a, size_b)
z = rbigint([NULLDIGIT] * size_z, 1, size_z)
i = 0
while i < size_z:
if i < size_a:
diga = a.digit(i) ^ maska
else:
diga = maska
if i < size_b:
digb = b.digit(i) ^ maskb
else:
digb = maskb
if op == '&':
z.setdigit(i, diga & digb)
elif op == '|':
z.setdigit(i, diga | digb)
elif op == '^':
z.setdigit(i, diga ^ digb)
i += 1
z._normalize()
if negz == 0:
return z
return z.invert()
@specialize.arg(1)
def _int_bitwise(a, op, b): # '&', '|', '^'
""" Bitwise and/or/xor operations """
if not int_in_valid_range(b):
# Fallback to long.
return _bitwise(a, op, rbigint.fromint(b))
if a.get_sign() < 0:
a = a.invert()
maska = MASK
else:
maska = 0
if b < 0:
b = ~b
maskb = MASK
else:
maskb = 0
negz = 0
if op == '^':
if maska != maskb:
maska ^= MASK
negz = -1
elif op == '&':
if maska and maskb:
op = '|'
maska ^= MASK
maskb ^= MASK
negz = -1
elif op == '|':
if maska or maskb:
op = '&'
maska ^= MASK
maskb ^= MASK
negz = -1
# JRH: The original logic here was to allocate the result value (z)
# as the longer of the two operands. However, there are some cases
# where the result is guaranteed to be shorter than that: AND of two
# positives, OR of two negatives: use the shorter number. AND with
# mixed signs: use the positive number. OR with mixed signs: use the
# negative number. After the transformations above, op will be '&'
# iff one of these cases applies, and mask will be non-0 for operands
# whose length should be ignored.
size_a = a.numdigits()
if op == '&':
if maska:
size_z = 1
else:
if maskb:
size_z = size_a
else:
size_z = 1
else:
size_z = size_a
z = rbigint([NULLDIGIT] * size_z, 1, size_z)
i = 0
while i < size_z:
if i < size_a:
diga = a.digit(i) ^ maska
else:
diga = maska
if i == 0:
digb = b ^ maskb
else:
digb = maskb
if op == '&':
z.setdigit(i, diga & digb)
elif op == '|':
z.setdigit(i, diga | digb)
elif op == '^':
z.setdigit(i, diga ^ digb)
i += 1
z._normalize()
if negz == 0:
return z
return z.invert()
ULONGLONG_BOUND = r_ulonglong(1L << (r_longlong.BITS-1))
LONGLONG_MIN = r_longlong(-(1L << (r_longlong.BITS-1)))
def _AsLongLong(v):
"""
Get a r_longlong integer from a bigint object.
Raises OverflowError if overflow occurs.
"""
x = _AsULonglong_ignore_sign(v)
# grr grr grr
if x >= ULONGLONG_BOUND:
if x == ULONGLONG_BOUND and v.get_sign() < 0:
x = LONGLONG_MIN
else:
raise OverflowError
else:
x = r_longlong(x)
if v.get_sign() < 0:
x = -x
return x
def _AsULonglong_ignore_sign(v):
x = r_ulonglong(0)
i = v.numdigits() - 1
while i >= 0:
prev = x
x = (x << SHIFT) + r_ulonglong(v.widedigit(i))
if (x >> SHIFT) != prev:
raise OverflowError(
"long int too large to convert to unsigned long long int")
i -= 1
return x
def make_unsigned_mask_conversion(T):
def _As_unsigned_mask(v):
x = T(0)
i = v.numdigits() - 1
while i >= 0:
x = (x << SHIFT) + T(v.digit(i))
i -= 1
if v.get_sign() < 0:
x = -x
return x
return _As_unsigned_mask
_AsULonglong_mask = make_unsigned_mask_conversion(r_ulonglong)
_AsUInt_mask = make_unsigned_mask_conversion(r_uint)
def _hash(v):
# This is designed so that Python ints and longs with the
# same value hash to the same value, otherwise comparisons
# of mapping keys will turn out weird. Moreover, purely
# to please decimal.py, we return a hash that satisfies
# hash(x) == hash(x % ULONG_MAX). In particular, this
# implies that hash(x) == hash(x % (2**64-1)).
i = v.numdigits() - 1
sign = v.get_sign()
x = r_uint(0)
LONG_BIT_SHIFT = LONG_BIT - SHIFT
while i >= 0:
# Force a native long #-bits (32 or 64) circular shift
x = (x << SHIFT) | (x >> LONG_BIT_SHIFT)
x += v.udigit(i)
# If the addition above overflowed we compensate by
# incrementing. This preserves the value modulo
# ULONG_MAX.
if x < v.udigit(i):
x += 1
i -= 1
res = intmask(intmask(x) * sign)
return res
#_________________________________________________________________
# a few internal helpers
def digits_max_for_base(base):
dec_per_digit = 1
while base ** dec_per_digit < MASK:
dec_per_digit += 1
dec_per_digit -= 1
return base ** dec_per_digit
BASE_MAX = [0, 1] + [digits_max_for_base(_base) for _base in range(2, 37)]
DEC_MAX = digits_max_for_base(10)
assert DEC_MAX == BASE_MAX[10]
def _decimalstr_to_bigint(s, start=0, lim=-1):
# a string that has been already parsed to be decimal and valid,
# is turned into a bigint
p = start
if lim < 0:
lim = len(s)
sign = False
if s[p] == '-':
sign = True
p += 1
elif s[p] == '+':
p += 1
a = NULLRBIGINT
tens = 1
dig = 0
ord0 = ord('0')
while p < lim:
dig = dig * 10 + ord(s[p]) - ord0
p += 1
tens *= 10
if tens == DEC_MAX or p == lim:
if a is not None:
a = _muladd1(a, tens, dig)
else:
assert dig & MASK == dig
a = rbigint([_store_digit(dig)], int(dig != 0))
tens = 1
dig = 0
if sign and a.get_sign() == 1:
a._set_sign(-1)
return a
def parse_digit_string(parser):
# helper for fromstr
base = parser.base
if (base & (base - 1)) == 0 and base >= 2:
return parse_string_from_binary_base(parser)
if base == 10 and (parser.end - parser.start) > HOLDER.MINSIZE_STR2INT:
# check for errors and potentially remove underscores
s, start, end = parser._all_digits10()
a = _str_to_int_big_base10(s, start, end, HOLDER.STR2INT_LIMIT)
a._set_sign(a.get_sign() * parser.sign)
return a
a = NULLRBIGINT
digitmax = BASE_MAX[base]
baseexp, dig = 1, 0
while True:
digit = parser.next_digit()
if baseexp == digitmax or digit < 0:
if a is not None:
a = _muladd1(a, baseexp, dig)
else:
assert dig & MASK == dig
a = rbigint([_store_digit(dig)], int(dig != 0))
if digit < 0:
break
dig = digit
baseexp = base
else:
dig = dig * base + digit
baseexp *= base
a._set_sign(a.get_sign() * parser.sign)
return a
FIVERBIGINT = rbigint.fromint(5)
def _str_to_int_big_w5pow(w, mem, limit):
"""Return 5**w and store the result.
Also possibly save some intermediate results. In context, these
are likely to be reused across various levels of the conversion
to 'int'.
"""
result = mem.get(w, None)
if result is None:
if w <= limit:
result = FIVERBIGINT.int_pow(w)
elif w - 1 in mem:
result = mem[w - 1].int_mul(5)
else:
w2 = w >> 1
# If w happens to be odd, w-w2 is one larger then w2
# now. Recurse on the smaller first (w2), so that it's
# in the cache and the larger (w-w2) can be handled by
# the cheaper `w-1 in mem` branch instead.
result = _str_to_int_big_w5pow(w2, mem, limit).mul(
_str_to_int_big_w5pow(w - w2, mem, limit))
mem[w] = result
return result
def _str_to_int_big_inner10(s, a, b, mem, limit):
diff = b - a
if diff <= limit:
return _decimalstr_to_bigint(s, a, b)
# choose the midpoint rounding up, as that yields slightly fewer entries in
# mem, see comment in _str_to_int_big_w5pow too
mid = a + (diff + 1) // 2
right = _str_to_int_big_inner10(s, mid, b, mem, limit)
left = _str_to_int_big_inner10(s, a, mid, mem, limit)
left = left.mul(_str_to_int_big_w5pow(b - mid, mem, limit)).lshift(b - mid)
return right.add(left)
def _str_to_int_big_base10(s, start, end, limit=20):
"""Asymptotically fast conversion of a 'str' to an 'int'."""
# Function due to Bjorn Martinsson. See GH issue #90716 for details.
# https://github.com/python/cpython/issues/90716
#
# The implementation in longobject.c of base conversion algorithms
# between power-of-2 and non-power-of-2 bases are quadratic time.
# This function implements a divide-and-conquer algorithm making use
# of Python's built in big int multiplication. Since Python uses the
# Karatsuba algorithm for multiplication, the time complexity
# of this function is O(len(s)**1.58).
mem = {}
result = _str_to_int_big_inner10(s, start, end, mem, limit)
return result
def parse_string_from_binary_base(parser):
# The point to this routine is that it takes time linear in the number of
# string characters.
from rpython.rlib.rstring import ParseStringError
base = parser.base
if base == 2: bits_per_char = 1
elif base == 4: bits_per_char = 2
elif base == 8: bits_per_char = 3
elif base == 16: bits_per_char = 4
elif base == 32: bits_per_char = 5
else:
raise AssertionError
# n <- total number of bits needed, while moving 'parser' to the end
n = 0
while parser.next_digit() >= 0:
n += 1
# b <- number of Python digits needed, = ceiling(n/SHIFT). */
try:
b = ovfcheck(n * bits_per_char)
b = ovfcheck(b + (SHIFT - 1))
except OverflowError:
raise ParseStringError("long string too large to convert")
b = (b // SHIFT) or 1
z = rbigint([NULLDIGIT] * b, sign=parser.sign)
# Read string from right, and fill in long from left; i.e.,
# from least to most significant in both.
accum = _widen_digit(0)
bits_in_accum = 0
pdigit = 0
for _ in range(n):
k = parser.prev_digit()
accum |= _widen_digit(k) << bits_in_accum
bits_in_accum += bits_per_char
if bits_in_accum >= SHIFT:
z.setdigit(pdigit, accum)
pdigit += 1
assert pdigit <= b
accum >>= SHIFT
bits_in_accum -= SHIFT
if bits_in_accum:
z.setdigit(pdigit, accum)
z._normalize()
return z
@jit.elidable
def gcd_binary(a, b):
""" Compute the greatest common divisor of non-negative integers a and b
using the binary GCD algorithm. Raises ValueError on negative input. """
if a < 0 or b < 0:
raise ValueError
if a == 0:
return b
if b == 0:
return a
shift = 0
while (a | b) & 1 == 0:
a >>= 1
b >>= 1
shift += 1
while a & 1 == 0:
a >>= 1
while b & 1 == 0:
b >>= 1
while a != b:
a, b = abs(a - b), min(a, b)
while a & 1 == 0:
a >>= 1
return a << shift
def lehmer_xgcd(a, b):
s_old, s_new = 1, 0
t_old, t_new = 0, 1
while b >> (SHIFT >> 1):
q, r = a // b, a % b
a, b = b, r
s_old, s_new = s_new, s_old - q * s_new
t_old, t_new = t_new, t_old - q * t_new
return s_old, t_old, s_new, t_new
@jit.elidable
def gcd_lehmer(a, b):
if a.lt(b):
a, b = b, a
while b.numdigits() > 1:
a_ms = a.digit(abs(a.numdigits()-1))
x = 0
while a_ms & (0xFF << SHIFT-8) == 0:
a_ms <<= 8
x += 8
while a_ms & (1 << SHIFT-1) == 0:
a_ms <<= 1
x += 1
a_ms |= a.digit(abs(a.numdigits()-2)) >> SHIFT-x
if a.numdigits() == b.numdigits():
b_ms = (b.digit(abs(b.numdigits()-1)) << x) | (b.digit(abs(b.numdigits()-2)) >> SHIFT-x)
elif a.numdigits() == b.numdigits()+1:
b_ms = b.digit(abs(b.numdigits()-1)) >> SHIFT-x
else:
b_ms = 0
if b_ms >> (SHIFT+1 >> 1) == 0:
a, b = b, a.mod(b)
continue
s_old, t_old, s_new, t_new = lehmer_xgcd(a_ms, b_ms)
n_a = a.int_mul(s_new).add(b.int_mul(t_new)).abs()
b = a.int_mul(s_old).add(b.int_mul(t_old)).abs()
a = n_a
if a.lt(b):
a, b = b, a
if not b.tobool():
return a
a = a.mod(b)
return rbigint.fromint(gcd_binary(b.toint(), a.toint()))
# if the bigint has more digits than this, it cannot fit into an int
# Also, if it has less digits than this, then it must be <=sys.maxint in
# absolute value and so it must fit an int.
MAX_DIGITS_THAT_CAN_FIT_IN_INT = rbigint.fromint(-sys.maxint - 1).numdigits()
|