File: rgc.py

package info (click to toggle)
pypy3 7.3.19%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 212,236 kB
  • sloc: python: 2,098,316; ansic: 540,565; sh: 21,462; asm: 14,419; cpp: 4,451; makefile: 4,209; objc: 761; xml: 530; exp: 499; javascript: 314; pascal: 244; lisp: 45; csh: 12; awk: 4
file content (1604 lines) | stat: -rw-r--r-- 55,898 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
from __future__ import absolute_import

import gc
import types

from rpython.rlib import jit
from rpython.rlib.objectmodel import we_are_translated, enforceargs, specialize
from rpython.rlib.objectmodel import CDefinedIntSymbolic, not_rpython
from rpython.rtyper.extregistry import ExtRegistryEntry
from rpython.rtyper.lltypesystem import lltype, llmemory

# ____________________________________________________________
# General GC features

collect = gc.collect
enable = gc.enable
disable = gc.disable
isenabled = gc.isenabled

def collect_step():
    """
    If the GC is incremental, run a single gc-collect-step.

    Return an integer which encodes the starting and ending GC state. Use
    rgc.{old_state,new_state,is_done} to decode it.

    If the GC is not incremental, do a full collection and return a value on
    which rgc.is_done() return True.
    """
    gc.collect()
    return _encode_states(1, 0)

def _encode_states(oldstate, newstate):
    return oldstate << 8 | newstate

def old_state(states):
    return (states & 0xFF00) >> 8

def new_state(states):
    return states & 0xFF

def is_done(states):
    """
    Return True if the return value of collect_step signals the end of a major
    collection
    """
    old = old_state(states)
    new = new_state(states)
    return is_done__states(old, new)

def is_done__states(oldstate, newstate):
    "Like is_done, but takes oldstate and newstate explicitly"
    # a collection is considered done when it ends up in the starting state
    # (which is usually represented as 0). This logic works for incminimark,
    # which is currently the only gc actually used and for which collect_step
    # is implemented. In case we add more GC in the future, we might want to
    # delegate this logic to the GC itself, but for now it is MUCH simpler to
    # just write it in plain RPython.
    return oldstate != 0 and newstate == 0

def set_max_heap_size(nbytes):
    """Limit the heap size to n bytes.
    """
    pass

def must_split_gc_address_space():
    """Returns True if we have a "split GC address space", i.e. if
    we are translating with an option that doesn't support taking raw
    addresses inside GC objects and "hacking" at them.  This is
    notably the case with --revdb."""
    return False

# for test purposes we allow objects to be pinned and use
# the following list to keep track of the pinned objects
_pinned_objects = []

def pin(obj):
    """If 'obj' can move, then attempt to temporarily fix it.  This
    function returns True if and only if 'obj' could be pinned; this is
    a special state in the GC.  Note that can_move(obj) still returns
    True even on pinned objects, because once unpinned it will indeed be
    able to move again.  In other words, the code that succeeded in
    pinning 'obj' can assume that it won't move until the corresponding
    call to unpin(obj), despite can_move(obj) still being True.  (This
    is important if multiple threads try to os.write() the same string:
    only one of them will succeed in pinning the string.)

    It is expected that the time between pinning and unpinning an object
    is short. Therefore the expected use case is a single function
    invoking pin(obj) and unpin(obj) only a few lines of code apart.

    Note that this can return False for any reason, e.g. if the 'obj' is
    already non-movable or already pinned, if the GC doesn't support
    pinning, or if there are too many pinned objects.

    Note further that pinning an object does not prevent it from being
    collected if it is not used anymore.
    """
    _pinned_objects.append(obj)
    return True


class PinEntry(ExtRegistryEntry):
    _about_ = pin

    def compute_result_annotation(self, s_obj):
        from rpython.annotator import model as annmodel
        return annmodel.SomeBool()

    def specialize_call(self, hop):
        hop.exception_cannot_occur()
        return hop.genop('gc_pin', hop.args_v, resulttype=hop.r_result)

def unpin(obj):
    """Unpin 'obj', allowing it to move again.
    Must only be called after a call to pin(obj) returned True.
    """
    for i in range(len(_pinned_objects)):
        try:
            if _pinned_objects[i] == obj:
                del _pinned_objects[i]
                return
        except TypeError:
            pass


class UnpinEntry(ExtRegistryEntry):
    _about_ = unpin

    def compute_result_annotation(self, s_obj):
        pass

    def specialize_call(self, hop):
        hop.exception_cannot_occur()
        hop.genop('gc_unpin', hop.args_v)

def _is_pinned(obj):
    """Method to check if 'obj' is pinned."""
    for i in range(len(_pinned_objects)):
        try:
            if _pinned_objects[i] == obj:
                return True
        except TypeError:
            pass
    return False


class IsPinnedEntry(ExtRegistryEntry):
    _about_ = _is_pinned

    def compute_result_annotation(self, s_obj):
        from rpython.annotator import model as annmodel
        return annmodel.SomeBool()

    def specialize_call(self, hop):
        hop.exception_cannot_occur()
        return hop.genop('gc__is_pinned', hop.args_v, resulttype=hop.r_result)

# ____________________________________________________________
# Annotation and specialization

# Support for collection.

class CollectEntry(ExtRegistryEntry):
    _about_ = gc.collect

    def compute_result_annotation(self, s_gen=None):
        from rpython.annotator import model as annmodel
        return annmodel.s_None

    def specialize_call(self, hop):
        hop.exception_cannot_occur()
        args_v = []
        if len(hop.args_s) == 1:
            args_v = hop.inputargs(lltype.Signed)
        return hop.genop('gc__collect', args_v, resulttype=hop.r_result)


class EnableDisableEntry(ExtRegistryEntry):
    _about_ = (gc.enable, gc.disable)

    def compute_result_annotation(self):
        from rpython.annotator import model as annmodel
        return annmodel.s_None

    def specialize_call(self, hop):
        hop.exception_cannot_occur()
        opname = self.instance.__name__
        return hop.genop('gc__%s' % opname, hop.args_v, resulttype=hop.r_result)


class IsEnabledEntry(ExtRegistryEntry):
    _about_ = gc.isenabled

    def compute_result_annotation(self):
        from rpython.annotator import model as annmodel
        return annmodel.s_Bool

    def specialize_call(self, hop):
        hop.exception_cannot_occur()
        return hop.genop('gc__isenabled', hop.args_v, resulttype=hop.r_result)


class CollectStepEntry(ExtRegistryEntry):
    _about_ = collect_step

    def compute_result_annotation(self):
        from rpython.annotator import model as annmodel
        return annmodel.SomeInteger()

    def specialize_call(self, hop):
        hop.exception_cannot_occur()
        return hop.genop('gc__collect_step', hop.args_v, resulttype=hop.r_result)


class SetMaxHeapSizeEntry(ExtRegistryEntry):
    _about_ = set_max_heap_size

    def compute_result_annotation(self, s_nbytes):
        from rpython.annotator import model as annmodel
        return annmodel.s_None

    def specialize_call(self, hop):
        [v_nbytes] = hop.inputargs(lltype.Signed)
        hop.exception_cannot_occur()
        return hop.genop('gc_set_max_heap_size', [v_nbytes],
                         resulttype=lltype.Void)

def can_move(p):
    """Check if the GC object 'p' is at an address that can move.
    Must not be called with None.  With non-moving GCs, it is always False.
    With some moving GCs like the SemiSpace GC, it is always True.
    With other moving GCs like the MiniMark GC, it can be True for some
    time, then False for the same object, when we are sure that it won't
    move any more.
    """
    return True

class SplitAddrSpaceEntry(ExtRegistryEntry):
    _about_ = must_split_gc_address_space

    def compute_result_annotation(self):
        config = self.bookkeeper.annotator.translator.config
        result = config.translation.split_gc_address_space
        return self.bookkeeper.immutablevalue(result)

    def specialize_call(self, hop):
        hop.exception_cannot_occur()
        return hop.inputconst(lltype.Bool, hop.s_result.const)

class CanMoveEntry(ExtRegistryEntry):
    _about_ = can_move

    def compute_result_annotation(self, s_p):
        from rpython.annotator import model as annmodel
        return annmodel.SomeBool()

    def specialize_call(self, hop):
        hop.exception_cannot_occur()
        return hop.genop('gc_can_move', hop.args_v, resulttype=hop.r_result)

def _make_sure_does_not_move(p):
    """'p' is a non-null GC object.  This (tries to) make sure that the
    object does not move any more, by forcing collections if needed.
    Warning: should ideally only be used with the minimark GC, and only
    on objects that are already a bit old, so have a chance to be
    already non-movable."""
    assert p
    if not we_are_translated():
        # for testing purpose
        return not _is_pinned(p)
    #
    if _is_pinned(p):
        # although a pinned object can't move we must return 'False'.  A pinned
        # object can be unpinned any time and becomes movable.
        return False
    i = -1
    while can_move(p):
        if i > 6:
            raise NotImplementedError("can't make object non-movable!")
        collect(i)
        i += 1
    return True

def needs_write_barrier(obj):
    """ We need to emit write barrier if the right hand of assignment
    is in nursery, used by the JIT for handling set*_gc(Const)
    """
    if not obj:
        return False
    # XXX returning can_move() here might acidentally work for the use
    # cases (see issue #2212), but this is not really safe.  Now we
    # just return True for any non-NULL pointer, and too bad for the
    # few extra 'cond_call_gc_wb'.  It could be improved e.g. to return
    # False if 'obj' is a static prebuilt constant, or if we're not
    # running incminimark...
    return True #can_move(obj)

def _heap_stats():
    raise NotImplementedError # can't be run directly

class DumpHeapEntry(ExtRegistryEntry):
    _about_ = _heap_stats

    def compute_result_annotation(self):
        from rpython.rtyper.llannotation import SomePtr
        from rpython.memory.gc.base import ARRAY_TYPEID_MAP
        return SomePtr(lltype.Ptr(ARRAY_TYPEID_MAP))

    def specialize_call(self, hop):
        hop.exception_is_here()
        return hop.genop('gc_heap_stats', [], resulttype=hop.r_result)


def copy_struct_item(source, dest, si, di):
    TP = lltype.typeOf(source).TO.OF
    i = 0
    while i < len(TP._names):
        setattr(dest[di], TP._names[i], getattr(source[si], TP._names[i]))
        i += 1

class CopyStructEntry(ExtRegistryEntry):
    _about_ = copy_struct_item

    def compute_result_annotation(self, s_source, s_dest, si, di):
        pass

    def specialize_call(self, hop):
        v_source, v_dest, v_si, v_di = hop.inputargs(hop.args_r[0],
                                                     hop.args_r[1],
                                                     lltype.Signed,
                                                     lltype.Signed)
        hop.exception_cannot_occur()
        TP = v_source.concretetype.TO.OF
        for name, TP in TP._flds.iteritems():
            c_name = hop.inputconst(lltype.Void, name)
            v_fld = hop.genop('getinteriorfield', [v_source, v_si, c_name],
                              resulttype=TP)
            hop.genop('setinteriorfield', [v_dest, v_di, c_name, v_fld])


@specialize.ll()
def copy_item(source, dest, si, di):
    TP = lltype.typeOf(source)
    if isinstance(TP.TO.OF, lltype.Struct):
        copy_struct_item(source, dest, si, di)
    else:
        dest[di] = source[si]

@specialize.memo()
def _contains_gcptr(TP):
    if not isinstance(TP, lltype.Struct):
        if isinstance(TP, lltype.Ptr) and TP.TO._gckind == 'gc':
            return True
        return False
    for TP in TP._flds.itervalues():
        if _contains_gcptr(TP):
            return True
    return False


@jit.oopspec('list.ll_arraycopy(source, dest, source_start, dest_start, length)')
@enforceargs(None, None, int, int, int)
@specialize.ll()
def ll_arraycopy(source, dest, source_start, dest_start, length):
    from rpython.rtyper.lltypesystem.lloperation import llop
    from rpython.rlib.objectmodel import keepalive_until_here

    # XXX: Hack to ensure that we get a proper effectinfo.write_descrs_arrays
    # and also, maybe, speed up very small cases
    if length <= 1:
        if length == 1:
            copy_item(source, dest, source_start, dest_start)
        return

    # supports non-overlapping copies only
    if not we_are_translated():
        if source == dest:
            assert (source_start + length <= dest_start or
                    dest_start + length <= source_start)

    TP = lltype.typeOf(source).TO
    assert TP == lltype.typeOf(dest).TO

    slowpath = False
    if must_split_gc_address_space():
        slowpath = True
    elif _contains_gcptr(TP.OF):
        # perform a write barrier that copies necessary flags from
        # source to dest
        if not llop.gc_writebarrier_before_copy(lltype.Bool, source, dest,
                                                source_start, dest_start,
                                                length):
            slowpath = True
    if slowpath:
        # if the write barrier is not supported, or if we translate with
        # the option 'split_gc_address_space', then copy by hand
        i = 0
        while i < length:
            copy_item(source, dest, i + source_start, i + dest_start)
            i += 1
        return
    source_addr = llmemory.cast_ptr_to_adr(source)
    dest_addr   = llmemory.cast_ptr_to_adr(dest)
    cp_source_addr = (source_addr + llmemory.itemoffsetof(TP, 0) +
                      llmemory.sizeof(TP.OF) * source_start)
    cp_dest_addr = (dest_addr + llmemory.itemoffsetof(TP, 0) +
                    llmemory.sizeof(TP.OF) * dest_start)

    llmemory.raw_memcopy(cp_source_addr, cp_dest_addr,
                         llmemory.sizeof(TP.OF) * length)
    keepalive_until_here(source)
    keepalive_until_here(dest)

@jit.oopspec('list.ll_arraymove(array, source_start, dest_start, length)')
@enforceargs(None, int, int, int)
@specialize.ll()
def ll_arraymove(array, source_start, dest_start, length):
    from rpython.rtyper.lltypesystem.lloperation import llop
    from rpython.rlib.objectmodel import keepalive_until_here

    # XXX: Hack to ensure that we get a proper effectinfo.write_descrs_arrays
    # and also, maybe, speed up very small cases
    if length <= 1:
        if length == 1:
            copy_item(array, array, source_start, dest_start)
        return

    TP = lltype.typeOf(array).TO

    slowpath = False
    if must_split_gc_address_space():
        slowpath = True
    elif _contains_gcptr(TP.OF):
        # if the array has card marks set, then this will perform a
        # general (card-less) write barrier on it, because the marked cards
        # are no longer necessarily the right ones after the move.
        # Otherwise, if the GC doesn't support cards, this is a no-op,
        # because we're not writing any new GC pointer into the array:
        # we're just moving existing ones around.
        llop.gc_writebarrier_before_move(lltype.Void, array)
    if slowpath:
        # if we translate with the option 'split_gc_address_space',
        # then move by hand
        delta = dest_start - source_start
        if delta < 0:
            i = source_start
            stop = source_start + length
            while i < stop:
                copy_item(array, array, i, i + delta)
                i += 1
        elif delta > 0:
            i = source_start + length
            while i > source_start:
                i -= 1
                copy_item(array, array, i, i + delta)
        return
    array_addr = llmemory.cast_ptr_to_adr(array)
    mv_source_addr = (array_addr + llmemory.itemoffsetof(TP, 0) +
                      llmemory.sizeof(TP.OF) * source_start)
    mv_dest_addr = (array_addr + llmemory.itemoffsetof(TP, 0) +
                    llmemory.sizeof(TP.OF) * dest_start)

    llmemory.raw_memmove_no_free(mv_source_addr, mv_dest_addr,
                                 llmemory.sizeof(TP.OF) * length)
    keepalive_until_here(array)

@jit.oopspec('rgc.ll_shrink_array(p, smallerlength)')
@enforceargs(None, int)
@specialize.ll()
def ll_shrink_array(p, smallerlength):
    from rpython.rtyper.lltypesystem.lloperation import llop
    from rpython.rlib.objectmodel import keepalive_until_here

    if llop.shrink_array(lltype.Bool, p, smallerlength):
        return p    # done by the GC
    # XXX we assume for now that the type of p is GcStruct containing a
    # variable array, with no further pointers anywhere, and exactly one
    # field in the fixed part -- like STR and UNICODE.

    TP = lltype.typeOf(p).TO
    newp = lltype.malloc(TP, smallerlength)

    assert len(TP._names) == 2
    field = getattr(p, TP._names[0])
    setattr(newp, TP._names[0], field)

    if must_split_gc_address_space():
        # do the copying element by element
        i = 0
        while i < smallerlength:
            newp.chars[i] = p.chars[i]
            i += 1
        return newp

    ARRAY = getattr(TP, TP._arrayfld)
    offset = (llmemory.offsetof(TP, TP._arrayfld) +
              llmemory.itemoffsetof(ARRAY, 0))
    source_addr = llmemory.cast_ptr_to_adr(p) + offset
    dest_addr = llmemory.cast_ptr_to_adr(newp) + offset
    llmemory.raw_memcopy(source_addr, dest_addr,
                         llmemory.sizeof(ARRAY.OF) * smallerlength)

    keepalive_until_here(p)
    keepalive_until_here(newp)
    return newp

@jit.dont_look_inside
@specialize.ll()
def ll_arrayclear(p):
    # Equivalent to memset(array, 0).  Only for GcArray(primitive-type) for now.
    from rpython.rlib.objectmodel import keepalive_until_here

    length = len(p)
    ARRAY = lltype.typeOf(p).TO
    if must_split_gc_address_space():
        # do the clearing element by element
        from rpython.rtyper.lltypesystem import rffi
        ZERO = rffi.cast(ARRAY.OF, 0)
        i = 0
        while i < length:
            p[i] = ZERO
            i += 1
    else:
        offset = llmemory.itemoffsetof(ARRAY, 0)
        dest_addr = llmemory.cast_ptr_to_adr(p) + offset
        llmemory.raw_memclear(dest_addr, llmemory.sizeof(ARRAY.OF) * length)
    keepalive_until_here(p)


def no_release_gil(func):
    func._dont_inline_ = True
    func._no_release_gil_ = True
    return func

def no_collect(func):
    func._dont_inline_ = True
    func._gc_no_collect_ = True
    return func

def must_be_light_finalizer(func):
    """Mark a __del__ method as being a destructor, calling only a limited
    set of operations.  See pypy/doc/discussion/finalizer-order.rst.

    If you use the same decorator on a class, this class and all its
    subclasses are only allowed to have __del__ methods which are
    similarly decorated (or no __del__ at all).  It prevents a class
    hierarchy from having destructors in some parent classes, which are
    overridden in subclasses with (non-light, old-style) finalizers.
    (This case is the original motivation for FinalizerQueue.)
    """
    func._must_be_light_finalizer_ = True
    return func


class FinalizerQueue(object):
    """A finalizer queue.  See pypy/doc/discussion/finalizer-order.rst.
    """
    # Must be subclassed, and the subclass needs these attributes:
    #
    #    Class:
    #        the class (or base class) of finalized objects
    #        --or-- None to handle low-level GCREFs directly
    #
    #    def finalizer_trigger(self):
    #        called to notify that new items have been put in the queue

    def _freeze_(self):
        return True

    @specialize.arg(0)
    @jit.dont_look_inside
    def next_dead(self):
        if we_are_translated():
            from rpython.rtyper.lltypesystem.lloperation import llop
            from rpython.rtyper.lltypesystem.llmemory import GCREF
            from rpython.rtyper.annlowlevel import cast_gcref_to_instance
            tag = FinalizerQueue._get_tag(self)
            ptr = llop.gc_fq_next_dead(GCREF, tag)
            if self.Class is not None:
                ptr = cast_gcref_to_instance(self.Class, ptr)
            return ptr
        try:
            return self._queue.popleft()
        except (AttributeError, IndexError):
            return None

    @specialize.arg(0)
    @jit.dont_look_inside
    def register_finalizer(self, obj):
        from rpython.rtyper.lltypesystem.llmemory import GCREF
        if self.Class is None:
            assert lltype.typeOf(obj) == GCREF
        else:
            assert isinstance(obj, self.Class)
        if we_are_translated():
            from rpython.rtyper.lltypesystem.lloperation import llop
            from rpython.rtyper.annlowlevel import cast_instance_to_gcref
            tag = FinalizerQueue._get_tag(self)
            if self.Class is not None:
                obj = cast_instance_to_gcref(obj)
            llop.gc_fq_register(lltype.Void, tag, obj)
            return
        else:
            self._untranslated_register_finalizer(obj)

    @not_rpython
    def _get_tag(self):
        "special-cased below"

    def _reset(self):
        import collections
        self._weakrefs = set()
        self._queue = collections.deque()

    def _already_registered(self, obj):
        return hasattr(obj, '__enable_del_for_id')

    def _untranslated_register_finalizer(self, obj):
        assert not self._already_registered(obj)

        if not hasattr(self, '_queue'):
            self._reset()

        # Fetch and check the type of 'obj'
        objtyp = obj.__class__
        assert isinstance(objtyp, type), (
            "%r: to run register_finalizer() untranslated, "
            "the object's class must be new-style" % (obj,))
        assert hasattr(obj, '__dict__'), (
            "%r: to run register_finalizer() untranslated, "
            "the object must have a __dict__" % (obj,))
        assert (not hasattr(obj, '__slots__') or
                type(obj).__slots__ == () or
                type(obj).__slots__ == ('__weakref__',)), (
            "%r: to run register_finalizer() untranslated, "
            "the object must not have __slots__" % (obj,))

        # The first time, patch the method __del__ of the class, if
        # any, so that we can disable it on the original 'obj' and
        # enable it only on the 'newobj'
        _fq_patch_class(objtyp)

        # Build a new shadow object with the same class and dict
        newobj = object.__new__(objtyp)
        obj.__dict__ = obj.__dict__.copy() #PyPy: break the dict->obj dependency
        newobj.__dict__ = obj.__dict__

        # A callback that is invoked when (or after) 'obj' is deleted;
        # 'newobj' is still kept alive here
        def callback(wr):
            self._weakrefs.discard(wr)
            self._queue.append(newobj)
            self.finalizer_trigger()

        import weakref
        wr = weakref.ref(obj, callback)
        self._weakrefs.add(wr)

        # Disable __del__ on the original 'obj' and enable it only on
        # the 'newobj'.  Use id() and not a regular reference, because
        # that would make a cycle between 'newobj' and 'obj.__dict__'
        # (which is 'newobj.__dict__' too).
        setattr(obj, '__enable_del_for_id', id(newobj))


def _fq_patch_class(Cls):
    if Cls in _fq_patched_classes:
        return
    if '__del__' in Cls.__dict__:
        def __del__(self):
            if not we_are_translated():
                try:
                    if getattr(self, '__enable_del_for_id') != id(self):
                        return
                except AttributeError:
                    pass
            original_del(self)
        original_del = Cls.__del__
        Cls.__del__ = __del__
        _fq_patched_classes.add(Cls)
    for BaseCls in Cls.__bases__:
        _fq_patch_class(BaseCls)

_fq_patched_classes = set()

class FqTagEntry(ExtRegistryEntry):
    _about_ = FinalizerQueue._get_tag.im_func

    def compute_result_annotation(self, s_fq):
        assert s_fq.is_constant()
        fq = s_fq.const
        s_func = self.bookkeeper.immutablevalue(fq.finalizer_trigger)
        self.bookkeeper.emulate_pbc_call(self.bookkeeper.position_key,
                                         s_func, [])
        if not hasattr(fq, '_fq_tag'):
            fq._fq_tag = CDefinedIntSymbolic(
                '0 /*FinalizerQueue TAG for %s*/' % fq.__class__.__name__,
                default=fq)
        return self.bookkeeper.immutablevalue(fq._fq_tag)

    def specialize_call(self, hop):
        from rpython.rtyper.rclass import InstanceRepr
        translator = hop.rtyper.annotator.translator
        fq = hop.args_s[0].const
        graph = translator._graphof(fq.finalizer_trigger.im_func)
        InstanceRepr.check_graph_of_del_does_not_call_too_much(hop.rtyper,
                                                               graph)
        hop.exception_cannot_occur()
        return hop.inputconst(lltype.Signed, hop.s_result.const)

@jit.dont_look_inside
@specialize.argtype(0)
def may_ignore_finalizer(obj):
    """Optimization hint: says that it is valid for any finalizer
    for 'obj' to be ignored, depending on the GC."""
    from rpython.rtyper.lltypesystem.lloperation import llop
    llop.gc_ignore_finalizer(lltype.Void, obj)

@jit.dont_look_inside
def move_out_of_nursery(obj):
    """ Returns another object which is a copy of obj; but at any point
        (either now or in the future) the returned object might suddenly
        become identical to the one returned.

        NOTE: Only use for immutable objects!

        NOTE: Might fail on some GCs!  You have to check again
        can_move() afterwards.  It should always work with the default
        GC.  With Boehm, can_move() is always False so
        move_out_of_nursery() should never be called in the first place.
    """
    return obj

class MoveOutOfNurseryEntry(ExtRegistryEntry):
    _about_ = move_out_of_nursery

    def compute_result_annotation(self, s_obj):
        return s_obj

    def specialize_call(self, hop):
        hop.exception_cannot_occur()
        return hop.genop('gc_move_out_of_nursery', hop.args_v, resulttype=hop.r_result)

@jit.dont_look_inside
def increase_root_stack_depth(new_depth):
    """Shadowstack: make sure the size of the shadowstack is at least
    'new_depth' pointers."""
    from rpython.rtyper.lltypesystem.lloperation import llop
    llop.gc_increase_root_stack_depth(lltype.Void, new_depth)

# ____________________________________________________________


@not_rpython
def get_rpy_roots():
    # Return the 'roots' from the GC.
    # The gc typically returns a list that ends with a few NULL_GCREFs.
    return [_GcRef(x) for x in gc.get_objects()]

@not_rpython
def get_rpy_referents(gcref):
    x = gcref._x
    if isinstance(x, list):
        d = x
    elif isinstance(x, dict):
        d = x.keys() + x.values()
    else:
        d = []
        if hasattr(x, '__dict__'):
            d = x.__dict__.values()
        if hasattr(type(x), '__slots__'):
            for slot in type(x).__slots__:
                try:
                    d.append(getattr(x, slot))
                except AttributeError:
                    pass
    # discard objects that are too random or that are _freeze_=True
    return [_GcRef(x) for x in d if _keep_object(x)]

def _keep_object(x):
    if isinstance(x, type) or type(x) is types.ClassType:
        return False      # don't keep any type
    if isinstance(x, (list, dict, str)):
        return True       # keep lists and dicts and strings
    if hasattr(x, '_freeze_'):
        return False
    return type(x).__module__ != '__builtin__'   # keep non-builtins

def add_memory_pressure(estimate, object=None):
    """Add memory pressure for OpaquePtrs."""
    pass

class AddMemoryPressureEntry(ExtRegistryEntry):
    _about_ = add_memory_pressure

    def compute_result_annotation(self, s_nbytes, s_object=None):
        from rpython.annotator import model as annmodel
        if s_object is not None:
            if not isinstance(s_object, annmodel.SomeInstance):
                raise Exception("Wrong kind of object passed to "
                                "add memory pressure")
            self.bookkeeper.memory_pressure_types.add(s_object.classdef)
        return annmodel.s_None

    def specialize_call(self, hop):
        v_size = hop.inputarg(lltype.Signed, 0)
        if len(hop.args_v) == 2:
            v_obj = hop.inputarg(hop.args_r[1], 1)
            args = [v_size, v_obj]
        else:
            args = [v_size]
        hop.exception_cannot_occur()
        return hop.genop('gc_add_memory_pressure', args,
                         resulttype=lltype.Void)


@not_rpython
def get_rpy_memory_usage(gcref):
    # approximate implementation using CPython's type info
    Class = type(gcref._x)
    size = Class.__basicsize__
    if Class.__itemsize__ > 0:
        size += Class.__itemsize__ * len(gcref._x)
    return size

@not_rpython
def get_rpy_type_index(gcref):
    from rpython.rlib.rarithmetic import intmask
    Class = gcref._x.__class__
    i = intmask(id(Class))
    if i < 0:
        i = ~i    # always return a positive number, at least
    return i

def cast_gcref_to_int(gcref):
    # This is meant to be used on cast_instance_to_gcref results.
    # Don't use this on regular gcrefs obtained e.g. with
    # lltype.cast_opaque_ptr().
    if we_are_translated():
        return lltype.cast_ptr_to_int(gcref)
    else:
        return id(gcref._x)

(TOTAL_MEMORY, TOTAL_ALLOCATED_MEMORY, TOTAL_MEMORY_PRESSURE,
 PEAK_MEMORY, PEAK_ALLOCATED_MEMORY, TOTAL_ARENA_MEMORY,
 TOTAL_RAWMALLOCED_MEMORY, PEAK_ARENA_MEMORY, PEAK_RAWMALLOCED_MEMORY,
 NURSERY_SIZE, TOTAL_GC_TIME) = range(11)

@not_rpython
def get_stats(stat_no):
    """ Long docstring goes here
    """
    raise NotImplementedError

@not_rpython
def dump_rpy_heap(fd):
    raise NotImplementedError

@not_rpython
def get_typeids_z():
    raise NotImplementedError

@not_rpython
def get_typeids_list():
    raise NotImplementedError

@not_rpython
def has_gcflag_extra():
    return True
has_gcflag_extra._subopnum = 1

_gcflag_extras = set()

@not_rpython
def get_gcflag_extra(gcref):
    assert gcref   # not NULL!
    return gcref in _gcflag_extras
get_gcflag_extra._subopnum = 2

@not_rpython
def toggle_gcflag_extra(gcref):
    assert gcref   # not NULL!
    try:
        _gcflag_extras.remove(gcref)
    except KeyError:
        _gcflag_extras.add(gcref)
toggle_gcflag_extra._subopnum = 3

@not_rpython
def get_gcflag_dummy(gcref):
    return False
get_gcflag_dummy._subopnum = 4

def assert_no_more_gcflags():
    if not we_are_translated():
        assert not _gcflag_extras

ARRAY_OF_CHAR = lltype.Array(lltype.Char)
NULL_GCREF = lltype.nullptr(llmemory.GCREF.TO)

class _GcRef(object):
    # implementation-specific: there should not be any after translation
    __slots__ = ['_x', '_handle']
    _TYPE = llmemory.GCREF
    def __init__(self, x):
        self._x = x
    def __hash__(self):
        return object.__hash__(self._x)
    def __eq__(self, other):
        if isinstance(other, lltype._ptr):
            assert other == NULL_GCREF, (
                "comparing a _GcRef with a non-NULL lltype ptr")
            return False
        assert isinstance(other, _GcRef)
        return self._x is other._x
    def __ne__(self, other):
        return not self.__eq__(other)
    def __repr__(self):
        return "_GcRef(%r)" % (self._x, )
    def _freeze_(self):
        raise Exception("instances of rlib.rgc._GcRef cannot be translated")

def cast_instance_to_gcref(x):
    # Before translation, casts an RPython instance into a _GcRef.
    # After translation, it is a variant of cast_object_to_ptr(GCREF).
    if we_are_translated():
        from rpython.rtyper import annlowlevel
        x = annlowlevel.cast_instance_to_base_ptr(x)
        return lltype.cast_opaque_ptr(llmemory.GCREF, x)
    else:
        return _GcRef(x)
cast_instance_to_gcref._annspecialcase_ = 'specialize:argtype(0)'

def try_cast_gcref_to_instance(Class, gcref):
    # Before translation, unwraps the RPython instance contained in a _GcRef.
    # After translation, it is a type-check performed by the GC.
    if we_are_translated():
        from rpython.rtyper.rclass import OBJECTPTR, ll_isinstance
        from rpython.rtyper.annlowlevel import cast_base_ptr_to_instance
        if _is_rpy_instance(gcref):
            objptr = lltype.cast_opaque_ptr(OBJECTPTR, gcref)
            if objptr.typeptr:   # may be NULL, e.g. in rdict's dummykeyobj
                clsptr = _get_llcls_from_cls(Class)
                if ll_isinstance(objptr, clsptr):
                    return cast_base_ptr_to_instance(Class, objptr)
        return None
    else:
        if isinstance(gcref._x, Class):
            return gcref._x
        return None
try_cast_gcref_to_instance._annspecialcase_ = 'specialize:arg(0)'

_ffi_cache = None
def _fetch_ffi():
    global _ffi_cache
    if _ffi_cache is None:
        try:
            import _cffi_backend
            _ffi_cache = _cffi_backend.FFI()
        except (ImportError, AttributeError):
            import py
            py.test.skip("need CFFI >= 1.0")
    return _ffi_cache

@jit.dont_look_inside
def hide_nonmovable_gcref(gcref):
    from rpython.rtyper.lltypesystem import lltype, llmemory, rffi
    if we_are_translated():
        assert lltype.typeOf(gcref) == llmemory.GCREF
        assert not can_move(gcref)
        return rffi.cast(llmemory.Address, gcref)
    else:
        assert isinstance(gcref, _GcRef)
        x = gcref._x
        ffi = _fetch_ffi()
        if not hasattr(x, '__handle'):
            x.__handle = ffi.new_handle(x)
        addr = int(ffi.cast("intptr_t", x.__handle))
        return rffi.cast(llmemory.Address, addr)

@jit.dont_look_inside
def reveal_gcref(addr):
    from rpython.rtyper.lltypesystem import lltype, llmemory, rffi
    assert lltype.typeOf(addr) == llmemory.Address
    if we_are_translated():
        return rffi.cast(llmemory.GCREF, addr)
    else:
        addr = rffi.cast(lltype.Signed, addr)
        if addr == 0:
            return lltype.nullptr(llmemory.GCREF.TO)
        ffi = _fetch_ffi()
        x = ffi.from_handle(ffi.cast("void *", addr))
        return _GcRef(x)

# ------------------- implementation -------------------

_cache_s_list_of_gcrefs = None

def s_list_of_gcrefs():
    global _cache_s_list_of_gcrefs
    if _cache_s_list_of_gcrefs is None:
        from rpython.annotator import model as annmodel
        from rpython.rtyper.llannotation import SomePtr
        from rpython.annotator.listdef import ListDef
        s_gcref = SomePtr(llmemory.GCREF)
        _cache_s_list_of_gcrefs = annmodel.SomeList(
            ListDef(None, s_gcref, mutated=True, resized=False))
    return _cache_s_list_of_gcrefs

class Entry(ExtRegistryEntry):
    _about_ = get_rpy_roots
    def compute_result_annotation(self):
        return s_list_of_gcrefs()
    def specialize_call(self, hop):
        hop.exception_cannot_occur()
        return hop.genop('gc_get_rpy_roots', [], resulttype = hop.r_result)

class Entry(ExtRegistryEntry):
    _about_ = get_rpy_referents

    def compute_result_annotation(self, s_gcref):
        from rpython.rtyper.llannotation import SomePtr
        assert SomePtr(llmemory.GCREF).contains(s_gcref)
        return s_list_of_gcrefs()

    def specialize_call(self, hop):
        vlist = hop.inputargs(hop.args_r[0])
        hop.exception_cannot_occur()
        return hop.genop('gc_get_rpy_referents', vlist,
                         resulttype=hop.r_result)

class Entry(ExtRegistryEntry):
    _about_ = get_rpy_memory_usage
    def compute_result_annotation(self, s_gcref):
        from rpython.annotator import model as annmodel
        return annmodel.SomeInteger()
    def specialize_call(self, hop):
        vlist = hop.inputargs(hop.args_r[0])
        hop.exception_cannot_occur()
        return hop.genop('gc_get_rpy_memory_usage', vlist,
                         resulttype = hop.r_result)

class Entry(ExtRegistryEntry):
    _about_ = get_rpy_type_index
    def compute_result_annotation(self, s_gcref):
        from rpython.annotator import model as annmodel
        return annmodel.SomeInteger()
    def specialize_call(self, hop):
        vlist = hop.inputargs(hop.args_r[0])
        hop.exception_cannot_occur()
        return hop.genop('gc_get_rpy_type_index', vlist,
                         resulttype = hop.r_result)

class Entry(ExtRegistryEntry):
    _about_ = get_stats
    def compute_result_annotation(self, s_no):
        from rpython.annotator.model import SomeInteger
        if not isinstance(s_no, SomeInteger):
            raise Exception("expecting an integer")
        return SomeInteger()
    def specialize_call(self, hop):
        args = hop.inputargs(lltype.Signed)
        hop.exception_cannot_occur()
        return hop.genop('gc_get_stats', args, resulttype=lltype.Signed)

@not_rpython
def _is_rpy_instance(gcref):
    raise NotImplementedError

@not_rpython
def _get_llcls_from_cls(Class):
    raise NotImplementedError

class Entry(ExtRegistryEntry):
    _about_ = _is_rpy_instance
    def compute_result_annotation(self, s_gcref):
        from rpython.annotator import model as annmodel
        return annmodel.SomeBool()
    def specialize_call(self, hop):
        vlist = hop.inputargs(hop.args_r[0])
        hop.exception_cannot_occur()
        return hop.genop('gc_is_rpy_instance', vlist,
                         resulttype = hop.r_result)

class Entry(ExtRegistryEntry):
    _about_ = _get_llcls_from_cls
    def compute_result_annotation(self, s_Class):
        from rpython.rtyper.llannotation import SomePtr
        from rpython.rtyper.rclass import CLASSTYPE
        assert s_Class.is_constant()
        return SomePtr(CLASSTYPE)

    def specialize_call(self, hop):
        from rpython.rtyper.rclass import getclassrepr, CLASSTYPE
        from rpython.flowspace.model import Constant
        Class = hop.args_s[0].const
        classdef = hop.rtyper.annotator.bookkeeper.getuniqueclassdef(Class)
        classrepr = getclassrepr(hop.rtyper, classdef)
        vtable = classrepr.getvtable()
        assert lltype.typeOf(vtable) == CLASSTYPE
        hop.exception_cannot_occur()
        return Constant(vtable, concretetype=CLASSTYPE)

class Entry(ExtRegistryEntry):
    _about_ = dump_rpy_heap
    def compute_result_annotation(self, s_fd):
        from rpython.annotator.model import s_Bool
        return s_Bool
    def specialize_call(self, hop):
        vlist = hop.inputargs(lltype.Signed)
        hop.exception_is_here()
        return hop.genop('gc_dump_rpy_heap', vlist, resulttype = hop.r_result)

class Entry(ExtRegistryEntry):
    _about_ = get_typeids_z

    def compute_result_annotation(self):
        from rpython.rtyper.llannotation import SomePtr
        return SomePtr(lltype.Ptr(ARRAY_OF_CHAR))

    def specialize_call(self, hop):
        hop.exception_is_here()
        return hop.genop('gc_typeids_z', [], resulttype = hop.r_result)

class Entry(ExtRegistryEntry):
    _about_ = get_typeids_list

    def compute_result_annotation(self):
        from rpython.rtyper.llannotation import SomePtr
        from rpython.rtyper.lltypesystem import llgroup
        return SomePtr(lltype.Ptr(lltype.Array(llgroup.HALFWORD)))

    def specialize_call(self, hop):
        hop.exception_is_here()
        return hop.genop('gc_typeids_list', [], resulttype = hop.r_result)

class Entry(ExtRegistryEntry):
    _about_ = (has_gcflag_extra, get_gcflag_extra, toggle_gcflag_extra,
               get_gcflag_dummy)
    def compute_result_annotation(self, s_arg=None):
        from rpython.annotator.model import s_Bool
        return s_Bool
    def specialize_call(self, hop):
        subopnum = self.instance._subopnum
        vlist = [hop.inputconst(lltype.Signed, subopnum)]
        vlist += hop.inputargs(*hop.args_r)
        hop.exception_cannot_occur()
        return hop.genop('gc_gcflag_extra', vlist, resulttype = hop.r_result)

def lltype_is_gc(TP):
    return getattr(getattr(TP, "TO", None), "_gckind", "?") == 'gc'

def register_custom_trace_hook(TP, lambda_func):
    """ This function does not do anything, but called from any annotated
    place, will tell that "func" is used to trace GC roots inside any instance
    of the type TP.  The func must be specified as "lambda: func" in this
    call, for internal reasons.  Note that the func will be automatically
    specialized on the 'callback' argument value.  Example:

        def customtrace(gc, obj, callback, arg1, arg2):
            gc._trace_callback(callback, arg1, arg2, obj + offset_of_x)
        lambda_customtrace = lambda: customtrace
    """

@specialize.ll()
def ll_writebarrier(gc_obj):
    """Use together with custom tracers.  When you update some object pointer
    stored in raw memory, you must call this function on 'gc_obj', which must
    be the object of type TP with the custom tracer (*not* the value stored!).
    This makes sure that the custom hook will be called again."""
    from rpython.rtyper.lltypesystem.lloperation import llop
    llop.gc_writebarrier(lltype.Void, gc_obj)

class RegisterGcTraceEntry(ExtRegistryEntry):
    _about_ = register_custom_trace_hook

    def compute_result_annotation(self, s_tp, s_lambda_func):
        pass

    def specialize_call(self, hop):
        TP = hop.args_s[0].const
        lambda_func = hop.args_s[1].const
        hop.exception_cannot_occur()
        hop.rtyper.custom_trace_funcs.append((TP, lambda_func()))

def register_custom_light_finalizer(TP, lambda_func):
    """ This function does not do anything, but called from any annotated
    place, will tell that "func" is used as a lightweight finalizer for TP.
    The func must be specified as "lambda: func" in this call, for internal
    reasons.
    """

@specialize.arg(0)
def do_get_objects(callback):
    """ Get all the objects that satisfy callback(gcref) -> obj
    """
    roots = get_rpy_roots()
    if not roots:      # is always None on translations using Boehm or None GCs
        return []
    roots = [gcref for gcref in roots if gcref]
    result_w = []
    #
    if not we_are_translated():   # fast path before translation
        seen = set()
        while roots:
            gcref = roots.pop()
            if gcref not in seen:
                seen.add(gcref)
                w_obj = callback(gcref)
                if w_obj is not None:
                    result_w.append(w_obj)
                roots.extend(get_rpy_referents(gcref))
        return result_w
    #
    pending = roots[:]
    while pending:
        gcref = pending.pop()
        if not get_gcflag_extra(gcref):
            toggle_gcflag_extra(gcref)
            w_obj = callback(gcref)
            if w_obj is not None:
                result_w.append(w_obj)
            pending.extend(get_rpy_referents(gcref))
    clear_gcflag_extra(roots)
    assert_no_more_gcflags()
    return result_w

class RegisterCustomLightFinalizer(ExtRegistryEntry):
    _about_ = register_custom_light_finalizer

    def compute_result_annotation(self, s_tp, s_lambda_func):
        pass

    def specialize_call(self, hop):
        from rpython.rtyper.llannotation import SomePtr
        TP = hop.args_s[0].const
        lambda_func = hop.args_s[1].const
        ll_func = lambda_func()
        args_s = [SomePtr(lltype.Ptr(TP))]
        funcptr = hop.rtyper.annotate_helper_fn(ll_func, args_s)
        hop.exception_cannot_occur()
        lltype.attachRuntimeTypeInfo(TP, destrptr=funcptr)

def clear_gcflag_extra(fromlist):
    pending = fromlist[:]
    while pending:
        gcref = pending.pop()
        if get_gcflag_extra(gcref):
            toggle_gcflag_extra(gcref)
            pending.extend(get_rpy_referents(gcref))

all_typeids = {}

def get_typeid(obj):
    raise Exception("does not work untranslated")

class GetTypeidEntry(ExtRegistryEntry):
    _about_ = get_typeid

    def compute_result_annotation(self, s_obj):
        from rpython.annotator import model as annmodel
        return annmodel.SomeInteger()

    def specialize_call(self, hop):
        hop.exception_cannot_occur()
        return hop.genop('gc_gettypeid', hop.args_v, resulttype=lltype.Signed)

# ____________________________________________________________


class _rawptr_missing_item(object):
    pass
_rawptr_missing_item = _rawptr_missing_item()


class _ResizableListSupportingRawPtr(list):
    """Calling this class is a no-op after translation.

    Before translation, it returns a new instance of
    _ResizableListSupportingRawPtr, on which
    rgc.nonmoving_raw_ptr_for_resizable_list() might be
    used if needed.  For now, only supports lists of chars.
    """
    __slots__ = ('_ll_list',)   # either None or a struct of TYPE=LIST_OF(Char)

    def __init__(self, lst):
        self._ll_list = None
        self.__from_list(lst)

    def __resize(self):
        """Called before an operation changes the size of the list"""
        if self._ll_list is not None:
            list.__init__(self, self.__as_list())
            self._ll_list = None

    def __from_list(self, lst):
        """Initialize the list from a copy of the list 'lst'."""
        assert isinstance(lst, list)
        for x in lst:
            assert isinstance(x, str) and len(x) == 1
        if self is lst:
            return
        if len(self) != len(lst):
            self.__resize()
        if self._ll_list is None:
            list.__init__(self, lst)
        else:
            assert len(self) == self._ll_list.length == len(lst)
            for i in range(len(self)):
                self._ll_list.items[i] = lst[i]

    def __as_list(self):
        """Return a list (the same or a different one) which contains the
        items in the regular way."""
        if self._ll_list is None:
            return self
        length = self._ll_list.length
        assert length == len(self)
        return [self._ll_list.items[i] for i in range(length)]

    def __getitem__(self, index):
        if self._ll_list is None:
            return list.__getitem__(self, index)
        if index < 0:
            index += len(self)
        if not (0 <= index < len(self)):
            raise IndexError
        return self._ll_list.items[index]

    def __setitem__(self, index, new):
        if self._ll_list is None:
            return list.__setitem__(self, index, new)
        if index < 0:
            index += len(self)
        if not (0 <= index < len(self)):
            raise IndexError
        self._ll_list.items[index] = new

    def __delitem__(self, index):
        self.__resize()
        list.__delitem__(self, index)

    def __getslice__(self, i, j):
        return self.__class__(list.__getslice__(self.__as_list(), i, j))

    def __setslice__(self, i, j, new):
        lst = self.__as_list()
        list.__setslice__(lst, i, j, new)
        self.__from_list(lst)

    def __delslice__(self, i, j):
        lst = self.__as_list()
        list.__delslice__(lst, i, j)
        self.__from_list(lst)

    def __iter__(self):
        try:
            i = 0
            while True:
                yield self[i]
                i += 1
        except IndexError:
            pass

    def __reversed__(self):
        i = len(self)
        while i > 0:
            i -= 1
            yield self[i]

    def __contains__(self, item):
        return list.__contains__(self.__as_list(), item)

    def __add__(self, other):
        if isinstance(other, _ResizableListSupportingRawPtr):
            other = other.__as_list()
        return list.__add__(self.__as_list(), other)

    def __radd__(self, other):
        if isinstance(other, _ResizableListSupportingRawPtr):
            other = other.__as_list()
        return list.__add__(other, self.__as_list())

    def __iadd__(self, other):
        self.__resize()
        return list.__iadd__(self, other)

    def __eq__(self, other):
        return list.__eq__(self.__as_list(), other)
    def __ne__(self, other):
        return list.__ne__(self.__as_list(), other)
    def __ge__(self, other):
        return list.__ge__(self.__as_list(), other)
    def __gt__(self, other):
        return list.__gt__(self.__as_list(), other)
    def __le__(self, other):
        return list.__le__(self.__as_list(), other)
    def __lt__(self, other):
        return list.__lt__(self.__as_list(), other)

    def __mul__(self, other):
        return list.__mul__(self.__as_list(), other)

    def __rmul__(self, other):
        return list.__mul__(self.__as_list(), other)

    def __imul__(self, other):
        self.__resize()
        return list.__imul__(self, other)

    def __repr__(self):
        return '_ResizableListSupportingRawPtr(%s)' % (
            list.__repr__(self.__as_list()),)

    def append(self, object):
        self.__resize()
        return list.append(self, object)

    def count(self, value):
        return list.count(self.__as_list(), value)

    def extend(self, iterable):
        self.__resize()
        return list.extend(self, iterable)

    def index(self, value, *start_stop):
        return list.index(self.__as_list(), value, *start_stop)

    def insert(self, index, object):
        self.__resize()
        return list.insert(self, index, object)

    def pop(self, *opt_index):
        self.__resize()
        return list.pop(self, *opt_index)

    def remove(self, value):
        self.__resize()
        return list.remove(self, value)

    def reverse(self):
        lst = self.__as_list()
        list.reverse(lst)
        self.__from_list(lst)

    def sort(self, *args, **kwds):
        lst = self.__as_list()
        list.sort(lst, *args, **kwds)
        self.__from_list(lst)

    def _get_ll_list(self):
        from rpython.rtyper.lltypesystem import rffi
        from rpython.rtyper.lltypesystem.rlist import LIST_OF
        if self._ll_list is None:
            LIST = LIST_OF(lltype.Char)
            existing_items = list(self)
            n = len(self)
            self._ll_list = lltype.malloc(LIST, immortal=True)
            self._ll_list.length = n
            self._ll_list.items = lltype.malloc(LIST.items.TO, n)
            self.__from_list(existing_items)
            assert self._ll_list is not None
        return self._ll_list

    def _nonmoving_raw_ptr_for_resizable_list(self):
        ll_list = self._get_ll_list()
        return ll_nonmovable_raw_ptr_for_resizable_list(ll_list)

def resizable_list_supporting_raw_ptr(lst):
    return _ResizableListSupportingRawPtr(lst)

def nonmoving_raw_ptr_for_resizable_list(lst):
    if must_split_gc_address_space():
        raise ValueError
    return _nonmoving_raw_ptr_for_resizable_list(lst)

def _nonmoving_raw_ptr_for_resizable_list(lst):
    assert isinstance(lst, _ResizableListSupportingRawPtr)
    return lst._nonmoving_raw_ptr_for_resizable_list()

def ll_for_resizable_list(lst):
    """
    This is the equivalent of llstr(), but for lists. It can be called only if
    the list has been created by calling resizable_list_supporting_raw_ptr().

    In theory, all the operations on lst are immediately visible also on
    ll_list. However, support for that is incomplete in
    _ResizableListSupportingRawPtr and as such, the pointer becomes invalid as
    soon as you call a resizing operation on lst.
    """
    assert isinstance(lst, _ResizableListSupportingRawPtr)
    return lst._get_ll_list()

def _check_resizable_list_of_chars(s_list):
    from rpython.annotator import model as annmodel
    from rpython.rlib import debug
    if annmodel.s_None.contains(s_list):
        return    # "None", will likely be generalized later
    if not isinstance(s_list, annmodel.SomeList):
        raise Exception("not a list, got %r" % (s_list,))
    if not isinstance(s_list.listdef.listitem.s_value,
                      (annmodel.SomeChar, annmodel.SomeImpossibleValue)):
        raise debug.NotAListOfChars
    s_list.listdef.resize()    # must be resizable

class Entry(ExtRegistryEntry):
    _about_ = resizable_list_supporting_raw_ptr

    def compute_result_annotation(self, s_list):
        _check_resizable_list_of_chars(s_list)
        return s_list

    def specialize_call(self, hop):
        from rpython.rtyper.lltypesystem.rlist import LIST_OF
        if hop.args_r[0].LIST != LIST_OF(lltype.Char):
            raise ValueError('Resizable list of chars does not have the '
                             'expected low-level type')
        hop.exception_cannot_occur()
        return hop.inputarg(hop.args_r[0], 0)

class Entry(ExtRegistryEntry):
    _about_ = _nonmoving_raw_ptr_for_resizable_list

    def compute_result_annotation(self, s_list):
        from rpython.rtyper.lltypesystem import lltype, rffi
        from rpython.rtyper.llannotation import SomePtr
        _check_resizable_list_of_chars(s_list)
        return SomePtr(rffi.CCHARP)

    def specialize_call(self, hop):
        v_list = hop.inputarg(hop.args_r[0], 0)
        hop.exception_cannot_occur()   # ignoring MemoryError
        return hop.gendirectcall(ll_nonmovable_raw_ptr_for_resizable_list,
                                 v_list)

class Entry(ExtRegistryEntry):
    _about_ = ll_for_resizable_list

    def compute_result_annotation(self, s_list):
        from rpython.rtyper.lltypesystem.rlist import LIST_OF
        from rpython.rtyper.llannotation import lltype_to_annotation
        _check_resizable_list_of_chars(s_list)
        LIST = LIST_OF(lltype.Char)
        return lltype_to_annotation(lltype.Ptr(LIST))

    def specialize_call(self, hop):
        hop.exception_cannot_occur()
        assert hop.args_r[0].lowleveltype == hop.r_result.lowleveltype
        v_ll_list, = hop.inputargs(*hop.args_r)
        return hop.genop('same_as', [v_ll_list],
                         resulttype = hop.r_result.lowleveltype)


@jit.dont_look_inside
def ll_nonmovable_raw_ptr_for_resizable_list(ll_list):
    """
    WARNING: dragons ahead.
    Return the address of the internal char* buffer of 'll_list', which
    must be a resizable list of chars.

    This makes sure that the list items are non-moving, if necessary by
    first copying the GcArray inside 'll_list.items' outside the GC
    nursery.  The returned 'char *' pointer is guaranteed to be valid
    until one of these occurs:

       * 'll_list' gets garbage-collected; or
       * you do an operation on 'll_list' that changes its size.
    """
    from rpython.rtyper.lltypesystem import lltype, rffi
    array = ll_list.items
    if can_move(array):
        length = ll_list.length
        new_array = lltype.malloc(lltype.typeOf(ll_list).TO.items.TO, length,
                                  nonmovable=True)
        ll_arraycopy(array, new_array, 0, 0, length)
        ll_list.items = new_array
        array = new_array
    ptr = lltype.direct_arrayitems(array)
    # ptr is a Ptr(FixedSizeArray(Char, 1)).  Cast it to a rffi.CCHARP
    return rffi.cast(rffi.CCHARP, ptr)

@jit.dont_look_inside
@no_collect
@specialize.ll()
def ll_write_final_null_char(s):
    """'s' is a low-level STR; writes a terminating NULL character after
    the other characters in 's'.  Warning, this only works because of
    the 'extra_item_after_alloc' hack inside the definition of STR.
    """
    from rpython.rtyper.lltypesystem import rffi
    PSTR = lltype.typeOf(s)
    assert has_final_null_char(PSTR) == 1
    n = llmemory.offsetof(PSTR.TO, 'chars')
    n += llmemory.itemoffsetof(PSTR.TO.chars, 0)
    n = llmemory.raw_malloc_usage(n)
    n += len(s.chars)
    # no GC operation from here!
    ptr = rffi.cast(rffi.CCHARP, s)
    ptr[n] = '\x00'

@specialize.memo()
def has_final_null_char(PSTR):
    return PSTR.TO.chars._hints.get('extra_item_after_alloc', 0)