1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
.. highlightlang:: c
.. _memory:
*****************
Memory Management
*****************
.. sectionauthor:: Vladimir Marangozov <Vladimir.Marangozov@inrialpes.fr>
.. _memoryoverview:
Overview
========
Memory management in Python involves a private heap containing all Python
objects and data structures. The management of this private heap is ensured
internally by the *Python memory manager*. The Python memory manager has
different components which deal with various dynamic storage management aspects,
like sharing, segmentation, preallocation or caching.
At the lowest level, a raw memory allocator ensures that there is enough room in
the private heap for storing all Python-related data by interacting with the
memory manager of the operating system. On top of the raw memory allocator,
several object-specific allocators operate on the same heap and implement
distinct memory management policies adapted to the peculiarities of every object
type. For example, integer objects are managed differently within the heap than
strings, tuples or dictionaries because integers imply different storage
requirements and speed/space tradeoffs. The Python memory manager thus delegates
some of the work to the object-specific allocators, but ensures that the latter
operate within the bounds of the private heap.
It is important to understand that the management of the Python heap is
performed by the interpreter itself and that the user has no control over it,
even if they regularly manipulate object pointers to memory blocks inside that
heap. The allocation of heap space for Python objects and other internal
buffers is performed on demand by the Python memory manager through the Python/C
API functions listed in this document.
.. index::
single: malloc()
single: calloc()
single: realloc()
single: free()
To avoid memory corruption, extension writers should never try to operate on
Python objects with the functions exported by the C library: :c:func:`malloc`,
:c:func:`calloc`, :c:func:`realloc` and :c:func:`free`. This will result in mixed
calls between the C allocator and the Python memory manager with fatal
consequences, because they implement different algorithms and operate on
different heaps. However, one may safely allocate and release memory blocks
with the C library allocator for individual purposes, as shown in the following
example::
PyObject *res;
char *buf = (char *) malloc(BUFSIZ); /* for I/O */
if (buf == NULL)
return PyErr_NoMemory();
...Do some I/O operation involving buf...
res = PyString_FromString(buf);
free(buf); /* malloc'ed */
return res;
In this example, the memory request for the I/O buffer is handled by the C
library allocator. The Python memory manager is involved only in the allocation
of the string object returned as a result.
In most situations, however, it is recommended to allocate memory from the
Python heap specifically because the latter is under control of the Python
memory manager. For example, this is required when the interpreter is extended
with new object types written in C. Another reason for using the Python heap is
the desire to *inform* the Python memory manager about the memory needs of the
extension module. Even when the requested memory is used exclusively for
internal, highly-specific purposes, delegating all memory requests to the Python
memory manager causes the interpreter to have a more accurate image of its
memory footprint as a whole. Consequently, under certain circumstances, the
Python memory manager may or may not trigger appropriate actions, like garbage
collection, memory compaction or other preventive procedures. Note that by using
the C library allocator as shown in the previous example, the allocated memory
for the I/O buffer escapes completely the Python memory manager.
.. _memoryinterface:
Memory Interface
================
The following function sets, modeled after the ANSI C standard, but specifying
behavior when requesting zero bytes, are available for allocating and releasing
memory from the Python heap:
.. c:function:: void* PyMem_Malloc(size_t n)
Allocates *n* bytes and returns a pointer of type :c:type:`void\*` to the
allocated memory, or *NULL* if the request fails. Requesting zero bytes returns
a distinct non-*NULL* pointer if possible, as if ``PyMem_Malloc(1)`` had
been called instead. The memory will not have been initialized in any way.
.. c:function:: void* PyMem_Realloc(void *p, size_t n)
Resizes the memory block pointed to by *p* to *n* bytes. The contents will be
unchanged to the minimum of the old and the new sizes. If *p* is *NULL*, the
call is equivalent to ``PyMem_Malloc(n)``; else if *n* is equal to zero,
the memory block is resized but is not freed, and the returned pointer is
non-*NULL*. Unless *p* is *NULL*, it must have been returned by a previous call
to :c:func:`PyMem_Malloc` or :c:func:`PyMem_Realloc`. If the request fails,
:c:func:`PyMem_Realloc` returns *NULL* and *p* remains a valid pointer to the
previous memory area.
.. c:function:: void PyMem_Free(void *p)
Frees the memory block pointed to by *p*, which must have been returned by a
previous call to :c:func:`PyMem_Malloc` or :c:func:`PyMem_Realloc`. Otherwise, or
if ``PyMem_Free(p)`` has been called before, undefined behavior occurs. If
*p* is *NULL*, no operation is performed.
The following type-oriented macros are provided for convenience. Note that
*TYPE* refers to any C type.
.. c:function:: TYPE* PyMem_New(TYPE, size_t n)
Same as :c:func:`PyMem_Malloc`, but allocates ``(n * sizeof(TYPE))`` bytes of
memory. Returns a pointer cast to :c:type:`TYPE\*`. The memory will not have
been initialized in any way.
.. c:function:: TYPE* PyMem_Resize(void *p, TYPE, size_t n)
Same as :c:func:`PyMem_Realloc`, but the memory block is resized to ``(n *
sizeof(TYPE))`` bytes. Returns a pointer cast to :c:type:`TYPE\*`. On return,
*p* will be a pointer to the new memory area, or *NULL* in the event of
failure. This is a C preprocessor macro; p is always reassigned. Save
the original value of p to avoid losing memory when handling errors.
.. c:function:: void PyMem_Del(void *p)
Same as :c:func:`PyMem_Free`.
In addition, the following macro sets are provided for calling the Python memory
allocator directly, without involving the C API functions listed above. However,
note that their use does not preserve binary compatibility across Python
versions and is therefore deprecated in extension modules.
:c:func:`PyMem_MALLOC`, :c:func:`PyMem_REALLOC`, :c:func:`PyMem_FREE`.
:c:func:`PyMem_NEW`, :c:func:`PyMem_RESIZE`, :c:func:`PyMem_DEL`.
Object allocators
=================
The following function sets, modeled after the ANSI C standard, but specifying
behavior when requesting zero bytes, are available for allocating and releasing
memory from the Python heap.
By default, these functions use :ref:`pymalloc memory allocator <pymalloc>`.
.. warning::
The :term:`GIL <global interpreter lock>` must be held when using these
functions.
.. c:function:: void* PyObject_Malloc(size_t n)
Allocates *n* bytes and returns a pointer of type :c:type:`void\*` to the
allocated memory, or *NULL* if the request fails.
Requesting zero bytes returns a distinct non-*NULL* pointer if possible, as
if ``PyObject_Malloc(1)`` had been called instead. The memory will not have
been initialized in any way.
.. c:function:: void* PyObject_Realloc(void *p, size_t n)
Resizes the memory block pointed to by *p* to *n* bytes. The contents will be
unchanged to the minimum of the old and the new sizes.
If *p* is *NULL*, the call is equivalent to ``PyObject_Malloc(n)``; else if *n*
is equal to zero, the memory block is resized but is not freed, and the
returned pointer is non-*NULL*.
Unless *p* is *NULL*, it must have been returned by a previous call to
:c:func:`PyObject_Malloc`, :c:func:`PyObject_Realloc` or :c:func:`PyObject_Calloc`.
If the request fails, :c:func:`PyObject_Realloc` returns *NULL* and *p* remains
a valid pointer to the previous memory area.
.. c:function:: void PyObject_Free(void *p)
Frees the memory block pointed to by *p*, which must have been returned by a
previous call to :c:func:`PyObject_Malloc`, :c:func:`PyObject_Realloc` or
:c:func:`PyObject_Calloc`. Otherwise, or if ``PyObject_Free(p)`` has been called
before, undefined behavior occurs.
If *p* is *NULL*, no operation is performed.
In addition, the following macro sets are provided:
* :c:func:`PyObject_MALLOC`: alias to :c:func:`PyObject_Malloc`
* :c:func:`PyObject_REALLOC`: alias to :c:func:`PyObject_Realloc`
* :c:func:`PyObject_FREE`: alias to :c:func:`PyObject_Free`
* :c:func:`PyObject_Del`: alias to :c:func:`PyObject_Free`
* :c:func:`PyObject_DEL`: alias to :c:func:`PyObject_FREE` (so finally an alias
to :c:func:`PyObject_Free`)
.. _pymalloc:
The pymalloc allocator
======================
Python has a *pymalloc* allocator optimized for small objects (smaller or equal
to 512 bytes) with a short lifetime. It uses memory mappings called "arenas"
with a fixed size of 256 KiB. It falls back to :c:func:`malloc` and
:c:func:`realloc` for allocations larger than 512 bytes.
*pymalloc* is the default allocator of :c:func:`PyObject_Malloc`.
The arena allocator uses the following functions:
* :c:func:`mmap` and :c:func:`munmap` if available,
* :c:func:`malloc` and :c:func:`free` otherwise.
.. versionchanged:: 2.7.7
The threshold changed from 256 to 512 bytes. The arena allocator now
uses :c:func:`mmap` if available.
.. _memoryexamples:
Examples
========
Here is the example from section :ref:`memoryoverview`, rewritten so that the
I/O buffer is allocated from the Python heap by using the first function set::
PyObject *res;
char *buf = (char *) PyMem_Malloc(BUFSIZ); /* for I/O */
if (buf == NULL)
return PyErr_NoMemory();
/* ...Do some I/O operation involving buf... */
res = PyString_FromString(buf);
PyMem_Free(buf); /* allocated with PyMem_Malloc */
return res;
The same code using the type-oriented function set::
PyObject *res;
char *buf = PyMem_New(char, BUFSIZ); /* for I/O */
if (buf == NULL)
return PyErr_NoMemory();
/* ...Do some I/O operation involving buf... */
res = PyString_FromString(buf);
PyMem_Del(buf); /* allocated with PyMem_New */
return res;
Note that in the two examples above, the buffer is always manipulated via
functions belonging to the same set. Indeed, it is required to use the same
memory API family for a given memory block, so that the risk of mixing different
allocators is reduced to a minimum. The following code sequence contains two
errors, one of which is labeled as *fatal* because it mixes two different
allocators operating on different heaps. ::
char *buf1 = PyMem_New(char, BUFSIZ);
char *buf2 = (char *) malloc(BUFSIZ);
char *buf3 = (char *) PyMem_Malloc(BUFSIZ);
...
PyMem_Del(buf3); /* Wrong -- should be PyMem_Free() */
free(buf2); /* Right -- allocated via malloc() */
free(buf1); /* Fatal -- should be PyMem_Del() */
In addition to the functions aimed at handling raw memory blocks from the Python
heap, objects in Python are allocated and released with :c:func:`PyObject_New`,
:c:func:`PyObject_NewVar` and :c:func:`PyObject_Del`.
These will be explained in the next chapter on defining and implementing new
object types in C.
|