File: test_z3checktests.py

package info (click to toggle)
pypy3 7.3.20%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 212,332 kB
  • sloc: python: 2,100,989; ansic: 540,684; sh: 21,462; asm: 14,419; cpp: 4,451; makefile: 4,209; objc: 761; xml: 530; exp: 499; javascript: 314; pascal: 244; lisp: 45; csh: 12; awk: 4
file content (1070 lines) | stat: -rwxr-xr-x 45,973 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
#!/usr/bin/env pypy
# encoding: utf-8
""" The purpose of this test file is to check that the optimizeopt *test* cases
are correct. It uses the z3 SMT solver to check the before/after optimization
traces for equivalence. Only supports very few operations for now, but would
have found the buggy tests in d9616aacbd02/issue #3832.

It can also be used to do bounded model checking on the optimizer, by
generating random traces."""
import sys
import time, io
import pytest
import struct

from rpython.rlib.rarithmetic import LONG_BIT, r_uint, intmask
from rpython.rlib.longlong2float import float2longlong
from rpython.jit.metainterp.optimizeopt.test.test_util import (
    BaseTest, convert_old_style_to_targets, FakeJitDriverStaticData)
from rpython.jit.metainterp.optimizeopt.test.test_optimizeintbound import (
    TestOptimizeIntBounds as TOptimizeIntBounds)
from rpython.jit.metainterp.optimizeopt.test.test_optimizeheap import (
    TestOptimizeHeap as TOptimizeHeap)
from rpython.rtyper import rclass
from rpython.jit.metainterp import compile
from rpython.jit.metainterp.resoperation import (
    rop, ResOperation, InputArgInt, OpHelpers, InputArgRef,
    AbstractResOp)
from rpython.jit.metainterp.history import (
    JitCellToken, Const, ConstInt, ConstPtr, ConstFloat,
    get_const_ptr_for_string)
from rpython.jit.tool.oparser import parse, convert_loop_to_trace
from rpython.jit.backend.test.test_random import RandomLoop, Random, OperationBuilder, AbstractOperation
from rpython.jit.backend.test.test_random import GuardPtrOperation
from rpython.jit.backend.test import test_ll_random
from rpython.jit.backend.llgraph.runner import LLGraphCPU
from rpython.jit.codewriter.effectinfo import EffectInfo
from rpython.jit.metainterp.optimizeopt.intutils import MININT, MAXINT
from rpython.jit.metainterp.history import new_ref_dict
from rpython.rtyper.lltypesystem import lltype

try:
    import z3
    from hypothesis import given, strategies
except ImportError:
    pytest.skip("please install z3 (z3-solver on pypi) and hypothesis")

TRUEBV = z3.BitVecVal(1, LONG_BIT)
FALSEBV = z3.BitVecVal(0, LONG_BIT)

class CheckError(Exception):
    pass


def check_z3(beforeinputargs, beforeops, afterinputargs, afterops):
    c = Checker(beforeinputargs, beforeops, afterinputargs, afterops)
    c.check()
    return c.unsat_count, c.unknown_count

def z3_pydiv(x, y):
    r = x / y
    psubx = r * y - x
    return z3.If(
            y == z3.BitVecVal(0, LONG_BIT),
            z3.BitVecVal(0xdeadbeef, LONG_BIT), # XXX model "undefined" better
            r + (z3.If(y < 0, psubx, -psubx) >> (LONG_BIT - 1)))

def z3_pymod(x, y):
    r = x % y
    return z3.If(
            y == z3.BitVecVal(0, LONG_BIT),
            z3.BitVecVal(0xdeadbeef, LONG_BIT),
            r + (y & z3.If(y < 0, -r, r) >> (LONG_BIT - 1)))

class Checker(object):
    def __init__(self, beforeinputargs, beforeops, afterinputargs, afterops):
        self.solver = z3.Solver()
        if pytest.config.option.z3timeout:
            self.solver.set("timeout", pytest.config.option.z3timeout)
        self.box_to_z3 = {}
        self.seen_names = {}
        self.constptr_to_z3 = new_ref_dict()
        self.beforeinputargs = beforeinputargs
        self.beforeops = beforeops
        self.afterinputargs = afterinputargs
        self.afterops = afterops
        self.unsat_count = self.unknown_count = 0

        self.result_ovf = None
        self.heapindex = 0
        self.arraycopyindex = 0
        self.true_for_all_heaps = []
        self.fresh_pointers = []
        self._init_heap_types()

    def _init_heap_types(self):
        self.fielddescr_to_z3indexvar = {}

        self.nullpointer = z3.BitVec('NULL', LONG_BIT)
        self.solver_add(self.nullpointer == z3.BitVecVal(0, LONG_BIT))

        self._lltype_to_index = {}

    def solver_add(self, cond):
        if z3.simplify(cond).eq(z3.BoolVal(True)):
            return
        res = self.solver.check(cond)
        # make sure that we don't add "False" to self.solver
        if res == z3.unsat:
            assert 0, "programming error, trying to add something to solver that is equivalent to False: " + str(cond)
        #z3res = self.solver.check(z3.Not(cond))
        #if z3res == z3.unsat:
        #    print "tautology, not adding:", cond
        #    return
        self.solver.add(cond)

    def fielddescr_indexvar(self, descr):
        if descr in self.fielddescr_to_z3indexvar:
            return self.fielddescr_to_z3indexvar[descr]
        repr = "%s_%s" % (descr.S._name, descr.fieldname)
        var = z3.BitVec(repr, LONG_BIT)
        self.solver_add(var == len(self.fielddescr_to_z3indexvar))
        self.fielddescr_to_z3indexvar[descr] = var
        return var

    def _lltype_heaptypes_index(self, T):
        if T in self._lltype_to_index:
            return self._lltype_to_index[T]
        # return negative numbers to not be confused with subclassrange_min values
        res = ~len(self._lltype_to_index)
        if isinstance(T, lltype.GcArray):
            varname = 'typeindex_array_%s' % (~res)
        else:
            varname = 'typeindex_struct_%s' % T._name
        z3heaptypeindex = z3.BitVec(self._unique_name(varname), LONG_BIT)
        self.solver_add(z3heaptypeindex == res)
        self._lltype_to_index[T] = z3heaptypeindex
        return z3heaptypeindex

    def convert(self, box):
        if isinstance(box, ConstInt):
            return z3.BitVecVal(box.getint(), LONG_BIT)
        if isinstance(box, ConstPtr):
            if not box.value:
                return self.nullpointer
            if box.value in self.constptr_to_z3:
                return self.constptr_to_z3[box.value]
            res = z3.BitVec('constPTR_%s' % len(self.constptr_to_z3), LONG_BIT)
            self.constptr_to_z3[box.value] = res
            is_array = False
            try:
                typeptr = lltype.cast_opaque_ptr(rclass.OBJECTPTR, box.value).typeptr
            except lltype.InvalidCast:
                T = lltype.typeOf(box.value._obj.container)
                typ = self._lltype_heaptypes_index(T)
                if isinstance(T, lltype.GcArray):
                    is_array = True
            else:
                typ = typeptr.subclassrange_min
            self.solver_add(self.state.heaptypes[res] == typ)
            for freshptr in self.fresh_pointers:
                self.solver_add(freshptr != res)
            if is_array:
                self.solver_add(self.state.arraylength[res] == box.value._obj.container.getlength())
            else:
                self.solver_add(self.state.arraylength[res] == -1)
            return res
        if isinstance(box, ConstFloat):
            if LONG_BIT != 64:
                pytest.skip("float checking not supported on 32-bit")
            return z3.BitVecVal(float2longlong(box.getfloat()), LONG_BIT)

        assert not isinstance(box, Const) # not supported
        return self.box_to_z3[box]

    def convertarg(self, box, arg):
        return self.convert(box.getarg(arg))

    def newvar(self, box, repr=None):
        if repr is None:
            repr = box.repr_short(box._repr_memo)
        repr = self._unique_name(repr)

        result = z3.BitVec(repr, LONG_BIT)
        self.box_to_z3[box] = result
        return result

    def _unique_name(self, repr):
        while repr in self.seen_names:
            repr += "_"
        self.seen_names[repr] = None
        return repr

    def newheaptypes(self):
        pointersort = typesort = z3.BitVecSort(LONG_BIT)
        heaptypes = z3.Array('types', pointersort, typesort)
        self.solver_add(heaptypes[self.nullpointer] == -1)
        return heaptypes

    def newarraylength(self):
        pointersort = arraylengthsort = z3.BitVecSort(LONG_BIT)
        return z3.Array('arraylength', pointersort, arraylengthsort)

    def newheap(self):
        pointersort = z3.BitVecSort(LONG_BIT)
        heapobjectsort = z3.ArraySort(pointersort, pointersort)
        self.heapindex += 1
        heap = z3.Array('heap%s'% self.heapindex, pointersort, heapobjectsort)
        for ptr, index, res in self.true_for_all_heaps:
            self.solver_add(heap[ptr][index] == res)
        return heap

    def print_chunk(self, chunk, label, model):
        print
        print "=============", label, "=================="
        for op in chunk:
            if op in self.box_to_z3:
                text = "-----> " + hex(intmask(r_uint(int(str(model[self.box_to_z3[op]])))))
            else:
                text = ""
            print op, text

    def prove(self, cond, *ops):
        z3res = self.solver.check(z3.Not(cond))
        if z3res == z3.unsat:
            self.unsat_count += 1
        elif z3res == z3.unknown:
            self.unknown_count += 1
        elif z3res == z3.sat:
            # not possible to prove!
            # print some nice stuff
            model = self.solver.model()
            print "ERROR counterexample:"
            print "inputs:"
            for beforeinput, afterinput in zip(self.beforeinputargs, self.afterinputargs):
                if model[self.box_to_z3[beforeinput]] is not None:
                    print beforeinput, afterinput, hex(intmask(r_uint(int(str(model[self.box_to_z3[beforeinput]])))))
                else:
                    print beforeinput, afterinput, "unassigned in the model"
            print "chunks:"
            for i, chunk in enumerate(self.chunks):
                beforechunk, beforelast, afterchunk, afterlast = chunk
                if i == self.chunkindex:
                    print "vvvvvvvvvvvvvvv Problem vvvvvvvvvvvvvvv"
                self.print_chunk(beforechunk + [beforelast], "before", model)
                self.print_chunk(afterchunk + [afterlast], "after", model)
                print
                if i == self.chunkindex:
                    break
            print "END counterexample"

            # raise error
            l = []
            if ops:
                l.append("in the following ops:")
                for op in ops:
                    l.append(str(op))
            l.append("the following SMT condition was not provable:")
            l.append(str(cond))
            l.append("_________________")
            l.append("smt model:")
            l.append(str(self.solver))
            l.append("_________________")
            l.append("counterexample:")
            l.append(str(model))
            raise CheckError("\n".join(l))

    def cond(self, z3expr):
        return z3.If(z3expr, TRUEBV, FALSEBV)

    def add_to_solver(self, ops, state):
        self.state = state
        for op in ops:
            if op.type != 'v':
                res = self.newvar(op)
            else:
                res = None

            opname = op.getopname()
            descr = op.getdescr()
            # clear state
            arg0 = arg1 = arg2 = None
            if not op.is_guard():
                state.no_ovf = None
            else:
                assert state.before
                cond = self.guard_to_condition(op, state) # was optimized away, must be true
                self.prove(cond, op)
                continue

            # convert arguments
            if op.numargs() == 1:
                arg0 = self.convert(op.getarg(0))
            elif op.numargs() == 2:
                arg0 = self.convert(op.getarg(0))
                arg1 = self.convert(op.getarg(1))
            elif op.numargs() == 3:
                arg0 = self.convert(op.getarg(0))
                arg1 = self.convert(op.getarg(1))
                arg2 = self.convert(op.getarg(2))

            # compute results
            if opname == "int_add":
                expr = arg0 + arg1
            elif opname == "int_sub":
                expr = arg0 - arg1
            elif opname == "int_mul":
                expr = arg0 * arg1
            elif opname == "int_and":
                expr = arg0 & arg1
            elif opname == "int_or":
                expr = arg0 | arg1
            elif opname == "int_xor":
                expr = arg0 ^ arg1
            elif opname == "int_eq":
                expr = self.cond(arg0 == arg1)
            elif opname == "int_ne":
                expr = self.cond(arg0 != arg1)
            elif opname == "int_lt":
                expr = self.cond(arg0 < arg1)
            elif opname == "int_le":
                expr = self.cond(arg0 <= arg1)
            elif opname == "int_gt":
                expr = self.cond(arg0 > arg1)
            elif opname == "int_ge":
                expr = self.cond(arg0 >= arg1)
            elif opname == "int_is_true":
                expr = self.cond(arg0 != FALSEBV)
            elif opname == "uint_lt":
                expr = self.cond(z3.ULT(arg0, arg1))
            elif opname == "uint_le":
                expr = self.cond(z3.ULE(arg0, arg1))
            elif opname == "uint_gt":
                expr = self.cond(z3.UGT(arg0, arg1))
            elif opname == "uint_ge":
                expr = self.cond(z3.UGE(arg0, arg1))
            elif opname == "int_is_zero":
                expr = self.cond(arg0 == FALSEBV)
            elif opname == "int_neg":
                expr = -arg0
            elif opname == "int_invert":
                expr = ~arg0
            elif opname == "int_lshift":
                expr = arg0 << arg1
            elif opname == "int_rshift":
                expr = arg0 >> arg1
            elif opname == "uint_rshift":
                expr = z3.LShR(arg0, arg1)
            elif opname == "int_add_ovf":
                expr = arg0 + arg1
                m = z3.SignExt(LONG_BIT, arg0) + z3.SignExt(LONG_BIT, arg1)
                state.no_ovf = m == z3.SignExt(LONG_BIT, expr)
            elif opname == "int_sub_ovf":
                expr = arg0 - arg1
                m = z3.SignExt(LONG_BIT, arg0) - z3.SignExt(LONG_BIT, arg1)
                state.no_ovf = m == z3.SignExt(LONG_BIT, expr)
            elif opname == "int_mul_ovf":
                expr = arg0 * arg1
                m = z3.SignExt(LONG_BIT, arg0) * z3.SignExt(LONG_BIT, arg1)
                state.no_ovf = m == z3.SignExt(LONG_BIT, expr)
            elif opname == "int_signext":
                numbits = op.getarg(1).getint() * 8
                expr = z3.SignExt(64 - numbits, z3.Extract(numbits - 1, 0, arg0))
            elif opname == "int_force_ge_zero":
                expr = z3.If(arg0 < 0, 0, arg0)
            elif opname == "uint_mul_high":
                # zero-extend args to 2*LONG_BIT bit, then multiply and extract
                # highest LONG_BIT bits
                zarg0 = z3.ZeroExt(LONG_BIT, arg0)
                zarg1 = z3.ZeroExt(LONG_BIT, arg1)
                expr = z3.Extract(LONG_BIT * 2 - 1, LONG_BIT, zarg0 * zarg1)
            elif opname == "same_as_i" or opname == "same_as_r":
                expr = arg0
            # heap operations
            elif opname == "ptr_eq" or opname == "instance_ptr_eq":
                expr = self.cond(arg0 == arg1)
            elif opname == "ptr_ne" or opname == "instance_ptr_ne":
                expr = self.cond(arg0 != arg1)
            elif opname == "new_with_vtable":
                expr = res
                self.fresh_pointer(res)
                vtable = descr.get_vtable().adr.ptr
                self.solver_add(state.heaptypes[expr] == vtable.subclassrange_min)
                self.solver_add(state.heap[expr] == z3.K(z3.BitVecSort(LONG_BIT), z3.BitVecVal(0, LONG_BIT)))
            elif opname == "getfield_gc_i" or opname == "getfield_gc_r":# int and reference
                # we dont differentiate between struct and field in z3 heap structure
                # so a field is an array at a specific index
                # thus we need to set the types for array and field writes, so z3 knows they cant interfere
                index = self.fielddescr_indexvar(descr)
                parentdescr = descr.get_parent_descr()
                if parentdescr.is_object():
                    vtable = parentdescr.get_vtable().adr.ptr
                    self.solver_add(state.heaptypes[arg0] >= vtable.subclassrange_min)
                    self.solver_add(state.heaptypes[arg0] <= vtable.subclassrange_max)
                expr = state.heap[arg0][index]
                if descr.is_always_pure():
                    self.true_for_all_heaps.append((arg0, index, expr))
                if isinstance(op.getarg(0), ConstPtr) and descr.is_always_pure():
                    ptr = lltype.cast_opaque_ptr(lltype.Ptr(descr.S), op.getarg(0).value)
                    const_res = getattr(ptr, descr.fieldname)
                    assert opname == "getfield_gc_i"
                    self.solver_add(expr == const_res)
                if descr.is_integer_bounded():
                    self.solver_add(expr >= descr.get_integer_min())
                    self.solver_add(expr <= descr.get_integer_max())
            elif opname == "setfield_gc":
                index = self.fielddescr_indexvar(descr)
                # copys old heap with new value inserted
                heapexpr = z3.Store(state.heap, arg0, z3.Store(state.heap[arg0], index, arg1))
                parentdescr = descr.get_parent_descr()
                if parentdescr.is_object():
                    vtable = parentdescr.get_vtable().adr.ptr
                    self.solver_add(state.heaptypes[arg0] >= vtable.subclassrange_min)
                    self.solver_add(state.heaptypes[arg0] <= vtable.subclassrange_max)
                # create new heap
                state.heap = self.newheap()
                # set new heap to modified heap with constraint
                self.solver_add(state.heap == heapexpr)
                # mark arg1 as non-null if arg1 is const or constptr
                if self.is_const(op.getarg(1)):
                    self.solver_add(arg0 != self.nullpointer)
            elif opname == "getarrayitem_gc_r" or opname == "getarrayitem_gc_i" or opname == "getarrayitem_gc_f":
                # TODO: immutable arrays
                z3typ = self._lltype_heaptypes_index(descr.A)
                self.solver_add(state.heaptypes[arg0] == z3typ)
                self.solver_add(arg1 >= 0)
                self.solver_add(arg1 < state.arraylength[arg0])
                expr = state.heap[arg0][arg1]
                if descr.is_item_integer_bounded():
                    self.solver_add(expr >= descr.get_item_integer_min())
                    self.solver_add(expr <= descr.get_item_integer_max())
            elif opname == "setarrayitem_gc":
                heapexpr = z3.Store(state.heap, arg0, z3.Store(state.heap[arg0], arg1, arg2))
                z3typ = self._lltype_heaptypes_index(descr.A)
                self.solver_add(state.heaptypes[arg0] == z3typ)
                self.solver_add(arg1 >= 0)
                self.solver_add(arg1 < state.arraylength[arg0])
                state.heap = self.newheap()
                self.solver_add(state.heap == heapexpr)
                if self.is_const(op.getarg(2)):
                    self.solver_add(arg0 != self.nullpointer)
            elif opname == "arraylen_gc":
                expr = state.arraylength[arg0]
                self.solver_add(expr >= 0)
            elif opname == "new_array" or opname == "new_array_clear":
                expr = res
                self.fresh_pointer(res)
                z3typ = self._lltype_heaptypes_index(descr.A)
                self.solver_add(state.heaptypes[res] == z3typ)
                # new_array cant return null
                self.solver_add(res != self.nullpointer)
                # store array len
                self.solver_add(state.arraylength[res] == arg0)
                self.solver_add(state.heap[expr] == z3.K(z3.BitVecSort(LONG_BIT), z3.BitVecVal(0, LONG_BIT)))
            elif opname == "escape_n":
                # the heap is completely new, but it's the same between
                # the before and the after state
                state.heap = state.nextheap(self)
            # end heap operations
            elif opname in ["label", "escape_i", "debug_merge_point", "force_token"]:
                # TODO: handling escape this way probably is not correct
                continue # ignore for now
            elif opname == "call_n":
                effectinfo = op.getdescr().get_extra_info()
                oopspecindex = effectinfo.oopspecindex
                if oopspecindex == EffectInfo.OS_ARRAYCOPY or oopspecindex == EffectInfo.OS_ARRAYMOVE:
                    array_from = self.convert(op.getarg(1)) # from array
                    if oopspecindex == EffectInfo.OS_ARRAYCOPY:
                        array_to = self.convert(op.getarg(2)) # to array
                        index_from = self.convert(op.getarg(3)) # from index
                        index_to = self.convert(op.getarg(4)) # to index
                        len_arg = op.getarg(5)
                        copy_len = self.convert(len_arg) # len
                    else:
                        array_to = array_from # to array
                        index_from = self.convert(op.getarg(2)) # from index
                        index_to = self.convert(op.getarg(3)) # to index
                        len_arg = op.getarg(4)
                        copy_len = self.convert(len_arg) # len

                    z3typ = self._lltype_heaptypes_index(effectinfo.single_write_descr_array.A)
                    # set types for both arrays
                    self.solver_add(state.heaptypes[array_from] == z3typ)
                    if oopspecindex == EffectInfo.OS_ARRAYCOPY:
                        self.solver_add(state.heaptypes[array_to] == z3typ)

                    if self.is_const(len_arg):
                        len_arg_const = len_arg.getint()
                        # do nothing on len=0 moves/copies
                        if len_arg_const == 0:
                            continue
                        # do the copy manually, to not need a forall
                        curr_heap = state.heap
                        for i in range(len_arg_const):
                            heapexpr = z3.Store(curr_heap, array_to, z3.Store(curr_heap[array_to], index_to + i, curr_heap[array_from][index_from + i]))
                            new_heap = self.newheap()
                            self.solver.add(new_heap == heapexpr)
                            curr_heap = new_heap
                        state.heap = curr_heap
                        continue

                    # general case, use forall
                    #self.solver_add(state.heaptypes[array_from] == z3type)
                    #if oopspecindex == EffectInfo.OS_ARRAYCOPY:
                        #self.solver_add(state.heaptypes[array_to] == z3type)

                    # create vars for copy ranges
                    arr_range_from = z3.BitVec('__arr_index_from_%d' % self.arraycopyindex, LONG_BIT)
                    arr_range_to = z3.BitVec('__arr_index_to_%d' % self.arraycopyindex, LONG_BIT)
                    other_range = z3.BitVec('__arr_other_index_%d' % self.arraycopyindex, LONG_BIT)
                    p = z3.BitVec('__arr_pointer_%d' % self.arraycopyindex, LONG_BIT)

                    # create new heap, but dont set to state yet
                    new_heap = self.newheap()

                    # constraint copy ranges with index and len
                    self.solver.add(z3.ForAll([arr_range_from, arr_range_to],                                               # ∀ from_idx, to_idx:
                                        z3.Implies(z3.And(
                                            z3.And(arr_range_from >= index_from, arr_range_from < index_from + copy_len), # (index_from <= from_idx < index_from + copy_len &&
                                            z3.And(arr_range_to >= index_to, arr_range_to < arr_range_to + copy_len)),    #  index_to <= to_idx < index_to + copy_len)  =>
                                        new_heap[array_to][arr_range_to] == state.heap[array_from][arr_range_from])))

                    # all other indexes of arg2 stay the same
                    self.solver.add(z3.ForAll([other_range],
                                        z3.Implies(z3.And(other_range < index_to, other_range >= index_to + copy_len),
                                        new_heap[array_to][other_range] == state.heap[array_to][other_range])))

                    # new heap is same as old heap for all other pointers
                    self.solver.add(z3.ForAll([p],
                                        z3.Implies(p != array_to, new_heap[p] == state.heap[p])))
                    state.heap = new_heap
                    self.arraycopyindex += 1
                else:
                    assert 0, "unsupported"
            elif opname == "call_pure_i" or opname == "call_i":
                # only div and mod supported
                effectinfo = op.getdescr().get_extra_info()
                oopspecindex = effectinfo.oopspecindex
                if oopspecindex == EffectInfo.OS_INT_PY_DIV:
                    arg0 = self.convert(op.getarg(1)) # arg 0 is the function
                    arg1 = self.convert(op.getarg(2))
                    expr = z3_pydiv(arg0, arg1)
                elif oopspecindex == EffectInfo.OS_INT_PY_MOD:
                    arg0 = self.convert(op.getarg(1)) # arg 0 is the function
                    arg1 = self.convert(op.getarg(2))
                    expr = z3_pymod(arg0, arg1)
                else:
                    assert 0, "unsupported"
            else:
                assert 0, "unsupported"
            if res is not None:
                self.solver_add(res == expr)

    def is_const(self, arg):
        return isinstance(arg, Const) or isinstance(arg, ConstPtr)

    def fresh_pointer(self, res):
        for box, var in self.box_to_z3.iteritems():
            if box.type == "r" and res is not var:
                self.solver_add(res != var)
        for const, z3var in self.constptr_to_z3.iteritems():
            self.solver_add(res != z3var)
        self.fresh_pointers.append(res)

    def guard_to_condition(self, guard, state):
        opname = guard.getopname()
        if opname == "guard_true":
            return self.convertarg(guard, 0) == TRUEBV
        elif opname == "guard_false":
            return self.convertarg(guard, 0) == FALSEBV
        elif opname == "guard_value":
            return self.convertarg(guard, 0) == self.convertarg(guard, 1)
        elif opname == "guard_no_overflow":
            assert state.no_ovf is not None
            return state.no_ovf
        elif opname == "guard_overflow":
            assert state.no_ovf is not None
            return z3.Not(state.no_ovf)
        elif opname == "guard_class":
            arg0 = self.convertarg(guard, 0)
            cls = guard.getarg(1)
            vtable = cls.value.adr.ptr
            return state.heaptypes[arg0] == vtable.subclassrange_min
        elif opname == "guard_nonnull":
            # returns z3 var, or returns nullptr if no val in box
            return self.convertarg(guard, 0) != self.nullpointer
        elif opname == "guard_isnull":
            return self.convertarg(guard, 0) == self.nullpointer
        else:
            assert 0, "unsupported " + opname

    def check_last(self, beforelast, state_before, afterlast, state_after):
        if beforelast.getopname() in ("jump", "finish"):
            assert beforelast.numargs() == afterlast.numargs()
            for i in range(beforelast.numargs()):
                beforearg = beforelast.getarg(i)
                if beforearg.type == 'r' and isinstance(beforearg, AbstractResOp):
                    if beforearg.opnum in (rop.NEW_WITH_VTABLE, rop.NEW, rop.NEW_ARRAY, rop.NEW_ARRAY_CLEAR):
                        continue # the pointer addresses might be different
                before = self.convertarg(beforelast, i)
                after = self.convertarg(afterlast, i)
                self.prove(before == after, beforelast, afterlast)
            return
        assert beforelast.is_guard()
        # first, check the failing case
        cond_before = self.guard_to_condition(beforelast, state_before)
        if afterlast is None:
            # beforelast was optimized away, must be true
            self.prove(cond_before, beforelast)
        else:
            cond_after = self.guard_to_condition(afterlast, state_after)
            equivalent = cond_before == cond_after
            self.prove(equivalent, beforelast, afterlast)
        # then assert the true case
        self.solver_add(cond_before)
        if afterlast:
            self.solver_add(cond_after)

    def check(self):
        for beforeinput, afterinput in zip(self.beforeinputargs, self.afterinputargs):
            self.box_to_z3[beforeinput] = self.newvar(afterinput, "input_%s_%s" % (beforeinput, afterinput))

        state_before = State()
        state_after = State(state_before)
        state_before.heap = state_after.heap = self.newheap()# heap is created new on every write
        state_before.heaptypes = state_after.heaptypes = self.newheaptypes()# types 'set' by constraints
        state_before.arraylength = state_after.arraylength = self.newarraylength()
        self.chunks = list(chunk_ops(self.beforeops, self.afterops))
        for chunkindex, (beforechunk, beforelast, afterchunk, afterlast) in enumerate(self.chunks):
            self.chunkindex = chunkindex
            self.add_to_solver(beforechunk, state_before)
            self.add_to_solver(afterchunk, state_after)
            self.check_last(beforelast, state_before, afterlast, state_after)

class State(object):
    def __init__(self, state_before=None):
        self.before = state_before is None
        self.no_ovf = None
        if self.before:
            self.heap_sequence = []
        else:
            self.heap_sequence = state_before.heap_sequence
            self.heap_index = 0

    def nextheap(self, checker):
        if self.before:
            res = checker.newheap()
            self.heap_sequence.append(res)
        else:
            res = self.heap_sequence[self.heap_index]
            self.heap_index += 1
        return res

def chunk_ops(beforeops, afterops):
    beforeops = list(reversed(beforeops))
    afterops = list(reversed(afterops))
    while 1:
        if not beforeops:
            assert not afterops
            return
        beforechunk, beforelast = up_to_guard(beforeops)
        afterchunk, afterlast = up_to_guard(afterops)
        while (beforelast is not None and
               (afterlast is None or
                beforelast.rd_resume_position < afterlast.rd_resume_position)):
            beforechunk.append(beforelast)
            bc, beforelast = up_to_guard(beforeops)
            beforechunk.extend(bc)
        if beforelast is None:
            beforelast = beforechunk.pop()
        if afterlast is None and afterchunk:
            afterlast = afterchunk.pop()
        yield beforechunk, beforelast, afterchunk, afterlast


def up_to_guard(oplist):
    res = []
    while oplist:
        op = oplist.pop()
        if op.is_guard():
            return res, op
        res.append(op)
    return res, None

def test_solver_add_false_protection():
    c = Checker(None, None, None, None)
    x = z3.BitVec('x', 64)
    c.solver_add(x == 1)
    with pytest.raises(AssertionError):
        c.solver_add(x != 1)

# ____________________________________________________________


class BaseCheckZ3(BaseTest):

    enable_opts = "intbounds:rewrite:virtualize:string:earlyforce:pure:heap"

    def optimize_loop(self, ops, optops, call_pure_results=None):
        from rpython.jit.metainterp.opencoder import Trace, TraceIterator
        loop = self.parse(ops)
        token = JitCellToken()
        if loop.operations[-1].getopnum() == rop.JUMP:
            loop.operations[-1].setdescr(token)
        exp = parse(optops, namespace=self.namespace.copy())
        expected = convert_old_style_to_targets(exp, jump=True)
        call_pure_results = self._convert_call_pure_results(call_pure_results)
        trace = convert_loop_to_trace(loop, self.metainterp_sd)
        compile_data = compile.SimpleCompileData(
            trace, call_pure_results=call_pure_results,
            enable_opts=self.enable_opts)
        compile_data.forget_optimization_info = lambda *args, **kwargs: None
        jitdriver_sd = FakeJitDriverStaticData()
        info, ops = compile_data.optimize_trace(self.metainterp_sd, jitdriver_sd, {})
        beforeinputargs, beforeops = trace.unpack()
        # check that the generated trace is correct
        correct, timeout = check_z3(beforeinputargs, beforeops, info.inputargs, ops)
        print 'correct conditions:', correct, 'timed out conditions:', timeout


class TestBuggyTestsFail(BaseCheckZ3):
    def check_z3_throws_error(self, ops, optops, call_pure_results=None):
        from rpython.jit.metainterp.opencoder import Trace, TraceIterator
        loop = self.parse(ops)
        token = JitCellToken()
        if loop.operations[-1].getopnum() == rop.JUMP:
            loop.operations[-1].setdescr(token)
        trace = convert_loop_to_trace(loop, self.metainterp_sd)
        beforeinputargs, beforeops = trace.unpack()
        loopopt = self.parse(optops)
        if loopopt.operations[-1].getopnum() == rop.JUMP:
            loopopt.operations[-1].setdescr(token)
        opttrace = convert_loop_to_trace(loopopt, self.metainterp_sd)
        afterinputargs, afterops = opttrace.unpack()
        for afterop in afterops:
            assert not afterop.is_guard() # we can't chunk the operations when running in this mode
        with pytest.raises(CheckError):
            check_z3(beforeinputargs, beforeops, afterinputargs, afterops)

    def test_duplicate_getarrayitem_after_setarrayitem_3(self):
        ops = """
        [p1, p2, p3, i1]
        setarrayitem_gc(p1, i1, p2, descr=arraydescr2)
        setarrayitem_gc(p1, 0, p3, descr=arraydescr2)
        p5 = getarrayitem_gc_r(p1, i1, descr=arraydescr2)
        jump(p5)
        """
        expected = """
        [p1, p2, p3, i1]
        setarrayitem_gc(p1, i1, p2, descr=arraydescr2)
        setarrayitem_gc(p1, 0, p3, descr=arraydescr2)
        jump(p2)
        """
        self.check_z3_throws_error(ops, expected)


class CallIntPyModPyDiv(AbstractOperation):
    def produce_into(self, builder, r):
        from rpython.jit.backend.test.test_random import getint
        k = r.random()
        if k < 0.20:
            v_second = ConstInt(r.random_integer())
        else:
            v_second = r.choice(builder.intvars)

        if k > 0.80 and type(v_second) is not ConstInt:
            v_first = ConstInt(r.random_integer())
        else:
            v_first = r.choice(builder.intvars)
        # exclude overflow and div by zero
        while ((
                getint(v_second) == -1 and getint(v_first) == MININT)
                or getint(v_second) == 0
        ):
            v_second = ConstInt(r.random_integer())

        if r.random() > 0.5:
            descr = BaseTest.int_py_div_descr
            res = getint(v_first) // getint(v_second)
            func = 12
        else:
            descr = BaseTest.int_py_mod_descr
            res = getint(v_first) % getint(v_second)
            func = 14
        ops = builder.loop.operations
        op = ResOperation(rop.INT_EQ, [v_second, ConstInt(0)])
        op._example_int = 0
        ops.append(op)

        op = ResOperation(rop.GUARD_FALSE, [op])
        op.setdescr(builder.getfaildescr())
        op.setfailargs(builder.subset_of_intvars(r))
        ops.append(op)

        op1 = ResOperation(rop.INT_EQ, [v_first, ConstInt(MININT)])
        op1._example_int = int(getint(v_first) == MININT)
        ops.append(op1)

        op2 = ResOperation(rop.INT_EQ, [v_second, ConstInt(-1)])
        op2._example_int = int(getint(v_second) == -1)
        ops.append(op2)

        op = ResOperation(rop.INT_AND, [op1, op2])
        op._example_int = 0 # excluded above
        ops.append(op)

        op = ResOperation(rop.GUARD_FALSE, [op])
        op.setdescr(builder.getfaildescr())
        op.setfailargs(builder.subset_of_intvars(r))
        ops.append(op)

        op = ResOperation(rop.CALL_PURE_I, [ConstInt(func), v_first, v_second],
                          descr=descr)
        if not hasattr(builder, "call_pure_results"):
            builder.call_pure_results = {}
        builder.call_pure_results[(ConstInt(func), ConstInt(getint(v_first)), ConstInt(getint(v_second)))] = ConstInt(res)
        op._example_int = res
        ops.append(op)
        builder.intvars.append(op)

class RangeCheck(AbstractOperation):
    def produce_into(self, builder, r):
        from rpython.jit.backend.test.test_random import getint
        v_int = r.choice(list(set(builder.intvars) - set(builder.boolvars)))
        val = getint(v_int)
        ops = builder.loop.operations
        bound = r.random_integer()
        if bound > val:
            op = ResOperation(rop.INT_LE, [v_int, ConstInt(bound)])
        else:
            op = ResOperation(rop.INT_GE, [v_int, ConstInt(bound)])
        op._example_int = 1
        ops.append(op)

        op = ResOperation(rop.GUARD_TRUE, [op])
        op.setdescr(builder.getfaildescr())
        op.setfailargs(builder.subset_of_intvars(r))
        ops.append(op)

class KnownBitsCheck(AbstractOperation):
    def produce_into(self, builder, r):
        # inject knowledge about a random subset of the bits of an integer
        # variable
        from rpython.jit.backend.test.test_random import getint
        v_int = r.choice(list(set(builder.intvars) - set(builder.boolvars)))
        val = getint(v_int)
        ops = builder.loop.operations
        mask = r.random_integer()
        res = val & mask
        op = ResOperation(rop.INT_AND, [v_int, ConstInt(mask)])
        op._example_int = res
        ops.append(op)

        op = ResOperation(rop.GUARD_VALUE, [op, ConstInt(res)])
        op.setdescr(builder.getfaildescr())
        op.setfailargs(builder.subset_of_intvars(r))
        ops.append(op)


OPERATIONS = [op for op in OperationBuilder.OPERATIONS if not isinstance(op, GuardPtrOperation)] + [
        #CallIntPyModPyDiv(rop.CALL_PURE_I)] + [
        RangeCheck(None), KnownBitsCheck(None)] * 10

for i in range(4):
    OPERATIONS.append(test_ll_random.GetFieldOperation(rop.GETFIELD_GC_I))
    OPERATIONS.append(test_ll_random.GetFieldOperation(rop.GETFIELD_GC_I))
    OPERATIONS.append(test_ll_random.SetFieldOperation(rop.SETFIELD_GC))
    #OPERATIONS.append(test_ll_random.NewOperation(rop.NEW))
    OPERATIONS.append(test_ll_random.NewOperation(rop.NEW_WITH_VTABLE))

    OPERATIONS.append(test_ll_random.GetArrayItemOperation(rop.GETARRAYITEM_GC_I))
    OPERATIONS.append(test_ll_random.GetArrayItemOperation(rop.GETARRAYITEM_GC_I))
    OPERATIONS.append(test_ll_random.SetArrayItemOperation(rop.SETARRAYITEM_GC))
    OPERATIONS.append(test_ll_random.NewArrayOperation(rop.NEW_ARRAY_CLEAR))
    OPERATIONS.append(test_ll_random.ArrayLenOperation(rop.ARRAYLEN_GC))

for i in range(2):
    OPERATIONS.append(test_ll_random.GuardClassOperation(rop.GUARD_CLASS))



class Z3OperationBuilder(test_ll_random.LLtypeOperationBuilder):
    produce_failing_guards = False
    OPERATIONS = OPERATIONS
    floatvars = []

class TestOptimizeIntBoundsZ3(BaseCheckZ3, TOptimizeIntBounds):
    def check_random_function_z3(self, cpu, r, num=None, max=None):
        t1 = time.time()
        output = io.BytesIO()
        loop = RandomLoop(cpu, Z3OperationBuilder, r, output=output)
        trace = convert_loop_to_trace(loop.loop, self.metainterp_sd)
        compile_data = compile.SimpleCompileData(
            trace, call_pure_results=self._convert_call_pure_results(getattr(loop.builder, 'call_pure_results', None)),
            enable_opts=self.enable_opts)
        jitdriver_sd = FakeJitDriverStaticData()
        info, ops = compile_data.optimize_trace(self.metainterp_sd, jitdriver_sd, {})
        print info.inputargs
        for op in ops:
            print op
        beforeinputargs, beforeops = trace.unpack()
        # check that the generated trace is correct
        t2 = time.time()
        try:
            correct, timeout = check_z3(beforeinputargs, beforeops, info.inputargs, ops)
        except CheckError:
            print "to reproduce:"
            print "_" * 60
            print make_reproducer(output.getvalue())
            print "_" * 60
            raise
        t3 = time.time()
        print 'generation/optimization [s]:', t2 - t1, 'z3:', t3 - t2, "total:", t3 - t1
        print 'correct conditions:', correct, 'timed out conditions:', timeout
        if num is not None:
            print '    # passed (%d/%s).' % (num + 1, max)
        else:
            print '    # passed.'
        print

    def test_random_z3(self):
        cpu = LLGraphCPU(None)
        cpu.supports_floats = False
        cpu.setup_once()
        r = Random()
        seed = pytest.config.option.randomseed
        try:
            if pytest.config.option.repeat == -1:
                i = 0
                while 1:
                    self.check_random_function_z3(cpu, r, i)
                    i += 1
                    seed = r.randrange(sys.maxint)
                    r.seed(seed)
            else:
                for i in range(pytest.config.option.repeat):
                    r.seed(seed)
                    self.check_random_function_z3(cpu, r, i,
                                             pytest.config.option.repeat)
                    seed = r.randrange(sys.maxint)
        except Exception as e:
            print "_" * 60
            print "got exception", e
            print "seed was", seed
            raise

@given(strategies.randoms())
def DISABLED_test_random_loop_parses(r): # guard_class doesn't parse right now unfortunately
    cpu = LLGraphCPU(None)
    cpu.supports_floats = False
    cpu.setup_once()
    output = io.BytesIO()
    try:
        loop = RandomLoop(cpu, Z3OperationBuilder, Random(r), output=output)
    except Exception:
        raise
    s = output.getvalue()
    r = make_reproducer(s)
    try:
        check_via_reproducer_string(r)
    except Exception as e:
        print "error", e
        print "to reproduce"
        print "_" * 60
        print r
        print "_" * 60
        raise

def check_via_reproducer_string(r):
    d = {}
    exec r in d
    loop = d['loop']
    cpu = LLGraphCPU(None)
    cpu.supports_floats = False
    cpu.setup_once()
    t = TestOptimizeIntBoundsZ3()
    t.cls_attributes()
    trace = convert_loop_to_trace(loop, t.metainterp_sd)
    compile_data = compile.SimpleCompileData(
        trace, call_pure_results=None,
        enable_opts=t.enable_opts)
    compile_data.forget_optimization_info = lambda *args, **kwargs: None
    jitdriver_sd = FakeJitDriverStaticData()
    info, ops = compile_data.optimize_trace(t.metainterp_sd, jitdriver_sd, {})
    beforeinputargs, beforeops = trace.unpack()
    # check that the generated trace is correct
    correct, timeout = check_z3(beforeinputargs, beforeops, info.inputargs, ops)

@given(strategies.randoms())
def test_random_hypothesis(r):
    cpu = LLGraphCPU(None)
    cpu.supports_floats = False
    cpu.setup_once()
    t = TestOptimizeIntBoundsZ3()
    t.cls_attributes()
    t.check_random_function_z3(cpu, Random(r), 0)

def make_reproducer(s):
    lines = s.splitlines()
    assert "cpu.execute_token" in lines[-1]
    lines.pop()
    assert "loop_args =" in lines[-1]
    lines.pop()
    assert "cpu.compile_loop" in lines[-1]
    lines.pop()
    assert "looptoken =" in lines[-1]
    lines.pop()
    preamble = """\
from rpython.rtyper.lltypesystem import lltype, rffi, llmemory
from rpython.rtyper import rclass
from rpython.jit.metainterp.resoperation import rop, ResOperation, \
     InputArgInt, InputArgRef, InputArgFloat
from rpython.jit.metainterp.history import TargetToken, TreeLoop
from rpython.jit.metainterp.history import BasicFailDescr, BasicFinalDescr
from rpython.jit.metainterp.history import ConstInt, ConstPtr
from rpython.jit.backend.llgraph.runner import LLGraphCPU as CPU
from rpython.jit.codewriter import heaptracker
if 1:
"""
    post = """
loop = TreeLoop('reproduce')
loop.inputargs = inputargs
loop.operations = operations
"""
    return preamble + "\n".join(lines) + post

class TestOptimizeHeapZ3(BaseCheckZ3, TOptimizeHeap):
    def dont_execute(self):
        pass # skip, can't work yet
    test_nonvirtual_later = dont_execute
    test_nonvirtual_write_null_fields_on_force = dont_execute
    test_nonvirtual_array_write_null_fields_on_force = dont_execute
    test_arraycopy_1 = dont_execute
    test_arraycopy_not_virtual = dont_execute
    test_arraycopy_invalidate_3 = dont_execute
    test_varray_negative_items_from_invalid_loop = dont_execute
    test_virtual_array_of_struct = dont_execute
    test_virtual_array_of_struct_forced = dont_execute
    test_virtual_array_of_struct_arraycopy = dont_execute
    test_nonvirtual_array_of_struct_arraycopy = dont_execute
    test_varray_struct_negative_items_from_invalid_loop = dont_execute
    test_varray_struct_too_large_items = dont_execute

if __name__ == '__main__':
    # this code is there so we can use the file to automatically reduce crashes
    # with shrinkray.
    # 1) install shrinkray
    # 2) put the buggy (big) trace into crash.txt
    # 3) run shrinkray like this:
    #    shrinkray test/test_z3checktests.py crash.txt --timeout=100
    # this takes a while (can be hours) but it will happily turn the huge trace
    # into a tiny one

    with open(sys.argv[1], "r") as f:
        ops = f.read()
    import pytest, os
    class config:
        class option:
            z3timeout = 100000
    pytest.config = config
    try:
        check_via_reproducer_string(ops)
    except CheckError as e:
        print e
        os._exit(0)
    except Exception as e:
        print e
        os._exit(-1)
    os._exit(-1)