File: test_genomicfeatures.py

package info (click to toggle)
pyranges 0.0.111%2Bds-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 20,996 kB
  • sloc: python: 5,546; makefile: 37; sh: 6
file content (181 lines) | stat: -rw-r--r-- 6,150 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import pandas as pd
import pyranges as pr

from hypothesis import given, settings
from hypothesis import reproduce_failure  # pylint: disable=unused-import

from tests.hypothesis_helper import deadline, slow_max_examples

by_to_id = {"gene": "gene_id", "transcript": "transcript_id"}


def compute_introns_single(df, by):
    id_column = by_to_id[by]
    df = df.sort_values("Start End".split())
    g = df[df.Feature == by]
    x = pr.PyRanges(df[df.Feature == "exon"]).merge(by=id_column, strand=False)
    if not len(x) or not len(g):
        return
    x.Strand = "-"
    x = x.df

    print("g " * 100)
    print(g)
    print("x " * 100)
    print(x)

    if g.empty or x.empty:
        return pd.DataFrame()

    x = pd.concat([x, x.tail(1)], sort=False).reset_index(drop=True)
    cols = list(x.columns)
    original_cols = cols[::1]
    cols[2] = "Start"
    cols[1] = "End"
    x = x[cols]
    x.columns = original_cols
    x.loc[:, "Start"] = x.Start.shift()
    x.at[x.index[0], "Start"] = g.Start.iloc[0]
    x.at[x.index[-1], "End"] = g.End.iloc[0]
    x.loc[:, "Start"] = x.Start.astype(int)
    # if x.Start.iloc[0] == g.Start.iloc[0]:
    #     print("Start equals")
    # x = x.drop(x.head(1).index)
    # if x.End.iloc[-1] == g.End.iloc[0]:
    #     print("End equals")
    #     x = x.drop(x.head(1).index)
    # x = x[~(x.Start == g.Start.iloc[0])]
    # x = x[~(x.End == g.End.iloc[0])]
    x = x[x.Start != x.End]

    return x.sort_values("Start End".split())  #.reset_index(drop=True)


# actual   Chromosome     Start       End Strand
# 0       chr1  13163233  13164184      -
# 1       chr1  13164760  13165156      -
# 2       chr1  13165468  13167115      -
# 3       chr1  13167193  13194517      -
# 4       chr1  13194595  13196244      -
# 5       chr1  13196556  13196952      -
# 6       chr1  13197528  13198478      -
# expected   Chromosome     Start       End Strand
# 5       chr1  13163233  13164184      -
# 6       chr1  13164760  13165156      -
# 7       chr1  13165468  13167115      -
# 8       chr1  13167193  13199727      -
# 2       chr1  13196556  13196952      +
# 3       chr1  13197528  13198478      +
# 4       chr1  13199727  13161985      -


def _introns_correct(full, genes, exons, introns, by):
    """Testing that introns:

    1: ends larger than starts
    2: the intersection of the computed introns and exons per gene are 0
    3: that the number of introns overlapping each gene is the same as number of introns per gene
    4 & 5: that the intron positions are the same as the ones computed with the slow, but correct algo"""
    id_column = by_to_id[by]
    if len(introns):
        assert (introns.Start < introns.End).all(), str(
            introns[(introns.Start >= introns.End)])

    expected_results = {}
    based_on = {}
    for gene_id, gdf in full.groupby(
            id_column):  # #[full.gene_id.isin(["ENSG00000078808.16"])]
        # print("gdf " * 10)
        # print(gdf)
        if not len(gdf[gdf.Feature == "gene"]) or not len(
                gdf[gdf.Feature == "transcript"]):
            continue
        expected_results[gene_id] = compute_introns_single(gdf, by)

        based_on[gene_id] = pr.PyRanges(gdf[gdf.Feature.isin([by, "exon"])]).df

    if not len(introns):
        for v in expected_results.values():
            assert v.empty
        return  # test passed

    for gene_id, idf in introns.groupby(id_column):
        idf = idf.sort_values("Start End".split())
        if not gene_id in expected_results:
            continue
        expected = expected_results[gene_id]
        exons = pr.PyRanges(
            based_on[gene_id]).subset(lambda df: df.Feature == "exon").merge(
                by=id_column)
        genes = pr.PyRanges(
            based_on[gene_id]).subset(lambda df: df.Feature == by)
        print("exons", exons)
        print("based_on", based_on[gene_id])
        print("actual", idf["Chromosome Start End Strand".split()])
        print("expected", expected["Chromosome Start End Strand".split()])
        _introns = pr.PyRanges(idf)
        assert len(exons.intersect(_introns)) == 0
        assert len(genes.intersect(_introns)) == len(_introns)
        assert list(idf.Start) == list(expected.Start), "not equal"
        assert list(idf.End) == list(expected.End), "not equal"


by = ["gene", "transcript"]

# @pytest.mark.parametrize("by", by)
# @settings(
#     max_examples=slow_max_examples,
#     deadline=deadline,
#     suppress_health_check=HealthCheck.all())
# @given(gr=genomicfeature())  # pylint: disable=no-value-for-parameter
# # @reproduce_failure('4.15.0', b'AAIAAAABAP8A')
# # @reproduce_failure('4.15.0', b'AAIAAAABAOwBAO0A')
# def test_introns(gr, by):

#     id_column = by_to_id[by]

#     delim = "-" * 20
#     print("\n" + delim +" new test " + delim)

#     if not len(gr[gr.Feature == "gene"]) or not len(gr[gr.Feature == "exon"]):
#         pass

#     else:

#         genes = gr[gr.Feature.isin(["gene"])].df
#         exons = gr[gr.Feature.isin(["exon"])].merge(by=id_column).df
#         introns = gr.features.introns(by=by).df

#         print(genes)
#         print(exons)
#         print(introns)

#         _introns_correct(gr.df, genes, exons, introns, by)


def test_introns_single():

    "Assert that our fast method of computing introns is the same as the slow, correct one in compute_introns_single"

    gr = pr.data.gencode_gtf()[["gene_id", "Feature"]]
    exons = gr[gr.Feature == "exon"].merge(by="gene_id")
    exons.Feature = "exon"
    exons = exons.df
    df = pd.concat([gr[gr.Feature == "gene"].df, exons], sort=False)
    print(df)

    for gid, gdf in df.groupby("gene_id"):
        print("-------" * 20)
        print(gid)
        print(gdf)
        print("gdf", len(gdf))
        expected = compute_introns_single(gdf, by="gene")
        print("expected", len(expected))
        actual = pr.PyRanges(gdf).features.introns().df
        print("actual", len(actual))
        if actual.empty:
            assert expected.empty
            continue

        assert list(expected.Start) == list(actual.Start)
        assert list(expected.End) == list(actual.End)