1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
|
<img align="left" width="95" height="120" src="https://raw.githubusercontent.com/vutran1710/PyrateLimiter/master/docs/_static/logo.png">
# PyrateLimiter
The request rate limiter using Leaky-bucket Algorithm.
Full project documentation can be found at [pyratelimiter.readthedocs.io](https://pyratelimiter.readthedocs.io).
> **Upgrading from v3.x?** See the [Migration Guide](docs/migrating.md) for breaking changes.
<br>
## Contents
- [Features](#features)
- [Installation](#installation)
- [Web Requests](#web-request-rate-limiting)
- [AIOHTTP](#aiohttp)
- [HTTPX](#httpx)
- [Requests](#requests)
- [Quickstart](#quickstart)
- [limiter_factory](#limiter_factory)
- [Examples](#examples)
- [Basic usage](#basic-usage)
- [Key concepts](#key-concepts)
- [Defining rate limits & buckets](#defining-rate-limits-and-buckets)
- [Defining clock & routing logic](#defining-clock--routing-logic-with-bucketfactory)
- [Wrapping all up with Limiter](#wrapping-all-up-with-limiter)
- [asyncio and event loops](#asyncio-and-event-loops)
- [`as_decorator()`: use limiter as decorator](#as_decorator-use-limiter-as-decorator)
- [Limiter API](#limiter-api)
- [Context Manager](#context-manager)
- [Weight](#weight)
- [Handling exceeded limits](#handling-exceeded-limits)
- [Bucket analogy](#bucket-analogy)
- [Blocking vs Non-blocking](#blocking-vs-non-blocking)
- [Backends](#backends)
- [InMemoryBucket](#inmemorybucket)
- [MultiprocessBucket](#multiprocessbucket)
- [SQLiteBucket](#sqlitebucket)
- [RedisBucket](#redisbucket)
- [PostgresBucket](#postgresbucket)
- [BucketAsyncWrapper](#bucketasyncwrapper)
- [Async or Sync or Multiprocessing](#async-or-sync-or-multiprocessing)
- [Advanced Usage](#advanced-usage)
- [Component-level Diagram](#component-level-diagram)
- [Time sources](#time-sources)
- [Leaking](#leaking)
- [Concurrency](#concurrency)
- [Custom backend](#custom-backend)
## Features
- Supports unlimited rate limits and custom intervals.
- Separately tracks limits for different services or resources.
- Manages limit breaches with configurable blocking or non-blocking behavior.
- Offers multiple usage modes: direct calls or decorators.
- Fully compatible with both synchronous and asynchronous workflows.
- Provides SQLite and Redis backends for persistent limit tracking across threads or restarts.
- Includes MultiprocessBucket and SQLite File Lock backends for multiprocessing environments.
## Installation
**PyrateLimiter** supports **python ^3.8**
Install using pip:
```
pip install pyrate-limiter
```
Or using conda:
```
conda install --channel conda-forge pyrate-limiter
```
## Quickstart
To limit 5 requests within 2 seconds:
```python
from pyrate_limiter import Duration, Rate, Limiter
limiter = Limiter(Rate(5, Duration.SECOND * 2))
# Blocking mode (default) - waits until permit available
for i in range(6):
limiter.try_acquire(str(i))
print(f"Acquired permit {i}")
# Non-blocking mode - returns False if bucket full
for i in range(6):
success = limiter.try_acquire(str(i), blocking=False)
if not success:
print(f"Rate limited at {i}")
```
## limiter_factory
[limiter_factory.py](https://github.com/vutran1710/PyrateLimiter/blob/master/pyrate_limiter/limiter_factory.py) provides several functions to simplify common cases:
- create_sqlite_limiter(rate_per_duration: int, duration: Duration, ...)
- create_inmemory_limiter(rate_per_duration: int, duration: Duration, ...)
- + more to be added...
## Examples
- Rate limiting asyncio tasks: [asyncio_ratelimit.py](https://github.com/vutran1710/PyrateLimiter/blob/master/examples/asyncio_ratelimit.py)
- Rate limiting asyncio tasks w/ a decorator: [asyncio_decorator.py](https://github.com/vutran1710/PyrateLimiter/blob/master/examples/asyncio_decorator.py)
- HTTPX rate limiting - asyncio, single process and multiprocess examples [httpx_ratelimiter.py](https://github.com/vutran1710/PyrateLimiter/blob/master/examples/httpx_ratelimiter.py)
- Multiprocessing using an in-memory rate limiter - [in_memory_multiprocess.py](https://github.com/vutran1710/PyrateLimiter/blob/master/examples/in_memory_multiprocess.py)
- Multiprocessing using SQLite and a file lock - this can be used for distributed processes not created within a multiprocessing [sql_filelock_multiprocess.py](https://github.com/vutran1710/PyrateLimiter/blob/master/examples/sql_filelock_multiprocess.py)
## Web Request Rate Limiting
pyrate_limiter provides three extras for popular web request libraries:
- [AIOHTTP](https://pypi.org/project/aiohttp/)
- [HTTPX](https://pypi.org/project/httpx/)
- [Requests](https://pypi.org/project/requests/)
### AIOHTTP
```py
from pyrate_limiter import limiter_factory
from pyrate_limiter.extras.aiohttp_limiter import RateLimitedSession
limiter = limiter_factory.create_inmemory_limiter(rate_per_duration=2, duration=Duration.SECOND)
session = RateLimitedSession(limiter)
```
Example: [aiohttp_ratelimiter.py](https://github.com/vutran1710/PyrateLimiter/blob/master/examples/aiohttp_ratelimiter.py)
### HTTPX
```py
from pyrate_limiter import limiter_factory
from pyrate_limiter.extras.httpx_limiter import AsyncRateLimiterTransport, RateLimiterTransport
import httpx
limiter = limiter_factory.create_inmemory_limiter(rate_per_duration=1, duration=Duration.SECOND, max_delay=Duration.HOUR)
url = "https://example.com"
with httpx.Client(transport=RateLimiterTransport(limiter=limiter)) as client:
client.get(url)
# or async
async with httpx.AsyncClient(transport=AsyncRateLimiterTransport(limiter=limiter)) as client:
client.get(url)
...
```
Example: [httpx_ratelimiter.py](https://github.com/vutran1710/PyrateLimiter/blob/master/examples/httpx_ratelimiter.py)
### Requests
```py
from pyrate_limiter import limiter_factory
from pyrate_limiter.extras.requests_limiter import RateLimitedRequestsSession
limiter = limiter_factory.create_inmemory_limiter(rate_per_duration=2, duration=Duration.SECOND)
session = RateLimitedRequestsSession(limiter)
....
```
Example: [requests_ratelimiter.py](https://github.com/vutran1710/PyrateLimiter/blob/master/examples/requests_ratelimiter.py)
## Basic Usage
### Key concepts
#### Clock
- Timestamps incoming items
#### Bucket
- Stores items with timestamps.
- Functions as a FIFO queue.
- Can `leak` to remove outdated items.
#### BucketFactory
- Manages buckets and clocks, routing items to their appropriate buckets.
- Schedules periodic `leak` operations to prevent overflow.
- Allows custom logic for routing, conditions, and timing.
#### Limiter
- Provides a simple, intuitive API by abstracting underlying logic.
- Seamlessly supports both sync and async contexts.
- Offers multiple interaction modes: direct calls, decorators, and (future) context managers.
- Ensures thread-safety via RLock, and if needed, asyncio concurrency via asyncio.Lock
### Defining rate limits and buckets
For example, an API (like LinkedIn or GitHub) might have these rate limits:
```
- 500 requests per hour
- 1000 requests per day
- 10000 requests per month
```
You can define these rates using the `Rate` class. `Rate` class has 2 properties only: **limit** and **interval**
```python
from pyrate_limiter import Duration, Rate
hourly_rate = Rate(500, Duration.HOUR) # 500 requests per hour
daily_rate = Rate(1000, Duration.DAY) # 1000 requests per day
monthly_rate = Rate(10000, Duration.WEEK * 4) # 10000 requests per month
rates = [hourly_rate, daily_rate, monthly_rate]
```
Rates must be properly ordered:
- Rates' intervals & limits must be ordered from least to greatest
- Rates' ratio of **limit/interval** must be ordered from greatest to least
Buckets validate rates during initialization. If using a custom implementation, use the built-in validator:
```python
from pyrate_limiter import validate_rate_list
assert validate_rate_list(my_rates)
```
Then, add the rates to the bucket of your choices
```python
from pyrate_limiter import InMemoryBucket, RedisBucket
basic_bucket = InMemoryBucket(rates)
# Or, using redis
from redis import Redis
redis_connection = Redis(host='localhost')
redis_bucket = RedisBucket.init(rates, redis_connection, "my-bucket-name")
# Async Redis would work too!
from redis.asyncio import Redis
redis_connection = Redis(host='localhost')
redis_bucket = await RedisBucket.init(rates, redis_connection, "my-bucket-name")
```
If you only need a single Bucket for everything, and python's built-in `time()` is enough for you, then pass the bucket to Limiter then ready to roll!
```python
from pyrate_limiter import Limiter
# Limiter constructor accepts single bucket as the only parameter,
# the rest are 3 optional parameters with default values as following
# Limiter(bucket, clock=MonotonicClock(), raise_when_fail=True, max_delay=None)
limiter = Limiter(bucket)
# Limiter is now ready to work!
limiter.try_acquire("hello world")
```
If you want to have finer grain control with routing & clocks etc, then you should use `BucketFactory`.
### Defining Clock & routing logic with BucketFactory
When multiple bucket types are needed and items must be routed based on certain conditions, use `BucketFactory`.
First, define your clock (time source). Most use cases work with the built-in clocks:
```python
from pyrate_limiter.clock import MonotonicClock, SQLiteClock
base_clock = MonotonicClock()
```
PyrateLimiter does not assume routing logic, so you implement a custom BucketFactory. At a minimum, these two methods must be defined:
```python
from pyrate_limiter import BucketFactory
from pyrate_limiter import AbstractBucket
class MyBucketFactory(BucketFactory):
# You can use constructor here,
# nor it requires to make bucket-factory work!
def wrap_item(self, name: str, weight: int = 1) -> RateItem:
"""Time-stamping item, return a RateItem"""
now = clock.now()
return RateItem(name, now, weight=weight)
def get(self, _item: RateItem) -> AbstractBucket:
"""For simplicity's sake, all items route to the same, single bucket"""
return bucket
```
### Creating buckets dynamically
If more than one bucket is needed, the bucket-routing logic should go to BucketFactory `get(..)` method.
When creating buckets dynamically, it is needed to schedule leak for each newly created buckets.
To support this, BucketFactory comes with a predefined method call `self.create(..)`. It is meant to create the bucket and schedule that bucket for leaking using the Factory's clock
```python
def create(
self,
clock: AbstractClock,
bucket_class: Type[AbstractBucket],
*args,
**kwargs,
) -> AbstractBucket:
"""Creating a bucket dynamically"""
bucket = bucket_class(*args, **kwargs)
self.schedule_leak(bucket, clock)
return bucket
```
By utilizing this, we can modify the code as following:
```python
class MultiBucketFactory(BucketFactory):
def __init__(self, clock):
self.clock = clock
self.buckets = {}
def wrap_item(self, name: str, weight: int = 1) -> RateItem:
"""Time-stamping item, return a RateItem"""
now = clock.now()
return RateItem(name, now, weight=weight)
def get(self, item: RateItem) -> AbstractBucket:
if item.name not in self.buckets:
# Use `self.create(..)` method to both initialize new bucket and calling `schedule_leak` on that bucket
# We can create different buckets with different types/classes here as well
new_bucket = self.create(YourBucketClass, *your-arguments, **your-keyword-arguments)
self.buckets.update({item.name: new_bucket})
return self.buckets[item.name]
```
### Wrapping all up with Limiter
Pass your bucket-factory to Limiter, and ready to roll!
```python
from pyrate_limiter import Limiter
limiter = Limiter(
bucket_factory,
raise_when_fail=False, # Default = True
max_delay=1000, # Default = None
)
item = "the-earth"
limiter.try_acquire(item)
heavy_item = "the-sun"
limiter.try_acquire(heavy_item, weight=10000)
```
### asyncio and event loops
To ensure the event loop isn't blocked, use `try_acquire_async` with an **async bucket**, which leverages `asyncio.Lock` for concurrency control.
If your bucket isn't async, wrap it with `BucketAsyncWrapper`. This ensures `asyncio.sleep` is used instead of `time.sleep`, preventing event loop blocking:
```python
await limiter.try_acquire_async(item)
```
Example: [asyncio_ratelimit.py](https://github.com/vutran1710/PyrateLimiter/blob/master/examples/asyncio_ratelimit.py)
#### `as_decorator()`: use limiter as decorator
`Limiter` can be used as a decorator with `name` and `weight` parameters.
The decorator works with both synchronous and asynchronous functions:
```python
from pyrate_limiter import Rate, Duration, Limiter
limiter = Limiter(Rate(5, Duration.SECOND))
@limiter.as_decorator(name="api_call", weight=1)
def handle_something(*args, **kwargs):
"""function logic"""
@limiter.as_decorator(name="background_job", weight=2)
async def handle_something_async(*args, **kwargs):
"""async function logic"""
```
For full example see [asyncio_decorator.py](https://github.com/vutran1710/PyrateLimiter/blob/master/examples/asyncio_decorator.py)
### Limiter API
#### `bucket()`: get list of all active buckets
Return list of all active buckets with `limiter.buckets()`
#### `dispose(bucket: int | BucketObject)`: dispose/remove/delete the given bucket
Method signature:
```python
def dispose(self, bucket: Union[int, AbstractBucket]) -> bool:
"""Dispose/Remove a specific bucket,
using bucket-id or bucket object as param
"""
```
Example of usage:
```python
active_buckets = limiter.buckets()
assert len(active_buckets) > 0
bucket_to_remove = active_buckets[0]
assert limiter.dispose(bucket_to_remove)
```
If a bucket is found and get deleted, calling this method will return **True**, otherwise **False**.
If there is no more buckets in the limiter's bucket-factory, all the leaking tasks will be stopped.
#### Context Manager
Limiter supports the context manager protocol for automatic cleanup:
```python
from pyrate_limiter import Limiter, RequestRate, Duration, InMemoryBucket
# Define a simple rate and create a bucket
rate = RequestRate(5, Duration.SECOND)
bucket = InMemoryBucket(rate)
# Use Limiter as a context manager
with Limiter(bucket) as limiter:
limiter.try_acquire("item")
# Resources automatically released
# Or manually close
limiter = Limiter(bucket)
try:
limiter.try_acquire("item")
finally:
limiter.close()
```
### Weight
Item can have weight. By default item's weight = 1, but you can modify the weight before passing to `limiter.try_acquire`.
Item with weight W > 1 when consumed will be multiplied to (W) items with the same timestamp and weight = 1. Example with a big item with weight W=5, when put to bucket, it will be divided to 5 items with weight=1 + following names
```
BigItem(weight=5, name="item", timestamp=100) => [
item(weight=1, name="item", timestamp=100),
item(weight=1, name="item", timestamp=100),
item(weight=1, name="item", timestamp=100),
item(weight=1, name="item", timestamp=100),
item(weight=1, name="item", timestamp=100),
]
```
Yet, putting this big, heavy item into bucket is expected to be transactional & atomic - meaning either all 5 items will be consumed or none of them will. This is made possible as bucket `put(item)` always check for available space before ingesting. All of the Bucket's implementations provided by **PyrateLimiter** follows this rule.
Any additional, custom implementation of Bucket are expected to behave alike - as we have unit tests to cover the case.
See [Advanced Usage](#advanced-usage) below for more details.
### Handling exceeded limits
When a rate limit is exceeded, you can choose between blocking and non-blocking behavior.
#### Bucket analogy
At this point it's useful to introduce the analogy of "buckets" used for rate-limiting. Here is a
quick summary:
- This library implements the [Leaky Bucket algorithm](https://en.wikipedia.org/wiki/Leaky_bucket).
- It is named after the idea of representing some kind of fixed capacity -- like a network or service -- as a bucket.
- The bucket "leaks" at a constant rate. For web services, this represents the **ideal or permitted request rate**.
- The bucket is "filled" at an intermittent, unpredicatble rate, representing the **actual rate of requests**.
- When the bucket is "full", it will overflow, representing **canceled or delayed requests**.
- Item can have weight. Consuming a single item with weight W > 1 is the same as consuming W smaller, unit items - each with weight=1, with the same timestamp and maybe same name (depending on however user choose to implement it)
#### Blocking vs Non-blocking
By default, `try_acquire` blocks until a permit becomes available:
```python
from pyrate_limiter import Rate, Limiter, Duration
rate = Rate(3, Duration.SECOND)
limiter = Limiter(rate)
# Blocking (default) - waits until permit is available
for i in range(5):
limiter.try_acquire("item") # blocks if bucket is full
print(f"Acquired {i}")
```
For non-blocking behavior, set `blocking=False` to return immediately:
```python
# Non-blocking - returns False immediately if bucket is full
for i in range(5):
success = limiter.try_acquire("item", blocking=False)
if not success:
print(f"Rate limited at request {i}")
break
```
For async code, use `try_acquire_async` with optional timeout:
```python
# Async with timeout (in seconds)
success = await limiter.try_acquire_async("item", timeout=5)
if not success:
print("Timed out waiting for permit")
```
The `buffer_ms` parameter (default 50ms) adds a small delay buffer to account for timing variations:
```python
from pyrate_limiter import Duration, InMemoryBucket, Limiter, RequestRate
rate = RequestRate(5, Duration.SECOND)
bucket = InMemoryBucket(rate)
limiter = Limiter(bucket, buffer_ms=100) # 100ms buffer
```
### Backends
A few different bucket backends are available:
- **InMemoryBucket**: using python built-in list as bucket
- **MultiprocessBucket**: uses a multiprocessing lock for distributed concurrency with a ListProxy as the bucket
- **RedisBucket**, using err... redis, with both async/sync support
- **PostgresBucket**, using `psycopg2`
- **SQLiteBucket**, using sqlite3
- **BucketAsyncWrapper**: wraps an existing bucket with async interfaces, to avoid blocking the event loop
#### InMemoryBucket
The default bucket is stored in memory, using python `list`
```python
from pyrate_limiter import InMemoryBucket, Rate, Duration
rates = [Rate(5, Duration.MINUTE * 2)]
bucket = InMemoryBucket(rates)
```
This bucket only availabe in `sync` mode. The only constructor argument is `List[Rate]`.
#### MultiprocessBucket
MultiprocessBucket uses a ListProxy to store items within a python multiprocessing pool or ProcessPoolExecutor. Concurrency is enforced via a multiprocessing Lock.
The bucket is shared across instances.
An example is provided in [in_memory_multiprocess](https://github.com/vutran1710/PyrateLimiter/blob/master/examples/in_memory_multiprocess.py)
Whenever multiprocessing, bucket.waiting calculations will be often wrong because of the concurrency involved. Set Limiter.retry_until_max_delay=True so that the
item keeps retrying rather than returning False when contention causes an extra delay.
#### RedisBucket
RedisBucket uses `Sorted-Set` to store items with key being item's name and score item's timestamp
Because it is intended to work with both async & sync, we provide a classmethod `init` for it
```python
from pyrate_limiter import RedisBucket, Rate, Duration
# Using synchronous redis
from redis import ConnectionPool
from redis import Redis
rates = [Rate(5, Duration.MINUTE * 2)]
pool = ConnectionPool.from_url("redis://localhost:6379")
redis_db = Redis(connection_pool=pool)
bucket_key = "bucket-key"
bucket = RedisBucket.init(rates, redis_db, bucket_key)
# Using asynchronous redis
from redis.asyncio import ConnectionPool as AsyncConnectionPool
from redis.asyncio import Redis as AsyncRedis
pool = AsyncConnectionPool.from_url("redis://localhost:6379")
redis_db = AsyncRedis(connection_pool=pool)
bucket_key = "bucket-key"
bucket = await RedisBucket.init(rates, redis_db, bucket_key)
```
The API are the same, regardless of sync/async. If AsyncRedis is being used, calling `await bucket.method_name(args)` would just work!
#### SQLiteBucket
If you need to persist the bucket state, a SQLite backend is available. The SQLite bucket works in sync manner.
Manully create a connection to Sqlite and pass it along with the table name to the bucket class:
```python
from pyrate_limiter import SQLiteBucket, Rate, Duration
import sqlite3
rates = [Rate(5, Duration.MINUTE * 2)]
bucket = SQLiteBucket.init_from_file(rates)
```
```py
from pyrate_limiter import Rate, Limiter, Duration, SQLiteBucket
requests_per_minute = 5
rate = Rate(requests_per_minute, Duration.MINUTE)
bucket = SQLiteBucket.init_from_file([rate], use_file_lock=False) # set use_file_lock to True if using across multiple processes
limiter = Limiter(bucket, raise_when_fail=False, max_delay=max_delay)
```
You can also pass custom arguments to the `init_from_file` following its signature:
```python
class SQLiteBucket(AbstractBucket):
@classmethod
def init_from_file(
cls,
rates: List[Rate],
table: str = "rate_bucket",
db_path: Optional[str] = None,
create_new_table = True,
use_file_lock: bool = False
) -> "SQLiteBucket":
...
```
Options:
- `db_path`: If not provided, uses `tempdir / "pyrate-limiter.sqlite"`
- `use_file_lock`: Should be False for single process workloads. For multi process, uses a [filelock](https://pypi.org/project/filelock/) to ensure single access to the SQLite bucket across multiple processes, allowing multi process rate limiting on a single host.
Example: [limiter_factory.py::create_sqlite_limiter()](https://github.com/vutran1710/PyrateLimiter/blob/master/pyrate_limiter/limiter_factory.py)
#### PostgresBucket
Postgres is supported, but you have to install `psycopg[pool]` either as an extra or as a separate package. The PostgresBucket currently does not support async.
You can use Postgres's built-in **CURRENT_TIMESTAMP** as the time source with `PostgresClock`, or use an external custom time source.
```python
from pyrate_limiter import PostgresBucket, Rate, PostgresClock
from psycopg_pool import ConnectionPool
connection_pool = ConnectionPool('postgresql://postgres:postgres@localhost:5432')
clock = PostgresClock(connection_pool)
rates = [Rate(3, 1000), Rate(4, 1500)]
bucket = PostgresBucket(connection_pool, "my-bucket-table", rates)
```
#### BucketAsyncWrapper
The BucketAsyncWrapper wraps a sync bucket to ensure all its methods return awaitables. This allows the Limiter to detect
asynchronous behavior and use asyncio.sleep() instead of time.sleep() during delay handling,
preventing blocking of the asyncio event loop.
Example: [limiter_factory.py::create_inmemory_limiter()](https://github.com/vutran1710/PyrateLimiter/blob/master/pyrate_limiter/limiter_factory.py)
### Async or Sync or Multiprocessing
The Limiter is basically made of a Clock backend and a Bucket backend. The backends may be async or sync, which determines the Limiters internal behavior, regardless of whether the caller enters via a sync or async function.
try_acquire_async: When calling from an async context, use try_acquire_async. This uses a thread-local asyncio lock to ensure only one asyncio task is acquiring, followed by a global RLock so that only one thread is acquiring.
try_acquire: When called directly, the global RLock enforces only one thread at a time.
Multiprocessing: If using MultiprocessBucket, two locks are used in Limiter: a top level multiprocessing lock, then a thread level RLock
## Advanced Usage
### Component level diagram
### Time sources
Time source can be anything from anywhere: be it python's built-in time, or monotonic clock, sqliteclock, or crawling from world time server(well we don't have that, but you can!).
```python
from pyrate_limiter import MonotonicClock # use python time.monotonic()
```
Clock's abstract interface only requires implementing a method `now() -> int`. And it can be both sync or async.
### Leaking
Typically bucket should not hold items forever. Bucket's abstract interface requires its implementation must be provided with `leak(current_timestamp: Optional[int] = None)`.
The `leak` method when called is expected to remove any items considered outdated at that moment. During Limiter lifetime, all the buckets' `leak` should be called periodically.
**BucketFactory** provide a method called `schedule_leak` to help deal with this matter. Basically, it will run as a background task for all the buckets currently in use, with interval between `leak` call by **default is 10 seconds**.
```python
# Runnning a background task (whether it is sync/async - doesnt matter)
# calling the bucket's leak
factory.schedule_leak(bucket, clock)
```
You can change this calling interval by overriding BucketFactory's `leak_interval` property. This interval is in **miliseconds**.
```python
class MyBucketFactory(BucketFactory):
def __init__(self, *args):
self.leak_interval = 300
```
When dealing with leak using BucketFactory, the author's suggestion is, we can be pythonic about this by implementing a constructor
```python
class MyBucketFactory(BucketFactory):
def constructor(self, clock, buckets):
self.clock = clock
self.buckets = buckets
for bucket in buckets:
self.schedule_leak(bucket, clock)
```
### Concurrency
Generally, Lock is provided at Limiter's level, except SQLiteBucket case.
### Custom backends
If these don't suit your needs, you can also create your own bucket backend by implementing `pyrate_limiter.AbstractBucket` class.
One of **PyrateLimiter** design goals is powerful extensibility and maximum ease of development.
It must be not only be a ready-to-use tool, but also a guide-line, or a framework that help implementing new features/bucket free of the most hassles.
Due to the composition nature of the library, it is possbile to write minimum code and validate the result:
- Fork the repo
- Implement your bucket with `pyrate_limiter.AbstractBucket`
- Add your own `create_bucket` method in `tests/conftest.py` and pass it to the `create_bucket` fixture
- Run the test suite to validate the result
If the tests pass through, then you are just good to go with your new, fancy bucket!
|