File: control

package info (click to toggle)
pyrate-limiter 4.0.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,120 kB
  • sloc: python: 3,223; makefile: 21
file content (51 lines) | stat: -rw-r--r-- 1,976 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
Source: pyrate-limiter
Maintainer: Home Assistant Team <team+homeassistant@tracker.debian.org>
Uploaders:
 Edward Betts <edward@4angle.com>,
Section: python
Build-Depends:
 debhelper-compat (= 13),
 dh-sequence-python3,
 dh-sequence-sphinxdoc <!nodoc>,
 pybuild-plugin-pyproject,
 python3-hatchling,
Build-Depends-Indep:
 furo <!nodoc>,
 python3-all,
 python3-filelock <!nocheck>,
 python3-myst-parser <!nodoc>,
 python3-psycopg-pool <!nocheck>,
 python3-pytest <!nocheck>,
 python3-pytest-asyncio <!nocheck>,
 python3-pytest-cov <!nocheck>,
 python3-redis <!nocheck>,
 python3-sphinx <!nodoc>,
 python3-sphinx-autodoc-typehints <!nodoc>,
 python3-sphinx-copybutton <!nodoc>,
 python3-sphinxcontrib.apidoc <!nodoc>,
 redis <!nocheck>,
Standards-Version: 4.7.3
Homepage: https://github.com/vutran1710/PyrateLimiter
Vcs-Browser: https://salsa.debian.org/homeassistant-team/deps/pyrate-limiter
Vcs-Git: https://salsa.debian.org/homeassistant-team/deps/pyrate-limiter.git
Testsuite: autopkgtest-pkg-pybuild

Package: python3-pyrate-limiter
Architecture: all
Depends:
 ${misc:Depends},
 ${python3:Depends},
 ${sphinxdoc:Depends},
Built-Using:
 ${sphinxdoc:Built-Using},
Description: Request rate limiter using a leaky-bucket algorithm
 This library implements a request rate limiting system utilizing the leaky-
 bucket algorithm. It tracks multiple rate limits and intervals as defined by
 users, offering both synchronous and asynchronous operation modes. The library
 can independently monitor rate limits for different services or resources,
 managing exceeded limits by raising exceptions or imposing delays on requests.
 It supports a range of backends such as in-memory, SQLite, Redis, and
 PostgreSQL, which facilitates the persistence of limit tracking across
 multiple threads or application restarts. This is particularly useful in
 environments with variable request loads, ensuring compliance with service
 constraints without exceeding predefined request thresholds.