1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
|
#-*- coding: utf-8 -*-
# #############################################################################
# Copyright 2018 Hoffmann-La Roche
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# #############################################################################
from datetime import datetime, timedelta, date
import unittest
import os
import sys
import shutil
import pandas as pd
import numpy as np
is_pathlib_available = False
try:
from pathlib import Path
is_pathlib_available = True
except:
pass
class TestBasic(unittest.TestCase):
"""
Test suite for pyreadstat.
"""
def _prepare_data(self):
self.script_folder = os.path.dirname(os.path.realpath(__file__))
self.parent_folder = os.path.split(self.script_folder)[0]
self.data_folder = os.path.join(self.parent_folder, "test_data")
self.basic_data_folder = os.path.join(self.data_folder, "basic")
self.catalog_data_folder = os.path.join(self.data_folder, "sas_catalog")
self.international_data_folder = os.path.join(self.data_folder, "ínternátionál")
self.missing_data_folder = os.path.join(self.data_folder, "missing_data")
self.mr_data_folder = os.path.join(self.data_folder, "multiple_response")
self.write_folder = os.path.join(self.data_folder, "write")
if not os.path.isdir(self.write_folder):
os.makedirs(self.write_folder)
# basic
pandas_csv = os.path.join(self.basic_data_folder, "sample.csv")
df_pandas = pd.read_csv(pandas_csv)
df_pandas["mydate"] = [datetime.strptime(x, '%Y-%m-%d').date() if type(x) == str else float('nan') for x in df_pandas["mydate"]]
df_pandas["dtime"] = [datetime.strptime(x, '%Y-%m-%dT%H:%M:%S.000000') if type(x) == str else float('nan') for x in
df_pandas["dtime"]]
df_pandas["mytime"] = [datetime.strptime(x, '%H:%M:%S.000000').time() if type(x) == str else float('nan') for x in
df_pandas["mytime"]]
df_pandas["myord"] = df_pandas["myord"].astype(float)
df_pandas["mylabl"] = df_pandas["mylabl"].astype(float)
self.df_pandas = df_pandas
# formatted
mylabl_format = {1.0:"Male", 2.0:"Female"}
myord_format = {1.0:"low", 2.0:"medium", 3.0:"high"}
df_pandas_formatted = df_pandas.copy()
df_pandas_formatted["mylabl"] = df_pandas_formatted["mylabl"].apply(lambda x: mylabl_format[x])
df_pandas_formatted["myord"] = df_pandas_formatted["myord"].apply(lambda x: myord_format[x])
df_pandas_formatted["mylabl"] = df_pandas_formatted["mylabl"].astype("category")
df_pandas_formatted["myord"] = df_pandas_formatted["myord"].astype("category")
self.df_pandas_formatted = df_pandas_formatted
# skip some columns
self.usecols = ['mynum', 'myord']
cols_to_drop = list(set(df_pandas.columns.values.tolist()) - set(self.usecols))
self.df_usecols = df_pandas.drop(cols_to_drop, axis=1)
# sas formatted
sas_formatted = os.path.join(self.catalog_data_folder, "sas_formatted.csv")
df_sas = pd.read_csv(sas_formatted)
df_sas["SEXA"] = df_sas["SEXA"].astype("category")
df_sas["SEXB"] = df_sas["SEXB"].astype("category")
self.df_sas_format = df_sas
# dates
sas_dates = os.path.join(self.basic_data_folder, "dates.csv")
df_dates1 = pd.read_csv(sas_dates)
df_dates1["date"] = pd.to_datetime(df_dates1["date"])
df_dates1["dtime"] = pd.to_datetime(df_dates1["dtime"])
df_dates1["time"] = pd.to_datetime(df_dates1["time"], format='%H:%M:%S')
df_dates1["time"] = df_dates1["time"].apply(lambda x: x.time())
self.df_sas_dates_as_pandas = df_dates1
df_dates2 = df_dates1.copy()
df_dates2["date"] = df_dates2["date"].apply(lambda x: x.date())
self.df_sas_dates = df_dates2
self.df_sas_dates2 = pd.concat([self.df_sas_dates, pd.DataFrame([[np.nan, pd.NaT, np.nan]],columns=["date", "dtime", "time"])], ignore_index=True)
# missing data
pandas_missing_sav_csv = os.path.join(self.basic_data_folder, "sample_missing.csv")
df_missing_sav = pd.read_csv(pandas_missing_sav_csv, na_values="#NULL!", keep_default_na=False)
df_missing_sav["mydate"] = [datetime.strptime(x, '%Y-%m-%d').date() if type(x) == str else float('nan') for x in
df_missing_sav["mydate"]]
df_missing_sav["dtime"] = [datetime.strptime(x, '%Y-%m-%dT%H:%M:%S.000000') if type(x) == str else float('nan') for x
in df_missing_sav["dtime"]]
df_missing_sav["mytime"] = [datetime.strptime(x, '%H:%M:%S.000000').time() if type(x) == str else float('nan') for x
in df_missing_sav["mytime"]]
self.df_missing_sav = df_missing_sav
pandas_missing_user_sav_csv = os.path.join(self.basic_data_folder, "sample_missing_user.csv")
df_user_missing_sav = pd.read_csv(pandas_missing_user_sav_csv, na_values="#NULL!", keep_default_na=False)
df_user_missing_sav["mydate"] = [datetime.strptime(x, '%Y-%m-%d').date() if type(x) == str else float('nan') for x in
df_user_missing_sav["mydate"]]
df_user_missing_sav["dtime"] = [datetime.strptime(x, '%Y-%m-%dT%H:%M:%S.000000') if type(x) == str else float('nan')
for x in df_user_missing_sav["dtime"]]
df_user_missing_sav["mytime"] = [datetime.strptime(x, '%H:%M:%S.000000').time() if type(x) == str else float('nan')
for x in df_user_missing_sav["mytime"]]
self.df_user_missing_sav = df_user_missing_sav
# no dates
nodates_spss_csv = os.path.join(self.basic_data_folder, "sample_nodate_spss.csv")
df_nodates_spss = pd.read_csv(nodates_spss_csv)
df_nodates_spss["myord"] = df_nodates_spss["myord"].astype(float)
df_nodates_spss["mylabl"] = df_nodates_spss["mylabl"].astype(float)
self.df_nodates_spss = df_nodates_spss
nodates_sastata_csv = os.path.join(self.basic_data_folder, "sample_nodate_sas_stata.csv")
df_nodates_sastata = pd.read_csv(nodates_sastata_csv)
df_nodates_sastata["myord"] = df_nodates_sastata["myord"].astype(float)
df_nodates_sastata["mylabl"] = df_nodates_sastata["mylabl"].astype(float)
self.df_nodates_sastata = df_nodates_sastata
# character column with nan and object column with nan (object pyreadstat writer doesn't know what to do with)
self.df_charnan = pd.DataFrame([[0,np.nan,np.nan],[1,"test", timedelta]], columns = ["integer", "string", "object"])
# xport files v5 vs v8
self.xptv5v8 = pd.DataFrame([[float(x)] for x in range(1,11)], columns=["i"])
# long string
self.df_longstr = pd.DataFrame({
"v1": {
"10001": """Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas ac pretium sem. Fusce aliquet
augue rhoncus consequat pulvinar. In est ex, porta congue diam sed, laoreet suscipit purus. Phasellus mollis
lobortis tellus at vehicula. Etiam egestas augue id massa bibendum volutpat id et ipsum. Praesent ut lorem
rhoncus, pharetra risus sed, pharetra sem. In pulvinar egestas erat, id condimentum tortor tempus sed. Duis
ornare lacus ut ligula congue, non convallis urna dignissim. Etiam vehicula turpis sit amet nisi finibus
laoreet. Duis molestie consequat nulla, non lobortis est tempus sit amet. Quisque elit est,
congue non commodo vitae, porttitor ac erat. """,
"10002": "fgsdghshsgh",
"10003": "gsfdgsdg",
},
"v2": {
"10001": "gsfdgsfdgsfg",
"10002": "fgsdghshsgh",
"10003": "gsfdgsdg",
},
})
def setUp(self):
# set paths
self._prepare_data()
def test_sas7bdat(self):
df, meta = pyreadstat.read_sas7bdat(os.path.join(self.basic_data_folder, "sample.sas7bdat"))
self.assertTrue(df.equals(self.df_pandas))
self.assertTrue(meta.number_columns == len(self.df_pandas.columns))
self.assertTrue(meta.number_rows == len(self.df_pandas))
#self.assertTrue(meta.creation_time==datetime(2018, 8, 16, 18, 21, 52))
#self.assertTrue(meta.modification_time==datetime(2018, 8, 16, 18, 21, 52))
def test_sas7bdat_bincompressed(self):
df, meta = pyreadstat.read_sas7bdat(os.path.join(self.basic_data_folder, "sample_bincompressed.sas7bdat"))
self.assertTrue(df.equals(self.df_pandas))
self.assertTrue(meta.number_columns == len(self.df_pandas.columns))
self.assertTrue(meta.number_rows == len(self.df_pandas))
def test_sas7bdat_metaonly(self):
df, meta = pyreadstat.read_sas7bdat(os.path.join(self.basic_data_folder, "sample.sas7bdat"))
df2, meta2 = pyreadstat.read_sas7bdat(os.path.join(self.basic_data_folder, "sample.sas7bdat"), metadataonly=True)
self.assertTrue(df2.empty)
self.assertTrue(meta.number_columns == meta2.number_columns)
self.assertTrue(meta.number_rows == meta2.number_rows)
self.assertTrue(meta.column_names == meta2.column_names)
self.assertTrue(meta.column_labels == meta2.column_labels)
self.assertTrue(meta.readstat_variable_types["mychar"]=="string")
self.assertTrue(meta.readstat_variable_types["myord"]=="double")
self.assertTrue(meta.readstat_variable_types["dtime"]=="double")
def test_sas7bdat_usecols(self):
df, meta = pyreadstat.read_sas7bdat(os.path.join(self.basic_data_folder, "sample.sas7bdat"), usecols=self.usecols)
self.assertTrue(df.equals(self.df_usecols))
self.assertTrue(meta.number_columns == len(self.usecols))
self.assertTrue(meta.column_names == self.usecols)
def test_sas7bdat_international(self):
"""
On windows, paths with international characters are problematic. This is verifying that it is working as expected
"""
# in addition, this works only in python 3
if sys.version_info[0]>2:
df, meta = pyreadstat.read_sas7bdat(os.path.join(self.international_data_folder, "sample.sas7bdat"))
self.assertTrue(df.equals(self.df_pandas))
self.assertTrue(meta.number_columns == len(self.df_pandas.columns))
self.assertTrue(meta.number_rows == len(self.df_pandas))
def test_sas7bdat_nodates(self):
df, meta = pyreadstat.read_sas7bdat(os.path.join(self.basic_data_folder, "sample.sas7bdat"), disable_datetime_conversion=True)
self.assertTrue(df.equals(self.df_nodates_sastata))
def test_sas7bdat_chunk(self):
df, meta = pyreadstat.read_sas7bdat(os.path.join(self.basic_data_folder, "sample.sas7bdat"), row_limit = 2, row_offset =1)
df_pandas = self.df_pandas.iloc[1:3,:].reset_index(drop=True)
df_pandas["dtime"] = pd.to_datetime(df_pandas["dtime"])
self.assertTrue(df.equals(df_pandas))
self.assertTrue(meta.number_columns == len(self.df_pandas.columns))
self.assertTrue(meta.number_rows == len(df_pandas))
def test_xport(self):
df, meta = pyreadstat.read_xport(os.path.join(self.basic_data_folder, "sample.xpt"))
df.columns = [x.lower() for x in df.columns]
self.assertTrue(df.equals(self.df_pandas))
self.assertTrue(meta.number_columns == len(self.df_pandas.columns))
self.assertTrue(meta.number_rows == len(self.df_pandas))
#self.assertTrue(meta.creation_time==datetime(2018, 8, 14, 10, 55, 46))
#self.assertTrue(meta.modification_time==datetime(2018, 8, 14, 10, 55, 46))
def test_xport_v5(self):
df, meta = pyreadstat.read_xport(os.path.join(self.basic_data_folder, "sas.xpt5"))
df.columns = [x.lower() for x in df.columns]
self.assertTrue(df.equals(self.xptv5v8))
def test_xport_v8(self):
df, meta = pyreadstat.read_xport(os.path.join(self.basic_data_folder, "sas.xpt8"))
self.assertTrue(df.equals(self.xptv5v8))
def test_xport_metaonly(self):
df, meta = pyreadstat.read_xport(os.path.join(self.basic_data_folder, "sample.xpt"))
df2, meta2 = pyreadstat.read_xport(os.path.join(self.basic_data_folder, "sample.xpt"), metadataonly=True)
self.assertTrue(df2.empty)
self.assertTrue(meta.number_columns == meta2.number_columns)
self.assertTrue(meta2.number_rows is None)
self.assertTrue(meta.column_names == meta2.column_names)
self.assertTrue(meta.column_labels == meta2.column_labels)
def test_xport_usecols(self):
# Currently readstat does not support skipping cols for XPT files,
usecols = [x.upper() for x in self.usecols]
df, meta = pyreadstat.pyreadstat.read_xport(os.path.join(self.basic_data_folder, "sample.xpt"), usecols=usecols)
df.columns = [x.lower() for x in df.columns]
self.assertTrue(df.equals(self.df_usecols))
self.assertTrue(meta.number_columns == len(self.usecols))
def test_xport_nodates(self):
df, meta = pyreadstat.read_xport(os.path.join(self.basic_data_folder, "sample.xpt"), disable_datetime_conversion=True)
df.columns = [x.lower() for x in df.columns]
self.assertTrue(df.equals(self.df_nodates_sastata))
def test_xport_chunks(self):
df, meta = pyreadstat.read_xport(os.path.join(self.basic_data_folder, "sample.xpt"), row_limit = 2, row_offset =1)
df.columns = [x.lower() for x in df.columns]
df_pandas = self.df_pandas.iloc[1:3,:].reset_index(drop=True)
df_pandas["dtime"] = pd.to_datetime(df_pandas["dtime"])
self.assertTrue(df.equals(df_pandas))
self.assertTrue(meta.number_columns == len(self.df_pandas.columns))
self.assertTrue(meta.number_rows == len(df_pandas))
def test_dta(self):
# discard dtime and arrange time
df, meta = pyreadstat.read_dta(os.path.join(self.basic_data_folder, "sample.dta"))
df_pandas = self.df_pandas.copy()
df_pandas["myord"] = df_pandas["myord"].astype(np.int64)
df_pandas["mylabl"] = df_pandas["mylabl"].astype(np.int64)
self.assertTrue(df.equals(df_pandas))
self.assertTrue(meta.number_columns == len(df_pandas.columns))
self.assertTrue(meta.number_rows == len(df_pandas))
self.assertTrue(meta.readstat_variable_types["mychar"]=="string")
self.assertTrue(meta.readstat_variable_types["myord"]=="int8")
self.assertTrue(meta.readstat_variable_types["dtime"]=="double")
#self.assertTrue(meta.creation_time==datetime(2018, 12, 17, 14, 53))
#self.assertTrue(meta.modification_time==datetime(2018, 12, 17, 14, 53))
def test_dta_metaonly(self):
df, meta = pyreadstat.read_dta(os.path.join(self.basic_data_folder, "sample.dta"))
df2, meta2 = pyreadstat.read_dta(os.path.join(self.basic_data_folder, "sample.dta"), metadataonly=True)
self.assertTrue(df2.empty)
self.assertTrue(meta.number_columns == meta2.number_columns)
self.assertTrue(meta.number_rows == meta2.number_rows)
self.assertTrue(meta.column_names == meta2.column_names)
self.assertTrue(meta.column_labels == meta2.column_labels)
def test_dta_usecols(self):
df, meta = pyreadstat.read_dta(os.path.join(self.basic_data_folder, "sample.dta"), usecols=self.usecols)
df_pandas = self.df_usecols.copy()
df_pandas["myord"] = df_pandas["myord"].astype(np.int64)
self.assertTrue(df.equals(df_pandas))
self.assertTrue(meta.number_columns == len(self.usecols))
self.assertTrue(meta.column_names == self.usecols)
def test_dta_nodates(self):
df, meta = pyreadstat.read_dta(os.path.join(self.basic_data_folder,"sample.dta"), disable_datetime_conversion=True)
df_pandas = self.df_nodates_sastata
df_pandas["myord"] = df_pandas["myord"].astype(np.int64)
df_pandas["mylabl"] = df_pandas["mylabl"].astype(np.int64)
df_pandas["dtime"] = df_pandas["dtime"] * 1000
df_pandas["mytime"] = df_pandas["mytime"] * 1000
self.assertTrue(df.equals(df_pandas))
def test_dta_chunks(self):
# discard dtime and arrange time
df, meta = pyreadstat.read_dta(os.path.join(self.basic_data_folder, "sample.dta"), row_limit = 2, row_offset =1)
df_pandas = self.df_pandas.iloc[1:3,:].reset_index(drop=True)
df_pandas["dtime"] = pd.to_datetime(df_pandas["dtime"])
df_pandas["myord"] = df_pandas["myord"].astype(np.int64)
df_pandas["mylabl"] = df_pandas["mylabl"].astype(np.int64)
self.assertTrue(df.equals(df_pandas))
self.assertTrue(meta.number_columns == len(df_pandas.columns))
self.assertTrue(meta.number_rows == len(df_pandas))
def test_sav(self):
df, meta = pyreadstat.read_sav(os.path.join(self.basic_data_folder, "sample.sav"))
self.assertTrue(df.equals(self.df_pandas))
self.assertTrue(meta.number_columns == len(self.df_pandas.columns))
self.assertTrue(meta.number_rows == len(self.df_pandas))
self.assertTrue(len(meta.notes)>0)
self.assertTrue(meta.variable_display_width["mychar"]==9)
self.assertTrue(meta.variable_storage_width["mychar"] == 8)
self.assertTrue(meta.variable_measure["mychar"]=="nominal")
self.assertTrue(meta.readstat_variable_types["mychar"]=="string")
self.assertTrue(meta.readstat_variable_types["myord"]=="double")
#self.assertTrue(meta.creation_time==datetime(2018, 8, 16, 17, 22, 33))
#self.assertTrue(meta.modification_time==datetime(2018, 8, 16, 17, 22, 33))
def test_sav_metaonly(self):
df, meta = pyreadstat.read_sav(os.path.join(self.basic_data_folder, "sample.sav"))
df2, meta2 = pyreadstat.read_sav(os.path.join(self.basic_data_folder, "sample.sav"), metadataonly=True)
self.assertTrue(df2.empty)
self.assertTrue(meta.number_columns == meta2.number_columns)
self.assertTrue(meta.number_rows == meta2.number_rows)
self.assertTrue(meta.column_names == meta2.column_names)
self.assertTrue(meta.column_labels == meta2.column_labels)
self.assertTrue(len(meta2.notes) > 0)
def test_sav_formatted(self):
df, meta = pyreadstat.read_sav(os.path.join(self.basic_data_folder, "sample.sav"), apply_value_formats=True, formats_as_category=True)
#df.columns = self.df_pandas_formatted.columns
self.assertTrue(df.equals(self.df_pandas_formatted))
self.assertTrue(meta.number_columns == len(self.df_pandas_formatted.columns))
self.assertTrue(meta.number_rows == len(self.df_pandas_formatted))
self.assertTrue(len(meta.notes) > 0)
def test_sav_usecols(self):
df, meta = pyreadstat.read_sav(os.path.join(self.basic_data_folder, "sample.sav"), usecols=self.usecols)
self.assertTrue(df.equals(self.df_usecols))
self.assertTrue(meta.number_columns == len(self.usecols))
self.assertTrue(meta.column_names == self.usecols)
def test_sav_missing(self):
df, meta = pyreadstat.read_sav(os.path.join(self.basic_data_folder, "sample_missing.sav"))
self.assertTrue(df.equals(self.df_missing_sav))
self.assertTrue(meta.missing_ranges == {})
df_user, meta_user = pyreadstat.read_sav(os.path.join(self.basic_data_folder, "sample_missing.sav"), user_missing=True)
self.assertTrue(df_user.equals(self.df_user_missing_sav))
self.assertTrue(meta_user.missing_ranges['mynum'][0]=={'lo': 2000.0, 'hi': 3000.0})
# user missing with usecols
df_user, meta_user = pyreadstat.read_sav(os.path.join(self.basic_data_folder, "sample_missing.sav"), user_missing=True, usecols=["mynum", "mylabl"])
df_sub = self.df_user_missing_sav[["mynum", "mylabl"]]
self.assertTrue(df_user.equals(df_sub))
def test_sav_nodates(self):
df, meta = pyreadstat.read_sav(os.path.join(self.basic_data_folder, "sample.sav"), disable_datetime_conversion=True)
#import pdb; pdb.set_trace()
self.assertTrue(df.equals(self.df_nodates_spss))
def test_sav_chunks(self):
df, meta = pyreadstat.read_sav(os.path.join(self.basic_data_folder, "sample.sav"), row_limit = 2, row_offset =1)
df_pandas = self.df_pandas.iloc[1:3,:].reset_index(drop=True)
df_pandas["dtime"] = pd.to_datetime(df_pandas["dtime"])
self.assertTrue(df.equals(df_pandas))
self.assertTrue(meta.number_columns == len(df_pandas.columns))
self.assertTrue(meta.number_rows == len(df_pandas))
self.assertTrue(len(meta.notes)>0)
self.assertTrue(meta.variable_display_width["mychar"]==9)
self.assertTrue(meta.variable_storage_width["mychar"] == 8)
self.assertTrue(meta.variable_measure["mychar"]=="nominal")
def test_sav_expand(self):
src = os.path.join(self.basic_data_folder, "sample.sav")
dst = "~/sample.sav"
shutil.copyfile(src, os.path.expanduser(dst))
df, meta = pyreadstat.read_sav(dst)
os.remove(os.path.expanduser(dst))
self.assertTrue(df.equals(self.df_pandas))
def test_zsav(self):
df, meta = pyreadstat.read_sav(os.path.join(self.basic_data_folder, "sample.zsav"))
self.assertTrue(df.equals(self.df_pandas))
self.assertTrue(meta.number_columns == len(self.df_pandas.columns))
self.assertTrue(meta.number_rows == len(self.df_pandas))
self.assertTrue(len(meta.notes) > 0)
def test_zsav_metaonly(self):
df, meta = pyreadstat.read_sav(os.path.join(self.basic_data_folder, "sample.zsav"))
df2, meta2 = pyreadstat.read_sav(os.path.join(self.basic_data_folder, "sample.sav"), metadataonly=True)
self.assertTrue(df2.empty)
self.assertTrue(meta.number_columns == meta2.number_columns)
self.assertTrue(meta.number_rows == meta2.number_rows)
self.assertTrue(meta.column_names == meta2.column_names)
self.assertTrue(meta.column_labels == meta2.column_labels)
self.assertTrue(len(meta2.notes) > 0)
def test_zsav_formatted(self):
df, meta = pyreadstat.read_sav(os.path.join(self.basic_data_folder, "sample.zsav"), apply_value_formats=True, formats_as_category=True)
self.assertTrue(df.equals(self.df_pandas_formatted))
self.assertTrue(meta.number_columns == len(self.df_pandas_formatted.columns))
self.assertTrue(meta.number_rows == len(self.df_pandas_formatted))
self.assertTrue(len(meta.notes) > 0)
def test_zsav_usecols(self):
df, meta = pyreadstat.read_sav(os.path.join(self.basic_data_folder, "sample.zsav"), usecols=self.usecols)
self.assertTrue(df.equals(self.df_usecols))
self.assertTrue(meta.number_columns == len(self.usecols))
self.assertTrue(meta.column_names == self.usecols)
def test_zsav_nodates(self):
df, meta = pyreadstat.read_sav(os.path.join(self.basic_data_folder, "sample.zsav"), disable_datetime_conversion=True)
self.assertTrue(df.equals(self.df_nodates_spss))
def test_zsav_chunks(self):
df, meta = pyreadstat.read_sav(os.path.join(self.basic_data_folder, "sample.zsav"), row_limit = 2, row_offset =1)
df_pandas = self.df_pandas.iloc[1:3,:].reset_index(drop=True)
df_pandas["dtime"] = pd.to_datetime(df_pandas["dtime"])
self.assertTrue(df.equals(df_pandas))
self.assertTrue(meta.number_columns == len(df_pandas.columns))
self.assertTrue(meta.number_rows == len(df_pandas))
self.assertTrue(len(meta.notes)>0)
self.assertTrue(meta.variable_display_width["mychar"]==9)
self.assertTrue(meta.variable_storage_width["mychar"] == 8)
self.assertTrue(meta.variable_measure["mychar"]=="nominal")
def test_por(self):
df, meta = pyreadstat.read_por(os.path.join(self.basic_data_folder, "sample.por"))
df_pandas_por = self.df_pandas.copy()
df.columns = [x.lower() for x in df.columns]
self.assertTrue(df.equals(df_pandas_por))
self.assertTrue(meta.number_columns == len(self.df_pandas.columns))
self.assertTrue(meta.number_rows == len(df_pandas_por))
self.assertTrue(len(meta.notes) > 0)
#self.assertTrue(meta.creation_time==datetime(2018, 12, 16, 17, 28, 21))
#self.assertTrue(meta.modification_time==datetime(2018, 12, 16, 17, 28, 21))
def test_por_formatted(self):
df, meta = pyreadstat.read_por(os.path.join(self.basic_data_folder, "sample.por"), apply_value_formats=True, formats_as_category=True)
df_pandas_por = self.df_pandas_formatted.copy()
df.columns = [x.lower() for x in df.columns]
self.assertTrue(df.equals(df_pandas_por))
self.assertTrue(meta.number_columns == len(self.df_pandas_formatted.columns))
self.assertTrue(meta.number_rows == len(df_pandas_por))
self.assertTrue(len(meta.notes) > 0)
def test_por_metaonly(self):
df, meta = pyreadstat.read_por(os.path.join(self.basic_data_folder, "sample.por"))
df2, meta2 = pyreadstat.read_por(os.path.join(self.basic_data_folder, "sample.por"), metadataonly=True)
self.assertTrue(df2.empty)
self.assertTrue(meta.number_columns == meta2.number_columns)
self.assertTrue(meta2.number_rows is None)
self.assertTrue(meta.column_names == meta2.column_names)
self.assertTrue(meta.column_labels == meta2.column_labels)
self.assertTrue(len(meta2.notes) > 0)
def test_por_usecols(self):
df, meta = pyreadstat.read_por(os.path.join(self.basic_data_folder, "sample.por"), usecols=["MYNUM"])
df_pandas_por = self.df_pandas[["mynum"]]
df.columns = [x.lower() for x in df.columns]
self.assertTrue(df.equals(df_pandas_por))
self.assertTrue(meta.number_columns == len(df_pandas_por.columns.values.tolist()))
def test_por_nodates(self):
df, meta = pyreadstat.read_por(os.path.join(self.basic_data_folder, "sample.por"), disable_datetime_conversion=True)
df.columns = [x.lower() for x in df.columns]
self.assertTrue(df.equals(self.df_nodates_spss))
def test_por_chunks(self):
df, meta = pyreadstat.read_por(os.path.join(self.basic_data_folder, "sample.por"), row_limit = 2, row_offset =1)
df_pandas_por = self.df_pandas.iloc[1:3,:].reset_index(drop=True)
df_pandas_por['dtime'] = pd.to_datetime(df_pandas_por.dtime)
df.columns = [x.lower() for x in df.columns]
self.assertTrue(df.equals(df_pandas_por))
self.assertTrue(meta.number_columns == len(self.df_pandas.columns))
self.assertTrue(meta.number_rows == len(df_pandas_por))
self.assertTrue(len(meta.notes) > 0)
def test_sas_catalog_win(self):
"""these sas7bdat and sasbcat where produced on windows, probably 32 bit"""
dat = os.path.join(self.catalog_data_folder, "test_data_win.sas7bdat")
cat = os.path.join(self.catalog_data_folder, "test_formats_win.sas7bcat")
df, meta = pyreadstat.read_sas7bdat(dat, catalog_file=cat)
self.assertTrue(df.equals(self.df_sas_format))
def test_sas_catalog_linux(self):
"""these sas7bdat and sasbcat where produced on linux 64 bit"""
dat = os.path.join(self.catalog_data_folder, "test_data_linux.sas7bdat")
cat = os.path.join(self.catalog_data_folder, "test_formats_linux.sas7bcat")
df, meta = pyreadstat.read_sas7bdat(dat, catalog_file=cat)
self.assertTrue(df.equals(self.df_sas_format))
def test_sas_dates(self):
sas_file = os.path.join(self.basic_data_folder, "dates.sas7bdat")
df_sas, meta = pyreadstat.read_sas7bdat(sas_file)
self.assertTrue(df_sas.equals(self.df_sas_dates))
def test_sas_dates_as_pandas(self):
sas_file = os.path.join(self.basic_data_folder, "dates.sas7bdat")
df_sas, meta = pyreadstat.read_sas7bdat(sas_file, dates_as_pandas_datetime=True)
self.assertTrue(df_sas.equals(self.df_sas_dates_as_pandas))
def test_sas_user_missing(self):
sas_file = os.path.join(self.missing_data_folder, "missing_test.sas7bdat")
cat_file = os.path.join(self.missing_data_folder, "missing_formats.sas7bcat")
unformatted_csv = os.path.join(self.missing_data_folder, "missing_unformatted.csv")
formatted_csv = os.path.join(self.missing_data_folder, "missing_sas_formatted.csv")
labeled_csv = os.path.join(self.missing_data_folder, "missing_sas_labeled.csv")
df_sas, meta = pyreadstat.read_sas7bdat(sas_file)
df_csv = pd.read_csv(unformatted_csv)
self.assertTrue(df_sas.equals(df_csv))
df_sas, meta = pyreadstat.read_sas7bdat(sas_file, user_missing=True)
df_csv = pd.read_csv(formatted_csv)
self.assertTrue(df_sas.equals(df_csv))
missing_user_values = {'var1':['A'],'var2': ['B'], 'var3':['C'], 'var4':['X'], 'var5':['Y'],
'var6':['Z'], 'var7':['_']}
self.assertDictEqual(meta.missing_user_values, missing_user_values)
df_sas, meta = pyreadstat.read_sas7bdat(sas_file,
catalog_file=cat_file, user_missing=True,
formats_as_category=False)
df_csv = pd.read_csv(labeled_csv)
self.assertTrue(df_sas.equals(df_csv))
def test_dta_user_missing(self):
dta_file = os.path.join(self.missing_data_folder, "missing_test.dta")
unformatted_csv = os.path.join(self.missing_data_folder, "missing_unformatted.csv")
formatted_csv = os.path.join(self.missing_data_folder, "missing_dta_formatted.csv")
labeled_csv = os.path.join(self.missing_data_folder, "missing_dta_labeled.csv")
df_sas, meta = pyreadstat.read_dta(dta_file)
df_csv = pd.read_csv(unformatted_csv)
self.assertTrue(df_sas.equals(df_csv))
df_sas, meta = pyreadstat.read_dta(dta_file, user_missing=True)
df_csv = pd.read_csv(formatted_csv)
self.assertTrue(df_sas.equals(df_csv))
missing_user_values = {'var1':['a'],'var2': ['b'], 'var3':['c'], 'var4':['x'], 'var5':['y'], 'var6':['z']}
self.assertDictEqual(meta.missing_user_values, missing_user_values)
df_sas, meta = pyreadstat.read_dta(dta_file,
apply_value_formats=True, user_missing=True,
formats_as_category=False)
df_csv = pd.read_csv(labeled_csv)
self.assertTrue(df_sas.equals(df_csv))
def test_sav_user_missing(self):
sav_file = os.path.join(self.missing_data_folder, "missing_test.sav")
unformatted_csv = os.path.join(self.missing_data_folder, "missing_sav_unformatted.csv")
formatted_csv = os.path.join(self.missing_data_folder, "missing_sav_formatted.csv")
labeled_csv = os.path.join(self.missing_data_folder, "missing_sav_labeled.csv")
df_sas, meta = pyreadstat.read_sav(sav_file)
df_csv = pd.read_csv(unformatted_csv)
self.assertTrue(df_sas.equals(df_csv))
df_sas, meta = pyreadstat.read_sav(sav_file, user_missing=True)
df_csv = pd.read_csv(formatted_csv)
self.assertTrue(df_sas.equals(df_csv))
df_sas, meta = pyreadstat.read_sav(sav_file,
apply_value_formats=True, user_missing=True,
formats_as_category=False)
df_sas.loc[1, 'var1'] = int(df_sas['var1'][1])
df_sas['var1'] = df_sas['var1'].astype(str)
df_csv = pd.read_csv(labeled_csv)
self.assertTrue(df_sas.equals(df_csv))
def test_sav_missing_char(self):
df, meta = pyreadstat.read_sav(os.path.join(self.missing_data_folder, "missing_char.sav"))
mdf = pd.DataFrame([[np.nan], ["a"]], columns=["mychar"])
self.assertTrue(df.equals(mdf))
self.assertTrue(meta.missing_ranges == {})
df2, meta2 = pyreadstat.read_sav(os.path.join(self.missing_data_folder, "missing_char.sav"), user_missing=True)
mdf2 = pd.DataFrame([["Z"], ["a"]], columns=["mychar"])
self.assertTrue(df2.equals(mdf2))
self.assertTrue(meta2.missing_ranges['mychar'][0]=={'lo': "Z", 'hi': "Z"})
# test reading metadata for multiple response data
def test_sav_multiple_response(self):
"""Assert MR data is correctly read from sav into metadata."""
_, meta = pyreadstat.read_sav(os.path.join(self.mr_data_folder, "simple_alltypes.sav"))
assert meta.mr_sets == {
"categorical_array": {
"type": "C",
"is_dichotomy": False,
"counted_value": None,
"label": "",
"variable_list": ["ca_subvar_1", "ca_subvar_2", "ca_subvar_3"]
},
"mymrset": {
"type": "D",
"is_dichotomy": True,
"counted_value": 1,
"label": "My multiple response set",
"variable_list": ["bool1", "bool2", "bool3"]
}
}
def test_sav_without_multiple_response(self):
"""Assert MR data is read as empty dict when not present in sav."""
_, meta = pyreadstat.read_sav(os.path.join(self.missing_data_folder, "missing_char.sav"))
assert meta.mr_sets == {}
# read in chunks
def test_chunk_reader(self):
fpath = os.path.join(self.basic_data_folder, "sample.sas7bdat")
reader = pyreadstat.read_file_in_chunks(pyreadstat.read_sas7bdat, fpath, chunksize= 2, offset=1, limit=2, disable_datetime_conversion=True)
for df, meta in reader:
pass
currow = self.df_nodates_sastata.iloc[1:3,:].reset_index(drop=True)
self.assertTrue(df.equals(currow))
# read multiprocessing
def test_multiprocess_reader(self):
fpath = os.path.join(self.basic_data_folder, "sample_large.sav")
df_multi, meta_multi = pyreadstat.read_file_multiprocessing(pyreadstat.read_sav, fpath)
df_single, meta_single = pyreadstat.read_sav(fpath)
self.assertTrue(df_multi.equals(df_single))
self.assertEqual(meta_multi.number_rows, meta_single.number_rows)
def test_chunk_reader_multiprocess(self):
fpath = os.path.join(self.basic_data_folder, "sample_large.sav")
reader = pyreadstat.read_file_in_chunks(pyreadstat.read_sav, fpath, chunksize= 50, multiprocess=True)
alldfs = list()
for df, meta in reader:
alldfs.append(df)
df_multi = pd.concat(alldfs, axis=0, ignore_index=True)
df_single, meta_single = pyreadstat.read_sav(fpath)
self.assertTrue(df_multi.equals(df_single))
def test_chunk_reader_multiprocess_dict(self):
fpath = os.path.join(self.basic_data_folder, "sample_large.sav")
reader = pyreadstat.read_file_in_chunks(pyreadstat.read_sav, fpath, chunksize= 50, multiprocess=True, output_format='dict')
alldfs = list()
for chunkdict, meta in reader:
df = pd.DataFrame(chunkdict)
alldfs.append(df)
df_multi = pd.concat(alldfs, axis=0, ignore_index=True)
df_single, meta_single = pyreadstat.read_sav(fpath)
self.assertTrue(df_multi.equals(df_single))
def test_multiprocess_reader_xport(self):
fpath = os.path.join(self.basic_data_folder, "sample.xpt")
df_multi, meta_multi = pyreadstat.read_file_multiprocessing(pyreadstat.read_xport, fpath, num_rows=1000)
df_single, meta_single = pyreadstat.read_xport(fpath)
self.assertTrue(df_multi.equals(df_single))
# writing
def test_sav_write_basic(self):
file_label = "basic write"
file_note = "These are some notes"
col_labels = ["mychar label","mynum label", "mydate label", "dtime label", None, "myord label", "mytime label"]
variable_value_labels = {'mylabl': {1.0: 'Male', 2.0: 'Female'}, 'myord': {1.0: 'low', 2.0: 'medium', 3.0: 'high'}}
missing_ranges = {'mychar':['a'], 'myord': [{'hi':2, 'lo':1}]}
#variable_alignment = {'mychar':"center", 'myord':"right"}
variable_display_width = {'mychar':20}
variable_measure = {"mychar": "nominal"}
path = os.path.join(self.write_folder, "basic_write.sav")
pyreadstat.write_sav(self.df_pandas, path, file_label=file_label, column_labels=col_labels, note=file_note,
variable_value_labels=variable_value_labels, missing_ranges=missing_ranges, variable_display_width=variable_display_width,
variable_measure=variable_measure) #, variable_alignment=variable_alignment)
df, meta = pyreadstat.read_sav(path, user_missing=True)
self.assertTrue(df.equals(self.df_pandas))
self.assertEqual(meta.file_label, file_label)
self.assertListEqual(meta.column_labels, col_labels)
self.assertEqual(meta.notes[0], file_note)
self.assertDictEqual(meta.variable_value_labels, variable_value_labels)
self.assertEqual(meta.variable_display_width['mychar'], variable_display_width['mychar'])
#self.assertDictEqual(meta.variable_alignment, variable_alignment)
self.assertEqual(meta.variable_measure["mychar"], variable_measure["mychar"])
def test_sav_write_basic_expanduser(self):
file_label = "basic write"
file_note = "These are some notes"
col_labels = ["mychar label","mynum label", "mydate label", "dtime label", None, "myord label", "mytime label"]
variable_value_labels = {'mylabl': {1.0: 'Male', 2.0: 'Female'}, 'myord': {1.0: 'low', 2.0: 'medium', 3.0: 'high'}}
missing_ranges = {'mychar':['a'], 'myord': [{'hi':2, 'lo':1}]}
#variable_alignment = {'mychar':"center", 'myord':"right"}
variable_display_width = {'mychar':20}
variable_measure = {"mychar": "nominal"}
path = "~/sav_expand.sav"
pyreadstat.write_sav(self.df_pandas, path, file_label=file_label, column_labels=col_labels, note=file_note,
variable_value_labels=variable_value_labels, missing_ranges=missing_ranges, variable_display_width=variable_display_width,
variable_measure=variable_measure) #, variable_alignment=variable_alignment)
df, meta = pyreadstat.read_sav(path, user_missing=True)
os.remove(os.path.expanduser(path))
self.assertTrue(df.equals(self.df_pandas))
def test_zsav_write_basic(self):
file_label = "basic write"
file_note = "These are some notes"
col_labels = ["mychar label","mynum label", "mydate label", "dtime label", None, "myord label", "mytime label"]
variable_value_labels = {'mylabl': {1.0: 'Male', 2.0: 'Female'}, 'myord': {1.0: 'low', 2.0: 'medium', 3.0: 'high'}}
missing_ranges = {'mychar':['a'], 'myord': [{'hi':2, 'lo':1}]}
path = os.path.join(self.write_folder, "basic_write.zsav")
pyreadstat.write_sav(self.df_pandas, path, file_label=file_label, column_labels=col_labels, compress=True, note=file_note,
variable_value_labels=variable_value_labels, missing_ranges=missing_ranges)
df, meta = pyreadstat.read_sav(path, user_missing=True)
self.assertTrue(df.equals(self.df_pandas))
self.assertEqual(meta.file_label, file_label)
self.assertListEqual(meta.column_labels, col_labels)
self.assertEqual(meta.notes[0], file_note)
self.assertDictEqual(meta.variable_value_labels, variable_value_labels)
def test_dta_write_basic(self):
df_pandas = self.df_pandas.copy()
df_pandas["myord"] = df_pandas["myord"].astype(np.int32)
df_pandas["mylabl"] = df_pandas["mylabl"].astype(np.int32)
file_label = "basic write"
col_labels = ["mychar label","mynum label", "mydate label", "dtime label", None, "myord label", "mytime label"]
variable_value_labels = {'mylabl': {1: 'Male', 2: 'Female'}, 'myord': {1: 'low', 2: 'medium', 3: 'high'}}
path = os.path.join(self.write_folder, "basic_write.dta")
pyreadstat.write_dta(df_pandas, path, file_label=file_label, column_labels=col_labels, version=12, variable_value_labels=variable_value_labels)
df, meta = pyreadstat.read_dta(path)
df_pandas["myord"] = df_pandas["myord"].astype(np.int64)
df_pandas["mylabl"] = df_pandas["mylabl"].astype(np.int64)
self.assertTrue(df.equals(df_pandas))
self.assertEqual(meta.file_label, file_label)
self.assertListEqual(meta.column_labels, col_labels)
self.assertDictEqual(meta.variable_value_labels, variable_value_labels)
def test_dta_write_user_missing(self):
df_csv = pd.DataFrame([[3,"a"],["a","b"]], columns=["Var1", "Var2"])
df_csv2 = pd.DataFrame([[3,"a"],["labeled","b"]], columns=["Var1", "Var2"])
missing_user_values = {'Var1': ['a']}
variable_value_labels = {'Var1':{'a':'labeled'}}
path = os.path.join(self.write_folder, "user_missing_write.dta")
pyreadstat.write_dta(df_csv, path, version=12, missing_user_values=missing_user_values, variable_value_labels=variable_value_labels)
df_dta, meta = pyreadstat.read_dta(path, user_missing=True)
self.assertTrue(df_csv.equals(df_dta))
self.assertDictEqual(meta.missing_user_values, missing_user_values)
df_dta2, meta2 = pyreadstat.read_dta(path, user_missing=True, apply_value_formats=True, formats_as_category=False)
self.assertTrue(df_csv2.equals(df_dta2))
def test_xport_write_basic_v8(self):
file_label = "basic write"
table_name = "TEST"
col_labels = ["mychar label","mynum label", "mydate label", "dtime label", None, "myord label", "mytime label"]
path = os.path.join(self.write_folder, "write.xpt")
pyreadstat.write_xport(self.df_pandas, path, file_label=file_label, column_labels=col_labels, table_name=table_name, file_format_version=8)
df, meta = pyreadstat.read_xport(path)
df.columns = [x.lower() for x in df.columns]
self.assertTrue(df.equals(self.df_pandas))
self.assertEqual(meta.file_label, file_label)
self.assertListEqual(meta.column_labels, col_labels)
self.assertEqual(table_name, meta.table_name)
def test_xport_write_basic_v5(self):
file_label = "basic write"
table_name = "TEST"
col_labels = ["mychar label","mynum label", "mydate label", "dtime label", None, "myord label", "mytime label"]
path = os.path.join(self.write_folder, "write.xpt")
pyreadstat.write_xport(self.df_pandas, path, file_label=file_label, column_labels=col_labels, table_name=table_name, file_format_version=5)
df, meta = pyreadstat.read_xport(path)
df.columns = [x.lower() for x in df.columns]
self.assertTrue(df.equals(self.df_pandas))
self.assertEqual(meta.file_label, file_label)
self.assertListEqual(meta.column_labels, col_labels)
self.assertEqual(table_name, meta.table_name)
def test_por_write_basic(self):
file_label = "basic write"
#file_note = "These are some notes"
col_labels = ["mychar label","mynum label", "mydate label", "dtime label", None, "myord label", "mytime label"]
path = os.path.join(self.write_folder, "write.por")
pyreadstat.write_por(self.df_pandas, path, file_label=file_label, column_labels=col_labels) #, note=file_note)
df, meta = pyreadstat.read_por(path)
df.columns = [x.lower() for x in df.columns]
self.assertTrue(df.equals(self.df_pandas))
self.assertEqual(meta.file_label, file_label)
self.assertListEqual(meta.column_labels, col_labels)
#self.assertEqual(meta.notes[0], file_note)
def test_sav_write_dates(self):
path = os.path.join(self.write_folder, "dates_write.sav")
pyreadstat.write_sav(self.df_sas_dates2, path)
df, meta = pyreadstat.read_sav(path)
self.assertTrue(df.equals(self.df_sas_dates2))
def test_zsav_write_dates(self):
path = os.path.join(self.write_folder, "dates_write_zsav.sav")
pyreadstat.write_sav(self.df_sas_dates2, path, compress=True)
df, meta = pyreadstat.read_sav(path)
self.assertTrue(df.equals(self.df_sas_dates2))
def test_dta_write_dates(self):
path = os.path.join(self.write_folder, "dates_write.dta")
pyreadstat.write_dta(self.df_sas_dates, path)
df, meta = pyreadstat.read_dta(path)
self.assertTrue(df.equals(self.df_sas_dates))
def test_xport_write_dates(self):
path = os.path.join(self.write_folder, "dates_write.xpt")
pyreadstat.write_xport(self.df_sas_dates2, path)
df, meta = pyreadstat.read_xport(path)
#import pdb;pdb.set_trace()
self.assertTrue(df.equals(self.df_sas_dates2))
def test_sav_write_charnan(self):
path = os.path.join(self.write_folder, "charnan.sav")
pyreadstat.write_sav(self.df_charnan, path)
df, meta = pyreadstat.read_sav(path)
df2 = self.df_charnan
df2.iloc[0,1] = ""
df2.iloc[0,2] = ""
df2['integer'] = df2["integer"].astype(float)
df2['object'] = df2['object'].astype(str)
self.assertTrue(df2.equals(df))
def test_zsav_write_charnan(self):
path = os.path.join(self.write_folder, "charnan_zsav.sav")
pyreadstat.write_sav(self.df_charnan, path, compress=True)
df, meta = pyreadstat.read_sav(path)
df2 = self.df_charnan
df2.iloc[0,1] = ""
df2.iloc[0,2] = ""
df2['integer'] = df2["integer"].astype(float)
df2['object'] = df2['object'].astype(str)
self.assertTrue(df2.equals(df))
def test_xport_write_charnan(self):
path = os.path.join(self.write_folder, "charnan.xpt")
pyreadstat.write_xport(self.df_charnan, path)
df, meta = pyreadstat.read_xport(path)
df2 = self.df_charnan
df2.iloc[0,1] = ""
df2.iloc[0,2] = ""
df2['integer'] = df2["integer"].astype(float)
df2['object'] = df2['object'].astype(str)
self.assertTrue(df2.equals(df))
def test_por_write_charnan(self):
path = os.path.join(self.write_folder, "charnan_zsav.por")
pyreadstat.write_por(self.df_charnan, path)
df, meta = pyreadstat.read_por(path)
df.columns = [x.lower() for x in df.columns]
df2 = self.df_charnan
df2.iloc[0,1] = ""
df2.iloc[0,2] = ""
df2['integer'] = df2["integer"].astype(float)
df2['object'] = df2['object'].astype(str)
self.assertTrue(df2.equals(df))
def test_dta_write_charnan(self):
path = os.path.join(self.write_folder, "charnan.dta")
pyreadstat.write_dta(self.df_charnan, path)
df, meta = pyreadstat.read_dta(path)
df2 = self.df_charnan
df2.iloc[0,1] = ""
df2.iloc[0,2] = ""
df2['integer'] = df2["integer"].astype(float)
df2['object'] = df2['object'].astype(str)
self.assertTrue(df2.equals(df))
def test_set_value_labels(self):
df, meta = pyreadstat.read_sav(os.path.join(self.basic_data_folder, "sample.sav"))
df_formatted = pyreadstat.set_value_labels(df, meta, formats_as_category=True)
#df.columns = self.df_pandas_formatted.columns
self.assertTrue(df_formatted.equals(self.df_pandas_formatted))
# partial
sub1_raw = df[['myord']]
sub1 = pyreadstat.set_value_labels(sub1_raw, meta, formats_as_category=True)
sub2 = self.df_pandas_formatted[['myord']]
self.assertTrue(sub1.equals(sub2))
def test_update_delete_file(self):
df, meta = pyreadstat.read_sav(os.path.join(self.basic_data_folder, "sample.sav"))
dst_path = os.path.join(self.write_folder, "update_test.sav")
pyreadstat.write_sav(df, dst_path, variable_value_labels = meta.variable_value_labels)
# update
meta.variable_value_labels.update({'mylabl':{1.0:"Gents", 2.0:"Ladies"}})
pyreadstat.write_sav(df, dst_path, variable_value_labels = meta.variable_value_labels)
df2, meta2 = pyreadstat.read_sav(dst_path)
self.assertDictEqual(meta2.variable_value_labels, meta.variable_value_labels)
os.remove(dst_path)
def test_xport_write_dates2_v8(self):
# this sas7bdat file has features that are not compatible with v5
df, meta = pyreadstat.read_sas7bdat(os.path.join(self.basic_data_folder, "dates_xpt.sas7bdat"))
dst_path = os.path.join(self.write_folder, "dates_xptv8.xpt")
pyreadstat.write_xport(df, dst_path, file_format_version=8)
df2, meta2 = pyreadstat.read_xport(dst_path)
self.assertTrue(df.equals(df2))
def test_xport_dates2_v8(self):
# this sas7bdat file has features that are not compatible with v5
df, meta = pyreadstat.read_sas7bdat(os.path.join(self.basic_data_folder, "dates_xpt.sas7bdat"))
# this xpt file was written in SAS from the sas7bdat file
df2, meta2 = pyreadstat.read_xport(os.path.join(self.basic_data_folder, "dates_xpt_v8.xpt"))
self.assertTrue(df.equals(df2))
self.assertListEqual(meta.column_labels, meta2.column_labels)
def test_sav_international_utf8_char_value(self):
# a file that has a value with international characters and the file is coded in utf-8
df, meta = pyreadstat.read_sav(os.path.join(self.basic_data_folder, "tegulu.sav"))
self.assertTrue(df.iloc[0,1] == "నేను గతంలో వాడిన బ")
def test_sav_international_varname(self):
# a file with a varname with international characters
df, meta = pyreadstat.read_sav(os.path.join(self.basic_data_folder, "hebrews.sav"))
self.assertTrue(df.columns[0] == "ותק_ב")
def test_sav_original_var_types(self):
# a file with a varname with international characters
df, meta = pyreadstat.read_sav(os.path.join(self.basic_data_folder, "test_width.sav"))
self.assertEqual(meta.original_variable_types['StartDate'],'A1024')
self.assertEqual(meta.original_variable_types['ResponseId'],'A18')
self.assertEqual(meta.original_variable_types['Duration__in_seconds_'],'F40.2')
self.assertEqual(meta.original_variable_types['Finished'],'F1.0')
self.assertEqual(meta.readstat_variable_types['Finished'],'double')
def test_sav_write_longstr(self):
path = os.path.join(self.write_folder, "longstr.sav")
pyreadstat.write_sav(self.df_longstr, path, variable_display_width={"v1": 1000})
df, meta = pyreadstat.read_sav(path)
self.assertTrue(meta.variable_display_width['v1']==1000)
self.assertTrue(len(df.iloc[0,0])==781)
def test_sas7bdat_file_label_linux(self):
"testing file label for file produced on linux"
path = os.path.join(self.basic_data_folder, "test_file_label_linux.sas7bdat")
df, meta = pyreadstat.read_sas7bdat(path)
self.assertEqual(meta.file_label, "mytest label")
self.assertEqual(meta.table_name, "TEST_DATA")
def test_sas7bdat_extra_date_formats(self):
"testing extra date format argument"
path = os.path.join(self.basic_data_folder, "date_test.sas7bdat")
df, meta = pyreadstat.read_sas7bdat(path, extra_date_formats=["MMYY", "YEAR"])
self.assertEqual(df['yr'].iloc[0], date(2023,1,1))
self.assertEqual(df['dtc4'].iloc[0], date(2023,7,1))
def test_sas7bdat_file_label_windows(self):
"testing file label for file produced on windows"
path = os.path.join(self.basic_data_folder, "test_file_label_win.sas7bdat")
df, meta = pyreadstat.read_sas7bdat(path)
self.assertEqual(meta.file_label, "mytest label")
self.assertEqual(meta.table_name, "TEST_DATA")
def test_sav_write_variable_formats(self):
"testing variable formats for SAV files"
path = os.path.join(self.write_folder, "variable_format.sav")
df = pd.DataFrame({'restricted':[1023, 10], 'integer':[1,2]})
formats = {'restricted':'restricted_integer', 'integer':'integer'}
pyreadstat.write_sav(df, path, variable_format=formats)
df2, meta2 = pyreadstat.read_sav(path)
self.assertEqual(meta2.original_variable_types['restricted'], "N4")
self.assertEqual(meta2.original_variable_types['integer'], "F1.0")
def test_sav_ordered_categories(self):
path = os.path.join(self.basic_data_folder, "ordered_category.sav")
df, meta = pyreadstat.read_sav(path, apply_value_formats=True, formats_as_ordered_category=True)
self.assertTrue(df.Col1.cat.ordered)
self.assertListEqual(list(df.Col1.cat.categories), ['high', 'low', 'medium'])
def test_sav_pathlib(self):
if is_pathlib_available:
path = Path(self.basic_data_folder).joinpath("sample.sav")
df, meta = pyreadstat.read_sav(path)
self.assertTrue(df.equals(self.df_pandas))
def test_sav_write_pathlib(self):
if is_pathlib_available:
file_label = "basic write"
file_note = "These are some notes"
col_labels = ["mychar label","mynum label", "mydate label", "dtime label", None, "myord label", "mytime label"]
variable_value_labels = {'mylabl': {1.0: 'Male', 2.0: 'Female'}, 'myord': {1.0: 'low', 2.0: 'medium', 3.0: 'high'}}
missing_ranges = {'mychar':['a'], 'myord': [{'hi':2, 'lo':1}]}
#variable_alignment = {'mychar':"center", 'myord':"right"}
variable_display_width = {'mychar':20}
variable_measure = {"mychar": "nominal"}
path = Path(self.write_folder).joinpath('pathlib_write.sav')
pyreadstat.write_sav(self.df_pandas, path, file_label=file_label, column_labels=col_labels, note=file_note,
variable_value_labels=variable_value_labels, missing_ranges=missing_ranges, variable_display_width=variable_display_width,
variable_measure=variable_measure) #, variable_alignment=variable_alignment)
df, meta = pyreadstat.read_sav(path, user_missing=True)
self.assertTrue(df.equals(self.df_pandas))
self.assertEqual(meta.file_label, file_label)
self.assertListEqual(meta.column_labels, col_labels)
self.assertEqual(meta.notes[0], file_note)
self.assertDictEqual(meta.variable_value_labels, variable_value_labels)
self.assertEqual(meta.variable_display_width['mychar'], variable_display_width['mychar'])
#self.assertDictEqual(meta.variable_alignment, variable_alignment)
self.assertEqual(meta.variable_measure["mychar"], variable_measure["mychar"])
def test_sav_write_dictlabels(self):
col_names = ["mychar", "mynum", "mydate", "dtime", "mylabl", "myord", "mytime"]
col_labels = ["mychar label","mynum label", "mydate label", "dtime label", None, "myord label", "mytime label"]
col_lab_dict = {k:v for k,v in zip(col_names, col_labels) if v}
variable_value_labels = {'mylabl': {1.0: 'Male', 2.0: 'Female'}, 'myord': {1.0: 'low', 2.0: 'medium', 3.0: 'high'}}
missing_ranges = {'mychar':['a'], 'myord': [{'hi':2, 'lo':1}]}
path = os.path.join(self.write_folder, "dictlabel_write.sav")
pyreadstat.write_sav(self.df_pandas, path, column_labels=col_lab_dict)
df, meta = pyreadstat.read_sav(path, user_missing=True)
self.assertTrue(df.equals(self.df_pandas))
self.assertListEqual(meta.column_labels, col_labels)
def test_dta_write_single_value_user_missing(self):
df = pd.DataFrame({"var": ["a", "a", "a", "a"]})
missing_user_values = {"var": ["a"]}
path = os.path.join(self.write_folder, "singleusermissing.dta")
pyreadstat.write_dta(df=df, dst_path=path, missing_user_values=missing_user_values,version=12)
df2, meta2 = pyreadstat.read_dta(path, user_missing=True)
self.assertTrue(df.equals(df2))
def test_dta_write_only_missing_and_user_missing(self):
df = pd.DataFrame({"var": [np.nan, "a", "b"]})
path = os.path.join(self.write_folder, "onlymissing_and_usermissing.dta")
variable_value_labels={"var": {1: "Val 1", 2: "Val 2", 3: "Val 3", "a": "Missing A", "b": "Missing B", } }
missing_user_values={"var": ["a", "b"]}
pyreadstat.write_dta(df, path, variable_value_labels=variable_value_labels, missing_user_values=missing_user_values,version=12)
df2, meta2 = pyreadstat.read_dta(path, user_missing=True, )
self.assertTrue(df.equals(df2))
def test_sav_outputformat_dict(self):
df, meta = pyreadstat.read_sav(os.path.join(self.basic_data_folder, "sample.sav"), output_format='dict')
self.assertTrue(meta.number_columns == len(self.df_pandas.columns))
self.assertTrue(meta.number_rows == len(self.df_pandas))
self.assertTrue(len(meta.notes)>0)
self.assertTrue(meta.variable_display_width["mychar"]==9)
self.assertTrue(meta.variable_storage_width["mychar"] == 8)
self.assertTrue(meta.variable_measure["mychar"]=="nominal")
self.assertTrue(meta.readstat_variable_types["mychar"]=="string")
self.assertTrue(meta.readstat_variable_types["myord"]=="double")
padic = self.df_pandas.to_dict(orient='list')
#import pdb;pdb.set_trace()
for colname, data in df.items():
curdfcol = df[colname]
for indx, val in enumerate(data):
if pd.isna(val) and pd.isna(curdfcol[indx]):
continue
self.assertTrue(val==curdfcol[indx])
def test_sav_write_rowcompression(self):
file_label = "row compression write"
file_note = "These are some notes"
col_labels = ["mychar label","mynum label", "mydate label", "dtime label", None, "myord label", "mytime label"]
variable_value_labels = {'mylabl': {1.0: 'Male', 2.0: 'Female'}, 'myord': {1.0: 'low', 2.0: 'medium', 3.0: 'high'}}
missing_ranges = {'mychar':['a'], 'myord': [{'hi':2, 'lo':1}]}
#variable_alignment = {'mychar':"center", 'myord':"right"}
variable_display_width = {'mychar':20}
variable_measure = {"mychar": "nominal"}
path = os.path.join(self.write_folder, "rowcompression_write.sav")
pyreadstat.write_sav(self.df_pandas, path, file_label=file_label, column_labels=col_labels, note=file_note,
variable_value_labels=variable_value_labels, missing_ranges=missing_ranges, variable_display_width=variable_display_width,
variable_measure=variable_measure, row_compress=True) #, variable_alignment=variable_alignment)
df, meta = pyreadstat.read_sav(path, user_missing=True)
self.assertTrue(df.equals(self.df_pandas))
self.assertEqual(meta.file_label, file_label)
self.assertListEqual(meta.column_labels, col_labels)
self.assertEqual(meta.notes[0], file_note)
self.assertDictEqual(meta.variable_value_labels, variable_value_labels)
self.assertEqual(meta.variable_display_width['mychar'], variable_display_width['mychar'])
#self.assertDictEqual(meta.variable_alignment, variable_alignment)
self.assertEqual(meta.variable_measure["mychar"], variable_measure["mychar"])
if __name__ == '__main__':
import sys
if "--inplace" in sys.argv:
script_folder = os.path.split(os.path.split(os.path.realpath(__file__))[0])[0]
sys.path.insert(0, script_folder)
sys.argv.remove('--inplace')
import pyreadstat
print("package location:", pyreadstat.__file__)
unittest.main()
|