1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
|
.. _swath:
Resampling of swath data
========================
Pyresample can be used to resample a swath dataset to a grid, a grid to a swath or a swath to another swath.
Resampling can be done using nearest neighbour method, Guassian weighting, weighting with an arbitrary radial function.
.. versionchanged:: 1.8.0
:class:`~pyresample.geometry.SwathDefinition` no longer checks the validity of the provided longitude
and latitude coordinates to improve performance. Longitude arrays are
expected to be between -180 and 180 degrees, latitude -90 to 90 degrees.
This also applies to all geometry definitions that are provided longitude
and latitude arrays on initialization. Use
:func:`~pyresample.utils.check_and_wrap` to preprocess your arrays.
pyresample.image
----------------
The ImageContainerNearest and ImageContanerBilinear classes can be used for resampling of swaths as well as grids. Below is an example using nearest neighbour resampling.
.. doctest::
>>> import numpy as np
>>> from pyresample import image, geometry
>>> area_def = geometry.AreaDefinition('areaD', 'Europe (3km, HRV, VTC)', 'areaD',
... {'a': '6378144.0', 'b': '6356759.0',
... 'lat_0': '50.00', 'lat_ts': '50.00',
... 'lon_0': '8.00', 'proj': 'stere'},
... 800, 800,
... [-1370912.72, -909968.64,
... 1029087.28, 1490031.36])
>>> data = np.fromfunction(lambda y, x: y*x, (50, 10))
>>> lons = np.fromfunction(lambda y, x: 3 + x, (50, 10))
>>> lats = np.fromfunction(lambda y, x: 75 - y, (50, 10))
>>> swath_def = geometry.SwathDefinition(lons=lons, lats=lats)
>>> swath_con = image.ImageContainerNearest(data, swath_def, radius_of_influence=5000)
>>> area_con = swath_con.resample(area_def)
>>> result = area_con.image_data
For other resampling types or splitting the process in two steps use e.g. the functions in **pyresample.kd_tree** described below.
pyresample.kd_tree
------------------
This module contains several functions for resampling swath data.
Note distance calculation is approximated with cartesian distance.
Masked arrays can be used as data input. In order to have undefined pixels masked out instead of
assigned a fill value set **fill_value=None** when calling the **resample_*** function.
resample_nearest
****************
Function for resampling using nearest neighbour method.
Example showing how to resample a generated swath dataset to a grid using nearest neighbour method:
.. doctest::
>>> import numpy as np
>>> from pyresample import kd_tree, geometry
>>> area_def = geometry.AreaDefinition('areaD', 'Europe (3km, HRV, VTC)', 'areaD',
... {'a': '6378144.0', 'b': '6356759.0',
... 'lat_0': '50.00', 'lat_ts': '50.00',
... 'lon_0': '8.00', 'proj': 'stere'},
... 800, 800,
... [-1370912.72, -909968.64,
... 1029087.28, 1490031.36])
>>> data = np.fromfunction(lambda y, x: y*x, (50, 10))
>>> lons = np.fromfunction(lambda y, x: 3 + x, (50, 10))
>>> lats = np.fromfunction(lambda y, x: 75 - y, (50, 10))
>>> swath_def = geometry.SwathDefinition(lons=lons, lats=lats)
>>> result = kd_tree.resample_nearest(swath_def, data,
... area_def, radius_of_influence=50000, epsilon=0.5)
If the arguments **swath_def** and **area_def** where switched (and **data** matched the dimensions of **area_def**) the grid of **area_def**
would be resampled to the swath defined by **swath_def**.
Note the keyword arguments:
* **radius_of_influence**: The radius around each grid pixel in meters to search for neighbours in the swath.
* **epsilon**: The distance to a found value is guaranteed to be no further than (1 + eps) times the distance to the correct neighbour. Allowing for uncertanty decreases execution time.
If **data** is a masked array the mask will follow the neighbour pixel assignment.
If there are multiple channels in the dataset the **data** argument should be of the shape of the lons and lat arrays
with the channels along the last axis e.g. (rows, cols, channels). Note: the convention of pyresample < 0.7.4 is to pass
**data** in the form of (number_of_data_points, channels) is still accepted.
.. doctest::
>>> import numpy as np
>>> from pyresample import kd_tree, geometry
>>> area_def = geometry.AreaDefinition('areaD', 'Europe (3km, HRV, VTC)', 'areaD',
... {'a': '6378144.0', 'b': '6356759.0',
... 'lat_0': '50.00', 'lat_ts': '50.00',
... 'lon_0': '8.00', 'proj': 'stere'},
... 800, 800,
... [-1370912.72, -909968.64,
... 1029087.28, 1490031.36])
>>> channel1 = np.fromfunction(lambda y, x: y*x, (50, 10))
>>> channel2 = np.fromfunction(lambda y, x: y*x, (50, 10)) * 2
>>> channel3 = np.fromfunction(lambda y, x: y*x, (50, 10)) * 3
>>> data = np.dstack((channel1, channel2, channel3))
>>> lons = np.fromfunction(lambda y, x: 3 + x, (50, 10))
>>> lats = np.fromfunction(lambda y, x: 75 - y, (50, 10))
>>> swath_def = geometry.SwathDefinition(lons=lons, lats=lats)
>>> result = kd_tree.resample_nearest(swath_def, data,
... area_def, radius_of_influence=50000)
For nearest neighbour resampling the class **image.ImageContainerNearest** can be used as well as **kd_tree.resample_nearest**
resample_gauss
**************
Function for resampling using nearest Gussian weighting. The Gauss weigh function is defined as exp(-dist^2/sigma^2).
Note the pyresample sigma is **not** the standard deviation of the gaussian.
Example showing how to resample a generated swath dataset to a grid using Gaussian weighting:
.. doctest::
>>> import numpy as np
>>> from pyresample import kd_tree, geometry
>>> area_def = geometry.AreaDefinition('areaD', 'Europe (3km, HRV, VTC)', 'areaD',
... {'a': '6378144.0', 'b': '6356759.0',
... 'lat_0': '50.00', 'lat_ts': '50.00',
... 'lon_0': '8.00', 'proj': 'stere'},
... 800, 800,
... [-1370912.72, -909968.64,
... 1029087.28, 1490031.36])
>>> data = np.fromfunction(lambda y, x: y*x, (50, 10))
>>> lons = np.fromfunction(lambda y, x: 3 + x, (50, 10))
>>> lats = np.fromfunction(lambda y, x: 75 - y, (50, 10))
>>> swath_def = geometry.SwathDefinition(lons=lons, lats=lats)
>>> result = kd_tree.resample_gauss(swath_def, data,
... area_def, radius_of_influence=50000, sigmas=25000)
If more channels are present in **data** the keyword argument **sigmas** must be a list containing a sigma for each channel.
If **data** is a masked array any pixel in the result data that has been "contaminated" by weighting of a masked pixel is masked.
Using the function **utils.fwhm2sigma** the sigma argument to the gauss resampling can be calculated from 3 dB FOV levels.
resample_custom
***************
Function for resampling using arbitrary radial weight functions.
Example showing how to resample a generated swath dataset to a grid using an arbitrary radial weight function:
.. doctest::
>>> import numpy as np
>>> from pyresample import kd_tree, geometry
>>> area_def = geometry.AreaDefinition('areaD', 'Europe (3km, HRV, VTC)', 'areaD',
... {'a': '6378144.0', 'b': '6356759.0',
... 'lat_0': '50.00', 'lat_ts': '50.00',
... 'lon_0': '8.00', 'proj': 'stere'},
... 800, 800,
... [-1370912.72, -909968.64,
... 1029087.28, 1490031.36])
>>> data = np.fromfunction(lambda y, x: y*x, (50, 10))
>>> lons = np.fromfunction(lambda y, x: 3 + x, (50, 10))
>>> lats = np.fromfunction(lambda y, x: 75 - y, (50, 10))
>>> swath_def = geometry.SwathDefinition(lons=lons, lats=lats)
>>> wf = lambda r: 1 - r/100000.0
>>> result = kd_tree.resample_custom(swath_def, data,
... area_def, radius_of_influence=50000, weight_funcs=wf)
If more channels are present in **data** the keyword argument **weight_funcs** must be a list containing a radial function for each channel.
If **data** is a masked array any pixel in the result data that has been "contaminated" by weighting of a masked pixel is masked.
Uncertainty estimates
*********************
Uncertainty estimates in the form of weighted standard deviation can be obtained from the **resample_custom** and **resample_gauss** functions.
By default the functions return the result of the resampling as a single numpy array. If the functions are given the keyword argument **with_uncert=True**
then the following list of numpy arrays will be returned instead: **(result, stddev, count)**. **result** is the usual result. **stddev** is the weighted standard deviation for each element in the result. **count** is the number of data values used in the weighting for each element in the result.
The principle is to view the calculated value for each element in the result as a weighted average of values sampled from a statistical variable.
An estimate of the standard deviation of the distribution is calculated using the unbiased weighted estimator given as
**stddev = sqrt((V1 / (V1 ** 2 + V2)) * sum(wi * (xi - result) ** 2))** where **result** is the result of the resampling. **xi** is the value of a contributing neighbour
and **wi** is the corresponding weight. The coefficients are given as **V1 = sum(wi)** and **V2 = sum(wi ** 2)**. The standard deviation is only calculated for elements in
the result where more than one neighbour has contributed to the weighting. The **count** numpy array can be used for filtering at a higher number of contributing neigbours.
Usage only differs in the number of return values from **resample_gauss** and **resample_custom**. E.g.:
>>> result, stddev, count = pr.kd_tree.resample_gauss(swath_def, ice_conc, area_def,
... radius_of_influence=20000,
... sigmas=pr.utils.fwhm2sigma(35000),
... fill_value=None, with_uncert=True)
Below is shown a plot of the result of the resampling using a real data set:
.. image:: _static/images/uncert_conc_nh.png
The corresponding standard deviations:
.. image:: _static/images/uncert_stddev_nh.png
And the number of contributing neighbours for each element:
.. image:: _static/images/uncert_count_nh.png
Notice the standard deviation is only calculated where there are more than one contributing neighbour.
Resampling from neighbour info
******************************
The resampling can be split in two steps:
First get arrays containing information about the nearest neighbours to each grid point.
Then use these arrays to retrive the resampling result.
This approch can be useful if several datasets based on the same swath are to be resampled. The computational
heavy task of calculating the neighbour information can be done once and the result can be used to
retrieve the resampled data from each of the datasets fast.
.. doctest::
>>> import numpy as np
>>> from pyresample import kd_tree, geometry
>>> area_def = geometry.AreaDefinition('areaD', 'Europe (3km, HRV, VTC)', 'areaD',
... {'a': '6378144.0', 'b': '6356759.0',
... 'lat_0': '50.00', 'lat_ts': '50.00',
... 'lon_0': '8.00', 'proj': 'stere'},
... 800, 800,
... [-1370912.72, -909968.64,
... 1029087.28, 1490031.36])
>>> data = np.fromfunction(lambda y, x: y*x, (50, 10))
>>> lons = np.fromfunction(lambda y, x: 3 + x, (50, 10))
>>> lats = np.fromfunction(lambda y, x: 75 - y, (50, 10))
>>> swath_def = geometry.SwathDefinition(lons=lons, lats=lats)
>>> valid_input_index, valid_output_index, index_array, distance_array = \
... kd_tree.get_neighbour_info(swath_def,
... area_def, 50000,
... neighbours=1)
>>> res = kd_tree.get_sample_from_neighbour_info('nn', area_def.shape, data,
... valid_input_index, valid_output_index,
... index_array)
Note the keyword argument **neighbours=1**. This specifies only to consider one neighbour for each
grid point (the nearest neighbour). Also note **distance_array** is not a required argument for
**get_sample_from_neighbour_info** when using nearest neighbour resampling
Segmented resampling
********************
Whenever a resampling function takes the keyword argument **segments** the number of segments to split the resampling process in can be specified. This affects the memory footprint of pyresample. If the value of **segments** is left to default pyresample will estimate the number of segments to use.
pyresample.bilinear
-------------------
Compared to nearest neighbour resampling, bilinear interpolation
produces smoother results near swath edges of polar satellite data and
edges of geostationary satellites.
The algorithm is implemented from http://www.ahinson.com/algorithms_general/Sections/InterpolationRegression/InterpolationIrregularBilinear.pdf
Below is shown a comparison between image generated with nearest
neighbour resampling (top) and with bilinear interpolation
(bottom):
.. image:: _static/images/nearest_overview.png
:width: 50%
.. image:: _static/images/bilinear_overview.png
:width: 50%
Click images to see the full resolution versions.
The *perceived* sharpness of the bottom image is lower, but there is more detail present.
XArrayBilinearResampler
***********************
**bilinear.XArrayBilinearResampler** is a class that handles bilinear interpolation for data in
`xarray.DataArray` arrays. The parallelization is done automatically using `dask`.
>>> import numpy as np
>>> import dask.array as da
>>> from xarray import DataArray
>>> from pyresample.bilinear import XArrayBilinearResampler
>>> from pyresample import geometry
>>> target_def = geometry.AreaDefinition('areaD',
... 'Europe (3km, HRV, VTC)',
... 'areaD',
... {'a': '6378144.0', 'b': '6356759.0',
... 'lat_0': '50.00', 'lat_ts': '50.00',
... 'lon_0': '8.00', 'proj': 'stere'},
... 800, 800,
... [-1370912.72, -909968.64,
... 1029087.28, 1490031.36])
>>> data = DataArray(da.from_array(np.fromfunction(lambda y, x: y*x, (500, 100))), dims=('y', 'x'))
>>> lons = da.from_array(np.fromfunction(lambda y, x: 3 + x * 0.1, (500, 100)))
>>> lats = da.from_array(np.fromfunction(lambda y, x: 75 - y * 0.1, (500, 100)))
>>> source_def = geometry.SwathDefinition(lons=lons, lats=lats)
>>> resampler = XArrayBilinearResampler(source_def, target_def, 30e3)
>>> result = resampler.resample(data)
The resampling info can be saved for later reuse and much faster processinf for a matching area. The
data are saved to a ZARR arcive, so `zarr` Python package needs to be installed.
>>> import os
>>> from tempfile import gettempdir
>>> cache_file = os.path.join(gettempdir(), "bilinear_resampling_luts.zarr")
>>> resampler.save_resampling_info(cache_file)
>>> new_resampler = XArrayBilinearResampler(source_def, target_def, 30e3)
>>> new_resampler.load_resampling_info(cache_file)
>>> result = new_resampler.resample(data)
NumpyBilinearResampler
**********************
**bilinear.NumpyBilinearResampler** is a plain Numpy version of **XArrayBilinearResampler**. If
`fill_value` isn't given to `get_sample_from_bil_info()`, a masked array will be returned.
>>> import numpy as np
>>> from pyresample.bilinear import NumpyBilinearResampler
>>> from pyresample import geometry
>>> target_def = geometry.AreaDefinition('areaD',
... 'Europe (3km, HRV, VTC)',
... 'areaD',
... {'a': '6378144.0', 'b': '6356759.0',
... 'lat_0': '50.00', 'lat_ts': '50.00',
... 'lon_0': '8.00', 'proj': 'stere'},
... 800, 800,
... [-1370912.72, -909968.64,
... 1029087.28, 1490031.36])
>>> data = np.fromfunction(lambda y, x: y*x, (500, 100))
>>> lons = np.fromfunction(lambda y, x: 3 + x * 0.1, (500, 100))
>>> lats = np.fromfunction(lambda y, x: 75 - y * 0.1, (500, 100))
>>> source_def = geometry.SwathDefinition(lons=lons, lats=lats)
>>> resampler = NumpyBilinearResampler(source_def, target_def, 30e3)
>>> result = resampler.resample(data)
resample_bilinear
*****************
Convenience function for resampling using bilinear interpolation for irregular source grids.
.. note::
The use of this function is deprecated. Depending on the input data format, please use directly
the **bilinear.NumpyBilinearResampler** or **bilinear.XArrayBilinearResampler** classes and their
**.resample()** method shown above.
.. doctest::
>>> import numpy as np
>>> from pyresample import bilinear, geometry
>>> target_def = geometry.AreaDefinition('areaD',
... 'Europe (3km, HRV, VTC)',
... 'areaD',
... {'a': '6378144.0', 'b': '6356759.0',
... 'lat_0': '50.00', 'lat_ts': '50.00',
... 'lon_0': '8.00', 'proj': 'stere'},
... 800, 800,
... [-1370912.72, -909968.64,
... 1029087.28, 1490031.36])
>>> data = np.fromfunction(lambda y, x: y*x, (500, 100))
>>> lons = np.fromfunction(lambda y, x: 3 + x * 0.1, (500, 100))
>>> lats = np.fromfunction(lambda y, x: 75 - y * 0.1, (500, 100))
>>> source_def = geometry.SwathDefinition(lons=lons, lats=lats)
>>> result = bilinear.resample_bilinear(data, source_def, target_def,
... radius=50e3, neighbours=32,
... nprocs=1, fill_value=0,
... reduce_data=True, segments=None,
... epsilon=0)
The **target_area** needs to be an area definition with **proj_str**
attribute.
..
The **source_def** can be either an area definition as above,
or a 2-tuple of (lons, lats).
Keyword arguments which are passed to **kd_tree**:
* **radius**: radius around each target pixel in meters to search for
neighbours in the source data
* **neighbours**: number of closest locations to consider when
selecting the four data points around the target location. Note that this
value needs to be large enough to ensure "surrounding" the target!
* **nprocs**: number of processors to use for finding the closest pixels
* **fill_value**: fill invalid pixel with this value. If
**fill_value=None** is used, masked arrays will be returned
* **reduce_data**: do/don't do preliminary data reduction before calculating
the neigbour info
* **epsilon**: maximum uncertainty allowed in neighbour search
The example above shows the default value for each keyword argument.
Resampling from bilinear coefficients
*************************************
..note:
This usage is deprecated, please use the **bilinear.NumpyBilinearResampler** or
**bilinear.XArrayBilinearResampler** classes directly depending on the input data format.
As for nearest neighbour resampling, also bilinear interpolation can
be split in two steps.
* Calculate interpolation coefficients, input data reduction matrix
and mapping matrix
* Use this information to resample several datasets between these two
areas/swaths
Only the first step is computationally expensive operation, so by
re-using this information the overall processing time is reduced
significantly. This is also done internally by the
**resample_bilinear** function, but separating these steps makes it
possible to cache the coefficients if the same transformation is done
over and over again. This is very typical in operational
geostationary satellite image processing. Note that the output shape is now
defined so that the result is reshaped to correct shape. This reshaping
is done internally in **resample_bilinear**.
.. doctest::
>>> import numpy as np
>>> from pyresample import bilinear, geometry
>>> target_def = geometry.AreaDefinition('areaD', 'Europe (3km, HRV, VTC)',
... 'areaD',
... {'a': '6378144.0', 'b': '6356759.0',
... 'lat_0': '50.00', 'lat_ts': '50.00',
... 'lon_0': '8.00', 'proj': 'stere'},
... 800, 800,
... [-1370912.72, -909968.64,
... 1029087.28, 1490031.36])
>>> data = np.fromfunction(lambda y, x: y*x, (50, 10))
>>> lons = np.fromfunction(lambda y, x: 3 + x, (50, 10))
>>> lats = np.fromfunction(lambda y, x: 75 - y, (50, 10))
>>> source_def = geometry.SwathDefinition(lons=lons, lats=lats)
>>> t_params, s_params, input_idxs, idx_ref = \
... bilinear.get_bil_info(source_def, target_def, radius=50e3, nprocs=1)
>>> res = bilinear.get_sample_from_bil_info(data.ravel(), t_params, s_params,
... input_idxs, idx_ref,
... output_shape=target_def.shape)
pyresample.ewa
--------------
Pyresample makes it possible to resample swath data to a uniform grid
using an Elliptical Weighted Averaging algorithm or EWA for short.
This algorithm behaves differently than the KDTree based resampling
algorithms that pyresample provides. The KDTree-based algorithms
process each output grid pixel by searching for all "nearby" input
pixels and applying a certain interpolation (nearest neighbor, gaussian, etc).
The EWA algorithm processes each input pixel mapping it to one or more output
pixels. Once each input pixel has been analyzed the intermediate results are
averaged to produce the final gridded result.
The EWA algorithm also has limitations on how the input data is structured
compared to the generic KDTree algorithms. EWA assumes that data in the array
is organized geographically; adjacent data in the array is adjacent data
geographically. The algorithm uses this to configure parameters based on the
size and location of the swath pixels.
The EWA algorithm consists of two
steps: ll2cr and fornav. The algorithm was originally part of the
MODIS Swath to Grid Toolbox (ms2gt) created by the
NASA National Snow & Ice Data Center (NSIDC). Its default parameters
work best with MODIS L1B data, but it has been proven to produce high
quality images from VIIRS and AVHRR data with the right parameters.
.. note::
This code was originally part of the Polar2Grid project. This
documentation and the API documentation for this algorithm may still
use references or concepts from Polar2Grid until everything can
be updated.
Gridding
********
The first step is called 'll2cr' which stands for "longitude/latitude to
column/row". This step maps the pixel location (lon/lat space) into area (grid)
space. Areas in pyresample are defined by a PROJ.4 projection specification.
An area is defined by the following parameters:
- Grid Name
- PROJ.4 String (either lat/lon or metered projection space)
- Width (number of pixels in the X direction)
- Height (number of pixels in the Y direction)
- Cell Width (pixel size in the X direction in grid units)
- Cell Height (pixel size in the Y direction in grid units)
- X Origin (upper-left X coordinate in grid units)
- Y Origin (upper-left Y coordinate in grid units)
Resampling
**********
The second step of EWA remapping is called "fornav", short for
"forward navigation". This EWA algorithm processes one input scan line
at a time. The algorithm weights the effect of an input pixel on an output
pixel based on its location in the scan line and other calculated
coefficients. It can also handle swaths that are not scan based by specifying
`rows_per_scan` as the number of rows in the entire swath.
How the algorithm treats the data can be configured with various
keyword arguments, see the API documentation for more information.
Both steps provide additional information to inform the user how much data
was used in the result. The first returned value of ll2cr tells you how many
of the input swath pixels overlap the grid. The first returned value of fornav
tells you how many grid points have valid data values in them.
Example
*******
.. note::
EWA resampling in pyresample is still in an alpha stage. As development
continues, EWA resampling may be called differently.
.. doctest::
>>> import numpy as np
>>> from pyresample.ewa import ll2cr, fornav
>>> area_def = geometry.AreaDefinition('areaD', 'Europe (3km, HRV, VTC)', 'areaD',
... {'a': '6378144.0', 'b': '6356759.0',
... 'lat_0': '50.00', 'lat_ts': '50.00',
... 'lon_0': '8.00', 'proj': 'stere'},
... 800, 800,
... [-1370912.72, -909968.64,
... 1029087.28, 1490031.36])
>>> data = np.fromfunction(lambda y, x: y*x, (50, 10))
>>> lons = np.fromfunction(lambda y, x: 3 + x, (50, 10))
>>> lats = np.fromfunction(lambda y, x: 75 - y, (50, 10))
>>> swath_def = geometry.SwathDefinition(lons=lons, lats=lats)
>>> # ll2cr converts swath longitudes and latitudes to grid columns and rows
>>> swath_points_in_grid, cols, rows = ll2cr(swath_def, area_def)
>>> # if the data is scan based, specify how many data rows make up one scan
>>> rows_per_scan = 5
>>> # fornav resamples the swath data to the gridded area
>>> num_valid_points, gridded_data = fornav(cols, rows, area_def, data, rows_per_scan=rows_per_scan)
pyresample.bucket
-----------------
.. autoclass:: pyresample.bucket.BucketResampler
:noindex:
See :class:`~pyresample.bucket.BucketResampler` API documentation for
the details of method parameters.
|