1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) 2013-2022
# Author(s):
# Martin Raspaud <martin.raspaud@smhi.se>
# Leon Majewski <leon.majewski@bom.gov.au>
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import numpy as np
cimport cython
cimport numpy as np
from libc.math cimport fabs, isinf
ctypedef fused data_type:
np.float64_t
np.float32_t
ctypedef np.float64_t float_index
float_index_dtype = np.float64
np.import_array()
@cython.boundscheck(False)
@cython.wraparound(False)
cdef inline void nn(const data_type[:, :, :] data, int l0, int p0, float_index dl, float_index dp, int lmax, int pmax, data_type[:] res) noexcept nogil:
cdef int nnl, nnp
cdef size_t z_size = res.shape[0]
cdef size_t i
nnl = l0
if dl < -0.5 and nnl > 0:
nnl -= 1
elif dl > 0.5 and nnl < lmax:
nnl += 1
nnp = p0
if dp < -0.5 and nnp > 0:
nnp -= 1
elif dp > 0.5 and nnp < pmax:
nnp += 1
for i in range(z_size):
res[i] = data[i, nnl, nnp]
@cython.boundscheck(False)
@cython.wraparound(False)
cdef inline void bil(const data_type[:, :, :] data, int l0, int p0, float_index dl, float_index dp, int lmax, int pmax, data_type[:] res) noexcept nogil:
cdef int l_a, l_b, p_a, p_b
cdef float_index w_l, w_p
cdef size_t z_size = res.shape[0]
cdef size_t i
if dl < 0:
l_a = max(0, l0 - 1)
l_b = l0
w_l = 1 + dl
else:
l_a = l0
l_b = min(l0 + 1, lmax)
w_l = dl
if dp < 0:
p_a = max(0, p0 - 1)
p_b = p0
w_p = 1 + dp
else:
p_a = p0
p_b = min(p0 + 1, pmax)
w_p = dp
for i in range(z_size):
res[i] = <data_type>((1 - w_l) * (1 - w_p) * data[i, l_a, p_a] +
(1 - w_l) * w_p * data[i, l_a, p_b] +
w_l * (1 - w_p) * data[i, l_b, p_a] +
w_l * w_p * data[i, l_b, p_b])
@cython.boundscheck(False)
@cython.wraparound(False)
cdef inline void indices_xy(const data_type[:, :, :] data, int l0, int p0, float_index dl, float_index dp, int lmax, int pmax, data_type[:] res) noexcept nogil:
cdef int nnl, nnp
cdef size_t z_size = res.shape[0]
cdef size_t i
res[1] = dl + l0
res[0] = dp + p0
ctypedef void (*FN)(const data_type[:, :, :] data, int l0, int p0, float_index dl, float_index dp, int lmax, int pmax, data_type[:] res) noexcept nogil
@cython.boundscheck(False)
@cython.wraparound(False)
cpdef one_step_gradient_search(const data_type[:, :, :] data,
float_index [:, :] src_x,
float_index [:, :] src_y,
float_index [:, :] xl,
float_index [:, :] xp,
float_index [:, :] yl,
float_index [:, :] yp,
float_index [:, :] dst_x,
float_index [:, :] dst_y,
str method='bilinear'):
"""Gradient search, simple case variant."""
cdef FN fun
if method == 'bilinear':
fun = bil
else:
fun = nn
# change the output size (x_size, y_size) to match area_def.shape:
# (lines,pixels)
cdef size_t z_size = data.shape[0]
cdef size_t y_size = dst_y.shape[0]
cdef size_t x_size = dst_x.shape[1]
if data_type is double:
dtype = np.float64
else:
dtype = np.float32
# output image array --> needs to be (lines, pixels) --> y,x
image = np.full([z_size, y_size, x_size], np.nan, dtype=dtype)
cdef data_type[:, :, :] image_view = image
with nogil:
one_step_gradient_search_no_gil(data,
src_x, src_y,
xl, xp, yl, yp,
dst_x, dst_y,
x_size, y_size,
fun, image_view)
# return the output image
return image
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
cdef void one_step_gradient_search_no_gil(const data_type[:, :, :] data,
const float_index[:, :] src_x,
const float_index[:, :] src_y,
const float_index[:, :] xl,
const float_index[:, :] xp,
const float_index[:, :] yl,
const float_index[:, :] yp,
const float_index[:, :] dst_x,
const float_index[:, :] dst_y,
const size_t x_size,
const size_t y_size,
FN fun,
data_type[:, :, :] result_array) noexcept nogil:
# pixel max ---> data is expected in [lines, pixels]
cdef int pmax = src_x.shape[1] - 1
cdef int lmax = src_x.shape[0] - 1
# centre of input image - starting point
cdef int p0 = pmax // 2
cdef int l0 = lmax // 2
cdef int last_p0 = p0
cdef int last_l0 = l0
# intermediate variables:
cdef int l_a, l_b, p_a, p_b
cdef size_t i, j, elt
cdef float_index dx, dy, d, dl, dp
cdef int col_step = -1
# number of iterations
cdef int cnt = 0
for i in range(y_size):
# swap column iteration direction for every row
if col_step == -1:
j = 0
col_step = 1
else:
j = x_size - 1
col_step = -1
for _ in range(x_size):
if isinf(dst_x[i, j]):
j += col_step
continue
cnt = 0
while True:
cnt += 1
# algorithm does not converge.
if cnt > 5:
p0 = last_p0
l0 = last_l0
break
# check we are within the input image bounds
if lmax >= l0 >= 0 and pmax >= p0 >= 0:
# step size
dx = dst_x[i, j] - src_x[l0, p0]
dy = dst_y[i, j] - src_y[l0, p0]
else:
# reset such that we are back in the input image bounds
l0 = max(0, min(lmax, l0))
p0 = max(0, min(pmax, p0))
continue
# distance from pixel/line to output location
d = yl[l0, p0] * xp[l0, p0] - yp[l0, p0] * xl[l0, p0]
if d == 0.0:
# There's no gradient, try again
continue
dl = (xp[l0, p0] * dy - yp[l0, p0] * dx) / d
dp = (yl[l0, p0] * dx - xl[l0, p0] * dy) / d
# check that our distance to an output location is less than 1
# pixel/line
if fabs(dp) < 1 and fabs(dl) < 1:
last_p0 = p0
last_l0 = l0
if 0 <= dl + l0 <= lmax and 0 <= dp + p0 <= pmax:
fun(data, l0, p0, dl, dp, lmax, pmax, result_array[:, i, j])
# found our solution, next
break
else:
# increment...
l0 = int(l0 + dl)
p0 = int(p0 + dp)
j += col_step
@cython.boundscheck(False)
@cython.wraparound(False)
cpdef one_step_gradient_indices(float_index [:, :] src_x,
float_index [:, :] src_y,
float_index [:, :] xl,
float_index [:, :] xp,
float_index [:, :] yl,
float_index [:, :] yp,
float_index [:, :] dst_x,
float_index [:, :] dst_y):
"""Gradient search, simple case variant, returning float indices.
This is appropriate for monotonous gradients only, i.e. not modis or viirs in satellite projection.
"""
# change the output size (x_size, y_size) to match area_def.shape:
# (lines,pixels)
cdef size_t y_size = dst_y.shape[0]
cdef size_t x_size = dst_x.shape[1]
# output indices arrays --> needs to be (lines, pixels) --> y,x
indices = np.full([2, y_size, x_size], np.nan, dtype=float_index_dtype)
cdef float_index [:, :, :] indices_view_result = indices
# fake_data is not going to be used anyway as we just fill in the indices
cdef float_index [:, :, :] fake_data = np.full([1, 1, 1], np.nan, dtype=float_index_dtype)
with nogil:
one_step_gradient_search_no_gil[float_index](fake_data,
src_x, src_y,
xl, xp, yl, yp,
dst_x, dst_y,
x_size, y_size,
indices_xy, indices_view_result)
return indices
|