File: plot.rst

package info (click to toggle)
pyresample 1.35.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 34,800 kB
  • sloc: python: 20,340; cpp: 463; makefile: 105
file content (87 lines) | stat: -rw-r--r-- 3,326 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
.. _plot:

Plotting with pyresample and Cartopy
====================================

Pyresample supports basic integration with Cartopy_.

Displaying data quickly
-----------------------
Pyresample has some convenience functions for displaying data from a single
channel. The :func:`show_quicklook <pyresample.plot.show_quicklook>` function
shows a Cartopy generated image of a dataset for a specified AreaDefinition.
The function :func:`save_quicklook <pyresample.plot.save_quicklook>` saves the Cartopy image directly to file.

**Example usage:**

In this simple example below we use GCOM-W1 AMSR-2 data loaded using Satpy_.
Satpy simplifies the reading of this data, but is not necessary for using
pyresample or plotting data.

First we read in the data with Satpy_:

 >>> from satpy.scene import Scene
 >>> from glob import glob
 >>> SCENE_FILES = glob("./GW1AM2_20191122????_156*h5")
 >>> scn = Scene(reader='amsr2_l1b', filenames=SCENE_FILES)
 >>> scn.load(["btemp_36.5v"])
 >>> lons, lats = scn["btemp_36.5v"].area.get_lonlats()
 >>> tb37v = scn["btemp_36.5v"].data.compute()

Data for this example can be downloaded from zenodo_.

If you have your own data, or just want to see that the example code here runs, you can
set the three arrays :code:`lons`, :code:`lats` and :code:`tb37v` accordingly, e.g.:

.. doctest::

   >>> from pyresample.geometry import AreaDefinition
   >>> area_id = 'ease_sh'
   >>> description = 'Antarctic EASE grid'
   >>> proj_id = 'ease_sh'
   >>> projection = {'proj': 'laea', 'lat_0': -90, 'lon_0': 0, 'a': 6371228.0, 'units': 'm'}
   >>> width = 425
   >>> height = 425
   >>> area_extent = (-5326849.0625, -5326849.0625, 5326849.0625, 5326849.0625)
   >>> area_def = AreaDefinition(area_id, description, proj_id, projection,
   ...                           width, height, area_extent)

But here we go on with the loaded AMSR-2 data. Make sure you have an :code:`areas.yaml`
file that defines the :code:`ease_sh` area, or see
:ref:`the area definition section<area-definitions>` on how to define one.

.. testsetup::

   import numpy as np
   lons = np.repeat(np.linspace(-95, -70, 100)[np.newaxis], 10, axis=0).ravel()
   lats = np.linspace(-80, -90, 1000)
   tb37v = np.arange(1000)
   if plt is not None:
       import matplotlib
       matplotlib.use('agg')

.. doctest::
   :skipif: plt is None

   >>> from pyresample import load_area, save_quicklook, SwathDefinition
   >>> from pyresample.kd_tree import resample_nearest
   >>> swath_def = SwathDefinition(lons, lats)
   >>> result = resample_nearest(swath_def, tb37v, area_def,
   ...                           radius_of_influence=20000, fill_value=None)
   >>> save_quicklook('tb37v_quick.png', area_def, result, label='Tb 37v (K)')

Assuming **lons**, **lats** and **tb37v** are initialized with real data (as in
the above Satpy_ example) the result might look something like this:

  .. image:: /_static/images/tb37v_quick.png

The data passed to the functions is a 2D array matching the AreaDefinition.

.. include:: plot_projections.rst
.. include:: plot_cartopy_basemap.rst


.. _Satpy: http://www.github.com/pytroll/satpy
.. _zenodo: https://doi.org/10.5281/zenodo.3553696
.. _`Cartopy gallery example`: http://scitools.org.uk/cartopy/docs/v0.16/gallery/geostationary.html
.. _Cartopy: http://scitools.org.uk/cartopy/