1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
/*
#
# Copyright 2008-2011 Lukas Lueg, lukas.lueg@gmail.com
#
# This file is part of Pyrit.
#
# Pyrit is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Pyrit is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Pyrit. If not, see <http://www.gnu.org/licenses/>.
#
# Additional permission under GNU GPL version 3 section 7
#
# If you modify this Program, or any covered work, by linking or
# combining it with NVIDIA Corporation's CUDA libraries from the
# NVIDIA CUDA Toolkit (or a modified version of those libraries),
# containing parts covered by the terms of NVIDIA CUDA Toolkit
# EULA, the licensors of this Program grant you additional
# permission to convey the resulting work.
*/
#include "_cpyrit_cuda.h"
/* This is a 'special-version' of the SHA1 round function. *ctx is the current state,
that gets updated by *data. Notice the lack of endianess-changes here.
This SHA1-implementation follows the more-instructions-less-space paradigm, since registers
and (fast) memory on the device are precious, threads are not. Only the starting values
of W[0] to W[4] are defined by parameters. We fix the rest to invariant values and leave
the possible register allocation optimization to the compiler.
*/
__device__
void sha1_process( const SHA_DEV_CTX *ctx, SHA_DEV_CTX *data) {
uint32_t temp, W[16], A, B, C, D, E;
W[ 0] = data->h0; W[ 1] = data->h1;
W[ 2] = data->h2; W[ 3] = data->h3;
W[ 4] = data->h4; W[ 5] = 0x80000000;
W[ 6] = 0; W[ 7] = 0;
W[ 8] = 0; W[ 9] = 0;
W[10] = 0; W[11] = 0;
W[12] = 0; W[13] = 0;
W[14] = 0; W[15] = (64+20)*8;
A = ctx->h0;
B = ctx->h1;
C = ctx->h2;
D = ctx->h3;
E = ctx->h4;
#undef S
#define S(x,n) ((x << n) | (x >> (32 - n)))
#undef R
#define R(t) \
( \
temp = W[(t - 3) & 0x0F] ^ W[(t - 8) & 0x0F] ^ \
W[(t - 14) & 0x0F] ^ W[ t & 0x0F], \
( W[t & 0x0F] = S(temp,1) ) \
)
#undef P
#define P(a,b,c,d,e,x) \
{ \
e += S(a,5) + F(b,c,d) + K + x; b = S(b,30); \
}
#define F(x,y,z) (z ^ (x & (y ^ z)))
#define K 0x5A827999
P( A, B, C, D, E, W[0] );
P( E, A, B, C, D, W[1] );
P( D, E, A, B, C, W[2] );
P( C, D, E, A, B, W[3] );
P( B, C, D, E, A, W[4] );
P( A, B, C, D, E, W[5] );
P( E, A, B, C, D, W[6] );
P( D, E, A, B, C, W[7] );
P( C, D, E, A, B, W[8] );
P( B, C, D, E, A, W[9] );
P( A, B, C, D, E, W[10] );
P( E, A, B, C, D, W[11] );
P( D, E, A, B, C, W[12] );
P( C, D, E, A, B, W[13] );
P( B, C, D, E, A, W[14] );
P( A, B, C, D, E, W[15] );
P( E, A, B, C, D, R(16) );
P( D, E, A, B, C, R(17) );
P( C, D, E, A, B, R(18) );
P( B, C, D, E, A, R(19) );
#undef K
#undef F
#define F(x,y,z) (x ^ y ^ z)
#define K 0x6ED9EBA1
P( A, B, C, D, E, R(20) );
P( E, A, B, C, D, R(21) );
P( D, E, A, B, C, R(22) );
P( C, D, E, A, B, R(23) );
P( B, C, D, E, A, R(24) );
P( A, B, C, D, E, R(25) );
P( E, A, B, C, D, R(26) );
P( D, E, A, B, C, R(27) );
P( C, D, E, A, B, R(28) );
P( B, C, D, E, A, R(29) );
P( A, B, C, D, E, R(30) );
P( E, A, B, C, D, R(31) );
P( D, E, A, B, C, R(32) );
P( C, D, E, A, B, R(33) );
P( B, C, D, E, A, R(34) );
P( A, B, C, D, E, R(35) );
P( E, A, B, C, D, R(36) );
P( D, E, A, B, C, R(37) );
P( C, D, E, A, B, R(38) );
P( B, C, D, E, A, R(39) );
#undef K
#undef F
#define F(x,y,z) ((x & y) | (z & (x | y)))
#define K 0x8F1BBCDC
P( A, B, C, D, E, R(40) );
P( E, A, B, C, D, R(41) );
P( D, E, A, B, C, R(42) );
P( C, D, E, A, B, R(43) );
P( B, C, D, E, A, R(44) );
P( A, B, C, D, E, R(45) );
P( E, A, B, C, D, R(46) );
P( D, E, A, B, C, R(47) );
P( C, D, E, A, B, R(48) );
P( B, C, D, E, A, R(49) );
P( A, B, C, D, E, R(50) );
P( E, A, B, C, D, R(51) );
P( D, E, A, B, C, R(52) );
P( C, D, E, A, B, R(53) );
P( B, C, D, E, A, R(54) );
P( A, B, C, D, E, R(55) );
P( E, A, B, C, D, R(56) );
P( D, E, A, B, C, R(57) );
P( C, D, E, A, B, R(58) );
P( B, C, D, E, A, R(59) );
#undef K
#undef F
#define F(x,y,z) (x ^ y ^ z)
#define K 0xCA62C1D6
P( A, B, C, D, E, R(60) );
P( E, A, B, C, D, R(61) );
P( D, E, A, B, C, R(62) );
P( C, D, E, A, B, R(63) );
P( B, C, D, E, A, R(64) );
P( A, B, C, D, E, R(65) );
P( E, A, B, C, D, R(66) );
P( D, E, A, B, C, R(67) );
P( C, D, E, A, B, R(68) );
P( B, C, D, E, A, R(69) );
P( A, B, C, D, E, R(70) );
P( E, A, B, C, D, R(71) );
P( D, E, A, B, C, R(72) );
P( C, D, E, A, B, R(73) );
P( B, C, D, E, A, R(74) );
P( A, B, C, D, E, R(75) );
P( E, A, B, C, D, R(76) );
P( D, E, A, B, C, R(77) );
P( C, D, E, A, B, R(78) );
P( B, C, D, E, A, R(79) );
#undef K
#undef F
data->h0 = ctx->h0 + A;
data->h1 = ctx->h1 + B;
data->h2 = ctx->h2 + C;
data->h3 = ctx->h3 + D;
data->h4 = ctx->h4 + E;
}
/* This is the kernel called by the cpu. */
extern "C" __global__
void cuda_pmk_kernel( gpu_inbuffer *inbuffer, gpu_outbuffer *outbuffer) {
int i;
SHA_DEV_CTX temp_ctx, pmk_ctx;
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
CPY_DEVCTX(inbuffer[idx].e1, temp_ctx);
CPY_DEVCTX(temp_ctx, pmk_ctx);
for( i = 0; i < 4096-1; i++ )
{
sha1_process( &inbuffer[idx].ctx_ipad, &temp_ctx);
sha1_process( &inbuffer[idx].ctx_opad, &temp_ctx);
pmk_ctx.h0 ^= temp_ctx.h0; pmk_ctx.h1 ^= temp_ctx.h1;
pmk_ctx.h2 ^= temp_ctx.h2; pmk_ctx.h3 ^= temp_ctx.h3;
pmk_ctx.h4 ^= temp_ctx.h4;
}
CPY_DEVCTX(pmk_ctx, outbuffer[idx].pmk1);
CPY_DEVCTX(inbuffer[idx].e2, temp_ctx);
CPY_DEVCTX(temp_ctx, pmk_ctx);
for( i = 0; i < 4096-1; i++ )
{
sha1_process( &inbuffer[idx].ctx_ipad, &temp_ctx);
sha1_process( &inbuffer[idx].ctx_opad, &temp_ctx);
pmk_ctx.h0 ^= temp_ctx.h0; pmk_ctx.h1 ^= temp_ctx.h1;
pmk_ctx.h2 ^= temp_ctx.h2; pmk_ctx.h3 ^= temp_ctx.h3;
pmk_ctx.h4 ^= temp_ctx.h4;
}
CPY_DEVCTX(pmk_ctx, outbuffer[idx].pmk2);
}
|