File: test.py

package info (click to toggle)
pyrle 0.0.33-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 320 kB
  • sloc: python: 1,142; makefile: 9
file content (82 lines) | stat: -rw-r--r-- 1,641 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import pyranges as pr
gr = pr.load_dataset("epigenome_roadmap")
rle = gr["chr1"].coverage()
print(list(rle.runs)[:20])
print(list(rle.values)[:20])

raise
import numpy as np
from pyrle import Rle
import pandas as pd



r = pd.Series([1, 2, 3, 4], dtype=np.int16)
# v = pd.Series([-1, 2.3, 3, 4.976], dtype=np.float)
r1 = Rle(r, r)

r2 = Rle(r * 2, r * 2)

# > r2
# numeric-Rle of length 20 with 4 runs
#   Lengths: 2 4 6 8
#   Values : 2 4 6 8
# > r4
# numeric-Rle of length 20 with 5 runs
#   Lengths:  1  2  3  4 10
#   Values :  1  2  3  4  0
# > r2 + r4
# numeric-Rle of length 20 with 7 runs
#   Lengths:  1  1  1  3  4  2  8
#   Values :  3  4  6  7 10  6  8

r3 = r1 + r2
print(r3.runs)
print(r3.values)

print(r3.runs.dtype)
print(r3.values.dtype)

print(r3.runs.shape)
print(r3.values.shape)

r4 = r2 + r1
print(r4.runs)
print(r4.values)

print(r4.runs.dtype)
print(r4.values.dtype)

print(r4.runs.shape)
print(r4.values.shape)

def resize_test():
    """
    test of workign with a numpy array that needs to be re-sized.
    """
    # create an ndarray and a memview to work with it.
    # cdef cnp.ndarray[double, ndim=1, mode="c"] arr
    # cdef double[:] memview

    # ## allocate the array:
    # arr = np.zeros( (1,) )

    # ## Assign the memview to it:
    # memview = arr

    # ## manipulate it
    # memview[0] = 3.14

    # ## resize the array
    # arr.resize((4,), refcheck = False)

    # ## re-assign the memview -- so you get the new post-resize pointer
    # memview = arr

    # ## now use it
    # memview[1] = 5.6
    # memview[2] = 7.1
    # memview[3] = 4.3

    # ## return the numpy array
    # return arr