1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
"""
Hypothesis-based tests for pvector.
"""
import gc
from collections.abc import Iterable
from functools import wraps
from pyrsistent import PClass, field
from pytest import fixture
from pyrsistent import pvector, discard
from hypothesis import strategies as st, assume
from hypothesis.stateful import RuleBasedStateMachine, Bundle, rule
class RefCountTracker:
"""
An object that might catch reference count errors sometimes.
"""
def __init__(self):
self.id = id(self)
def __repr__(self):
return "<%s>" % (self.id,)
def __del__(self):
# If self is a dangling memory reference this check might fail. Or
# segfault :)
if self.id != id(self):
raise RuntimeError()
@fixture(scope="module")
def gc_when_done(request):
request.addfinalizer(gc.collect)
def test_setup(gc_when_done):
"""
Ensure we GC when tests finish.
"""
# Pairs of a list and corresponding pvector:
PVectorAndLists = st.lists(st.builds(RefCountTracker)).map(
lambda l: (l, pvector(l)))
def verify_inputs_unmodified(original):
"""
Decorator that asserts that the wrapped function does not modify its
inputs.
"""
def to_tuples(pairs):
return [(tuple(l), tuple(pv)) for (l, pv) in pairs]
@wraps(original)
def wrapper(self, **kwargs):
inputs = [k for k in kwargs.values() if isinstance(k, Iterable)]
tuple_inputs = to_tuples(inputs)
try:
return original(self, **kwargs)
finally:
# Ensure inputs were unmodified:
assert to_tuples(inputs) == tuple_inputs
return wrapper
def assert_equal(l, pv):
assert l == pv
assert len(l) == len(pv)
length = len(l)
for i in range(length):
assert l[i] == pv[i]
for i in range(length):
for j in range(i, length):
assert l[i:j] == pv[i:j]
assert l == list(iter(pv))
class PVectorBuilder(RuleBasedStateMachine):
"""
Build a list and matching pvector step-by-step.
In each step in the state machine we do same operation on a list and
on a pvector, and then when we're done we compare the two.
"""
sequences = Bundle("sequences")
@rule(target=sequences, start=PVectorAndLists)
def initial_value(self, start):
"""
Some initial values generated by a hypothesis strategy.
"""
return start
@rule(target=sequences, former=sequences)
@verify_inputs_unmodified
def append(self, former):
"""
Append an item to the pair of sequences.
"""
l, pv = former
obj = RefCountTracker()
l2 = l[:]
l2.append(obj)
return l2, pv.append(obj)
@rule(target=sequences, start=sequences, end=sequences)
@verify_inputs_unmodified
def extend(self, start, end):
"""
Extend a pair of sequences with another pair of sequences.
"""
l, pv = start
l2, pv2 = end
# compare() has O(N**2) behavior, so don't want too-large lists:
assume(len(l) + len(l2) < 50)
l3 = l[:]
l3.extend(l2)
return l3, pv.extend(pv2)
@rule(target=sequences, former=sequences, data=st.data())
@verify_inputs_unmodified
def remove(self, former, data):
"""
Remove an item from the sequences.
"""
l, pv = former
assume(l)
l2 = l[:]
i = data.draw(st.sampled_from(range(len(l))))
del l2[i]
return l2, pv.delete(i)
@rule(target=sequences, former=sequences, data=st.data())
@verify_inputs_unmodified
def set(self, former, data):
"""
Overwrite an item in the sequence.
"""
l, pv = former
assume(l)
l2 = l[:]
i = data.draw(st.sampled_from(range(len(l))))
obj = RefCountTracker()
l2[i] = obj
return l2, pv.set(i, obj)
@rule(target=sequences, former=sequences, data=st.data())
@verify_inputs_unmodified
def transform_set(self, former, data):
"""
Transform the sequence by setting value.
"""
l, pv = former
assume(l)
l2 = l[:]
i = data.draw(st.sampled_from(range(len(l))))
obj = RefCountTracker()
l2[i] = obj
return l2, pv.transform([i], obj)
@rule(target=sequences, former=sequences, data=st.data())
@verify_inputs_unmodified
def transform_discard(self, former, data):
"""
Transform the sequence by discarding a value.
"""
l, pv = former
assume(l)
l2 = l[:]
i = data.draw(st.sampled_from(range(len(l))))
del l2[i]
return l2, pv.transform([i], discard)
@rule(target=sequences, former=sequences, data=st.data())
@verify_inputs_unmodified
def subset(self, former, data):
"""
A subset of the previous sequence.
"""
l, pv = former
assume(l)
i = data.draw(st.sampled_from(range(len(l))))
j = data.draw(st.sampled_from(range(len(l))))
return l[i:j], pv[i:j]
@rule(pair=sequences)
@verify_inputs_unmodified
def compare(self, pair):
"""
The list and pvector must match.
"""
l, pv = pair
# compare() has O(N**2) behavior, so don't want too-large lists:
assume(len(l) < 50)
assert_equal(l, pv)
PVectorBuilderTests = PVectorBuilder.TestCase
class EvolverItem(PClass):
original_list = field()
original_pvector = field()
current_list = field()
current_evolver = field()
class PVectorEvolverBuilder(RuleBasedStateMachine):
"""
Build a list and matching pvector evolver step-by-step.
In each step in the state machine we do same operation on a list and
on a pvector evolver, and then when we're done we compare the two.
"""
sequences = Bundle("evolver_sequences")
@rule(target=sequences, start=PVectorAndLists)
def initial_value(self, start):
"""
Some initial values generated by a hypothesis strategy.
"""
l, pv = start
return EvolverItem(original_list=l,
original_pvector=pv,
current_list=l[:],
current_evolver=pv.evolver())
@rule(item=sequences)
def append(self, item):
"""
Append an item to the pair of sequences.
"""
obj = RefCountTracker()
item.current_list.append(obj)
item.current_evolver.append(obj)
@rule(start=sequences, end=sequences)
def extend(self, start, end):
"""
Extend a pair of sequences with another pair of sequences.
"""
# compare() has O(N**2) behavior, so don't want too-large lists:
assume(len(start.current_list) + len(end.current_list) < 50)
start.current_evolver.extend(end.current_list)
start.current_list.extend(end.current_list)
@rule(item=sequences, data=st.data())
def delete(self, item, data):
"""
Remove an item from the sequences.
"""
assume(item.current_list)
i = data.draw(st.sampled_from(range(len(item.current_list))))
del item.current_list[i]
del item.current_evolver[i]
@rule(item=sequences, data=st.data())
def setitem(self, item, data):
"""
Overwrite an item in the sequence using ``__setitem__``.
"""
assume(item.current_list)
i = data.draw(st.sampled_from(range(len(item.current_list))))
obj = RefCountTracker()
item.current_list[i] = obj
item.current_evolver[i] = obj
@rule(item=sequences, data=st.data())
def set(self, item, data):
"""
Overwrite an item in the sequence using ``set``.
"""
assume(item.current_list)
i = data.draw(st.sampled_from(range(len(item.current_list))))
obj = RefCountTracker()
item.current_list[i] = obj
item.current_evolver.set(i, obj)
@rule(item=sequences)
def compare(self, item):
"""
The list and pvector evolver must match.
"""
item.current_evolver.is_dirty()
# compare() has O(N**2) behavior, so don't want too-large lists:
assume(len(item.current_list) < 50)
# original object unmodified
assert item.original_list == item.original_pvector
# evolver matches:
for i in range(len(item.current_evolver)):
assert item.current_list[i] == item.current_evolver[i]
# persistent version matches
assert_equal(item.current_list, item.current_evolver.persistent())
# original object still unmodified
assert item.original_list == item.original_pvector
PVectorEvolverBuilderTests = PVectorEvolverBuilder.TestCase
|