File: MakeTestDat_SFCS.py

package info (click to toggle)
pyscanfcs 0.3.6%2Bds-5
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 1,440 kB
  • sloc: python: 2,676; makefile: 59; sh: 11
file content (188 lines) | stat: -rwxr-xr-x 5,870 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
"""
This program creates a .dat file with photon arrival times as
it is produced by the FLEX correlators from correlator.com
in photon history recorder mode by "Photon.exe".
The generated files can be used to test multiple tau algorithm and
workflow of SFCS analyzation programs.
"""
import numpy as np
import multipletau
import csv


def MakeDat(linetime, noisearray, dtype, filename):
    """ Create a .dat file (like Photon.exe).
        System clock is fixed to 60MHz.
        linetime [s]
        noisearray integer array (uint16 or uint32)
    """
    NewFile = open(filename, 'wb')
    if dtype == np.uint32:
        newformat = np.uint8(32)
    elif dtype == np.uint16:
        newformat = np.uint8(16)
    else:
        raise ValueError
    newclock = np.uint8(60)
    NewFile.write(newformat)
    NewFile.write(newclock)
    noisearray = dtype(noisearray)
    # Create matrix. Each line is a scan.
    timeticks = linetime * newclock * 1e6  # 60MHz
    half1 = np.ceil(timeticks / 2)
    half2 = np.floor(timeticks / 2)
    for i in np.arange(len(noisearray)):
        # Create a line
        N = noisearray[i]
        if N == 0:
            line = np.zeros(1, dtype=dtype)
            # Only one event at the far corner
            line[0] = timeticks
            line.tofile(NewFile)
        else:
            line = np.ones(N + 1, dtype=dtype)
            # events are included between two far events
            line[0] = half1 - len(line)
            line[-1] = half2
            line.tofile(NewFile)
    NewFile.close()


def OnSaveDat(filename, data):
    # Save the Data
    """
    Save experimental data as 32bit format.

    Raw data file format:
     1. The file records the difference in system clock ticks (1/60 us)
        between photon events.
     2. The first byte identifies the format of the file: 32 bit
     3. The second byte identifies the system clock: usually 60MHz.
     4. The time unit is 1/system clock.
     5. 32 bit format. 4 bytes represent a photon event, 
        time = 4 bytes/system clock
    """
    # Make a reasonable 32bit filename
    NewFile = open(filename, 'wb')
    newformat = np.uint8(32)
    newclock = np.uint8(60)
    NewFile.write(newformat)
    NewFile.write(newclock)
    data = np.uint32(data)
    data.tofile(NewFile)
    NewFile.close()


def GenerateExpNoise(N, taud=20., variance=1., deltat=1.):
    """
        Generate exponentially correlated noise.
    """
    # length of mean0 trace
    N_steps = N
    dt = deltat
    # AR-1 processes - what does that mean?
    # time constant (inverse of correlationtime taud)
    g = 1. / taud
    # variance
    s0 = variance

    # normalization factor (memory of the trace)
    exp_g = np.exp(-g * dt)
    one_exp_g = 1 - exp_g
    z_norm_factor = np.sqrt(1 - np.exp(-2 * g * dt)) / one_exp_g

    # create random number array
    # generates random numbers in interval [0,1)
    randarray = np.random.random(N_steps)
    # make numbers random in interval [-1,1)
    randarray = 2 * (randarray - 0.5)

    # simulate exponential random behavior
    z = np.zeros(N_steps)
    z[0] = one_exp_g * randarray[0]
    for i in np.arange(N_steps - 1) + 1:
        z[i] = exp_g * z[i - 1] + one_exp_g * randarray[i]

    z = z * z_norm_factor * s0
    return z


def ReduceTrace(trace, deltat, length):
    """
        Given a `trace` of length `len(trace)`, compute a trace of
        length smaller than `length` by averaging. 


        Parameters
        ----------
        trace : ndarray, shape (N)
            Input trace that is to be averaged.
        deltat : float
            Time difference between bins in trace.
        length : int
            Maximum length of the new trace.


        Returns
        -------
        newtrace : ndarray, shape (N,2)
            New trace (axis 1) with timepoints (axis 0).

    """
    step = 0
    while len(trace) > length:
        N = len(trace)
        if N % 2 != 0:
            N -= 1
        trace = (trace[0:N:2] + trace[1:N:2]) / 2
        step += 1
    # Return 2d array with times
    T = np.zeros((len(trace), 2))
    T[:, 1] = trace / deltat / 1e3  # in kHz
    T[:, 0] = np.arange(len(trace)) * deltat * 2**step
    return T


def SaveCSV(G, trace, filename):
    """ Save correlation and trace tuple array G and trace to a .csv file
        that can be opened with PyCorrFit.
    """
    # Save Correlation function
    with open(filename, 'w') as fd:
        fd.write('# This file was created using testmultipletau.py\r\n')
        fd.write('# Channel (tau [s])' + " \t,"
                 'Correlation function' + " \r\n")
        dataWriter = csv.writer(fd, delimiter=',')
        for i in np.arange(len(G)):
            dataWriter.writerow([str(G[i, 0]) + " \t", str(G[i, 1])])
    
        fd.write('# BEGIN TRACE \r\n')
        fd.write('# Time ([s])' + " \t,"
                 'Intensity Trace [kHz]' + " \r\n")
    
        for i in np.arange(len(trace)):
            dataWriter.writerow([str(trace[i, 0]) + " \t", str(trace[i, 1])])


# Line time to be found by SFCS analyzation software
linetime = 0.714  # in ms
# Time of exponentially correlated noise
taudiff = 7.  # in ms

noisearray = GenerateExpNoise(200000, taud=taudiff / linetime)
noisearray += np.abs(np.min(noisearray))
noisearray *= 30. / np.max(noisearray)
noisearray = np.uint32(noisearray)


# Create 32bit and 16bit binary .dat files
data = MakeDat(linetime / 1000, noisearray, np.uint16,
               "test_" + str(taudiff) + "ms_16bit.dat")
data = MakeDat(linetime / 1000, noisearray, np.uint32,
               "test_" + str(taudiff) + "ms_32bit.dat")

# Create reference .csv file to check results
G = multipletau.autocorrelate(
    noisearray, deltat=linetime / 1000, normalize=True)
newtrace = ReduceTrace(noisearray, deltat=linetime, length=500)
SaveCSV(G, newtrace, "test_" + str(taudiff) + "ms_reference.csv")