1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
|
#!/usr/bin/env pyscript
# $Id#
"""
Poster for the Conference on Computational Physics 2004
"""
from pyscript.lib.presentation import Poster, Column, ColumnBox, CodeBox, TeXBox
defaults.tex_head+=r"\newcommand{\xmds}{\textsc{xmds}\xspace}"
# firstly, write the code I would like to write...
poster = Poster(size="a4", style="ccp2004-poster")
poster.set_title(r"\xmds: the eXtensible Multi-Dimensional Simulator")
poster.set_authors(r"""\underline{Paul~T.~Cochrane}, G.~Collecutt,
P.~D.~Drummond, and J.~J.~Hope""")
poster.set_address(r"""Australian Centre for Quantum-Atom Optics,
Physics Department, The University of Queensland,
Brisbane, Australia""")
poster.set_abstract(r"""{\em
Writing codes for the simulation of complex phenomena is an art and
science unto itself. What with finding and using good algorithms,
actually writing the code, debugging the code and testing the code,
not much time is left to actually investigate what it was you were
initially out to look at. This is where \xmds comes in. \xmds allows
you to write a high-level description of the problem you are
trying to solve (usually a differential equation of some form) it goes
away and writes low-level simulation code for you (trying hard to
keep the code as efficient as possible), compiles and presents it,
ready to be run.}
""")
poster.add_logo("ARC_COE_crop.eps", height=1.2)
poster.add_logo("uq_logo_new.eps", height=1.2)
# could also do this as:
#poster.add_logos("ARC_COE_crop.eps", "uq_logo_new.eps", height=1.2)
col1 = Column(poster)
what_xmds = ColumnBox(poster)
what_xmds.set_title(r"What is \xmds?")
what_xmds.add_TeXBox(r"""
\begin{itemize}
\setlength{\itemsep}{-1mm}
\item \xmds = e\underline{X}tensible \underline{M}ulti-\underline{D}imensional
\underline{S}imulator
\item \xmds is open source software; released under the GNU General Public
License
\item Has applications in physics, mathematics, weather, chemistry,
economics \ldots
\item One writes a high-level description of a problem in XML
\item \xmds converts XML to C language code, which is then compiled to
produce an executable which solves the problem about as quickly as code
written by an expert
\item \xmds gives people doing simulations structure, organisation and
standardisation
\item Provides a convenient framework for describing simulations of a
system be it in a scientific or industrial setting
\item Keeps the ideas behind a simulation well laid out and, importantly,
documented for others to see and use
\item \xmds gives a common ground from which scientists can compare their
numerical work; something lacking in an area at the interface between
theory and experiment, which already have a well-ingrained culture of
comparison and verification~\cite{Ceperley:1999:1}
\end{itemize}
""")
col1.add_box(what_xmds)
overview = ColumnBox(poster)
overview.set_title(r"Overview")
overview.add_TeXBox(r"""
\begin{itemize}
\setlength{\itemsep}{-2mm}
\item \xmds is designed to integrate the following general PDE:
\vspace*{-3mm}
\begin{align}
\frac{\partial}{\partial x^0}\vect{a}(\vect{x}) & =
\vect{\mathcal{N}}\left(\vect{x}, \vect{a}(\vect{x}), \vect{p}(\vect{x}),
\vect{b}(\vect{x}),\;\vect{\xi}(\vect{x})\right),\\
p^i(\vect{x}) & = \mathcal{F}^{-1}\left[\Sigma_j
\mathcal{L}^{ij}\left(x^0,\vect{k_\bot}\right)
\mathcal{F}\left[a^j(\vect{x})\right]\right],\\
\frac{\partial}{\partial x^{c}}\vect{b}(\vect{x}) & =
\vect{\mathcal{H}}\left(\vect{x}, \vect{a}(\vect{x}),
\vect{b}(\vect{x})\right)
\label{eq:xmdsPdeEx}
\end{align}
\vspace*{-4mm}
\item $\vect{a}(\vect{x})$ : main field, $\vect{b}(\vect{x})$ :
cross-propagating field, $\vect{p}(\vect{x})$ : field in Fourier space,\\
$\xi(\vect{x})$ : noise terms
\item \xmds integrates ODEs, PDEs, and stochastic ODEs and PDEs
\end{itemize}
""")
tAlign = Align(a1="ne", a2="nw", angle=90, space=-0.2)
t1 = TeXBox(r"""
\begin{itemize}
\item \xmds solves DEs with two methods:
\begin{itemize}
\setlength{\itemsep}{-1.5mm}
\vspace*{-3mm}
\item fourth-order Runge-Kutta,
\item split-step semi-implicit method~\cite{Drummond:1983:1}
\end{itemize}
\end{itemize}
""")
t1.set_fixed_width(5.1)
t1.make()
t2 = TeXBox(r"""
\begin{itemize}
\item \xmds can handle any number of:
\vspace*{-3mm}
\begin{itemize}
\setlength{\itemsep}{-1.5mm}
\item components
\item dimensions
\item random variables
\end{itemize}
\end{itemize}
""")
t2.set_fixed_width(4.5)
t2.make()
tAlign.append(t1, t2)
overview.add_object(tAlign)
overview.add_TeXBox(r"""
\vspace*{-3mm}
\begin{itemize}
\setlength{\itemsep}{-2mm}
\item Performs automatic numerical error checking
\item Handles cross-propagating fields
\item Calculates trajectory means and variances of stochastic simulations
\item Automatically parallelises stochastic and deterministic problems using MPI
\end{itemize}
""")
col1.add_box(overview)
why_xmds = ColumnBox(poster)
why_xmds.set_title(r"Why use \xmds?")
why_xmds.add_TeXBox(r"""
\begin{itemize}
\setlength{\itemsep}{-1.5mm}
\item \xmds reduces development time and user-introduced bugs
\item Execution time closely approximates that of hand-written code
\item Input file size dramatically smaller than hand-written code
\item Open source and documentation
(\texttt{http://www.xmds.org})~\cite{xmdsweb}
\item Uses XSIL output format for easy and portable data interchange
\item FFTW (Fastest Fourier Transform in the West) for highly efficient
FFTs~\cite{fftwweb}
\item Allows simple and transparent comparison of simulations with other
researchers
\item The script documents the simulation
\item Simulation script (and therefore parameters) are output with the
simulation data, so the data and the variables that generated it are kept
together for future reference
\end{itemize}
""")
col1.add_box(why_xmds)
nlse = ColumnBox(poster)
nlse.set_title(r"Nonlinear Schr\"{o}diner Equation")
nlse.add_TeXBox(r"""
\begin{equation}
\frac{\partial \phi}{\partial z } = i\left[\frac{1}{2} \frac{\partial ^{2}
\phi}{\partial t ^{2}} + |\phi|^{2} \phi + i \Gamma (t) \phi
\right]
\end{equation}
Where $\phi$ is the field, $z$ is the spatial dimension,
$t$ is time and $\Gamma(t)$ is a damping term.
""")
nlseEpsf = Epsf("nlse.eps", width=4.29)
nlseCode = CodeBox(r"""
\begin{verbatim}
<simulation> <!-- outline xmds code; greatly compressed for space -->
<name>nlse</name> <prop_dim>z</prop_dim>
<field> <!-- field to be integrated over -->
<dimensions> t </dimensions>
<vector> <components>phi</components>
<![CDATA[ phi = pcomplex(amp*exp(-t*t/w0/w0),vel*t); ]]>
</vector>
</field>
<sequence> <!-- sequence of integrations to perform -->
<integrate> <algorithm>RK4IP</algorithm>
<k_operators>
<![CDATA[ L = rcomplex(0,-kt*kt/2); ]]>
</k_operators>
<![CDATA[ dphi_dz = L[phi] + i*~phi*phi*phi - phi*damping; ]]>
</integrate>
</sequence>
<output> <!-- output to generate -->
<group>
<sampling>
<moments>pow_dens</moments>
<![CDATA[ pow_dens=~phi*phi; ]]>
</sampling>
</group>
</output>
</simulation>
\end{verbatim}
""").scale(0.4, 0.4)
nlseAlign = Align(a1="ne", a2="nw", angle=90, space=0.1)
nlseAlign.append(nlseEpsf, nlseCode)
nlse.add_object(nlseAlign)
col1.add_box(nlse)
future = ColumnBox(poster)
future.set_title("Future Features")
future.add_TeXBox(r"""
\begin{itemize}
\setlength{\itemsep}{-2mm}
\item More algorithms, user-defined libraries of routines
\item Improved load balancing of parallel stochastic simulations
\item Timed output of simulation data to monitor data on-the-fly
\item Reimplementation and generalisation of \xmds engine
%\item breakpoints: binary output of entire simulation state at end of
%simulation so that can restart the simulation from this point at next run
%of the simulation
\end{itemize}
""")
col1.add_box(future)
# add the column to the poster
poster.add_column(col1, side="left")
# start a new column
col2 = Column(poster)
# make a column box
fibre_optic = ColumnBox(poster)
fibre_optic.set_title("Fibre Optic Laser Field")
fibre_optic.add_TeXBox(r"""
Equation~(\ref{eq:fibre}) describes a one dimensional
damped field subject to a complex noise.\\ This is a stochastic PDE.
\begin{equation}
\frac{\partial \phi}{\partial t} = -i \frac{\partial^{2}
\phi}{\partial x^{2}} - \gamma \phi + \frac{\beta}{\sqrt{2}}
\left[\xi_1(x,t) + i\xi_2(x,t)\right].
\label{eq:fibre}
\end{equation}
""")
fibre1 = VAlign(space=0.2)
fibre1.append(Epsf("fibre1.eps", width=4))
fibre1.append(TeX("single path").scale(0.8, 0.8))
fibre2 = VAlign(space=0.2)
fibre2.append(Epsf("fibre2.eps", width=4))
fibre2.append(TeX("1024 path mean").scale(0.8, 0.8))
fibres = Align(a1="ne", a2="nw", angle=90, space=0.2)
fibres.append(fibre1, fibre2)
fibre_optic.add_object(fibres)
# add the column box to the poster
col2.add_box(fibre_optic)
# make a column box
process = ColumnBox(poster)
process.set_title("Process and Functionality")
process.add_TeXBox(r"""
The figures below describe the processes involved in creating an
\xmds simulation (left-hand diagram) and operating within an \xmds simulation
(right-hand diagram). \xmds reads the XML script, parses it, generates
C/C++ code and then compiles the simulation binary using a C++ compiler.
The simulation when executed generates XSIL output, which can
then be converted for display in your favourite graphing package.
""")
procAlign = Align(a1="ne", a2="nw", angle=90, space=1.0)
procAlign.append(Epsf("xmdsProcess.eps", width=3))
procAlign.append(Epsf("xmdsFunctionality.eps", width=3))
process.add_object(procAlign)
# add the column box to the poster
col2.add_box(process)
other = ColumnBox(poster)
other.set_title("Other Features")
other1 = TeXBox(r"""
\begin{itemize}
\setlength{\itemsep}{-2mm}
\item ASCII and binary output
\item Benchmarking of simulations
\item User-defined preferences
\end{itemize}
""")
other1.set_fixed_width(4.5)
other1.make()
other2 = TeXBox(r"""
\begin{itemize}
\setlength{\itemsep}{-2mm}
\item Field initialisation from file
\item Command line arguments to simulations
\item \xmds script template output
\end{itemize}
""")
other2.set_fixed_width(5)
other2.make()
otherAlign = Align(a1="ne", a2="nw", angle=90, space=-0.2)
otherAlign.append(other1, other2)
other.add_object(otherAlign)
col2.add_box(other)
takehome = ColumnBox(poster)
takehome.set_title("Take-home message")
takehome.add_TeXBox(r"""
\xmds will save you time by solving your problems very quickly.
So why not give it a go? See \texttt{http://www.xmds.org} and try it out.
""")
col2.add_box(takehome)
refs = ColumnBox(poster)
refs.set_title("References")
refs.add_TeXBox(r"""
\renewcommand*{\refname}{ }
\begin{thebibliography}{14}
\expandafter\ifx\csname natexlab\endcsname\relax\def\natexlab#1{#1}\fi
\expandafter\ifx\csname bibnamefont\endcsname\relax
\def\bibnamefont#1{#1}\fi
\expandafter\ifx\csname bibfnamefont\endcsname\relax
\def\bibfnamefont#1{#1}\fi
\expandafter\ifx\csname citenamefont\endcsname\relax
\def\citenamefont#1{#1}\fi
\expandafter\ifx\csname url\endcsname\relax
\def\url#1{\texttt{#1}}\fi
\expandafter\ifx\csname urlprefix\endcsname\relax\def\urlprefix{URL }\fi
\providecommand{\bibinfo}[2]{#2}
\providecommand{\eprint}[2][]{\url{#2}}
\setlength{\itemsep}{-2mm}
\bibitem{Ceperley:1999:1}
\bibinfo{author}{\bibfnamefont{D.~M.} \bibnamefont{Ceperley}},
\bibinfo{journal}{Rev. Mod. Phys.} \textbf{\bibinfo{volume}{71}},
\bibinfo{pages}{438} (\bibinfo{year}{1999}).
\bibitem{Drummond:1983:1}
\bibinfo{author}{\bibfnamefont{P.~D.} \bibnamefont{Drummond}},
\bibinfo{journal}{Comp. Phys. Comm.} \textbf{\bibinfo{volume}{29}},
\bibinfo{pages}{211} (\bibinfo{year}{1983}).
\bibitem{xmdsweb}
\emph{\bibinfo{title}{\xmds home page}},
\urlprefix\url{http://www.xmds.org}.
\bibitem{fftwweb}
\emph{\bibinfo{title}{FFTW home page}},
\urlprefix\url{http://www.fftw.org}.
\end{thebibliography}
""")
col2.add_box(refs)
poster.add_column(col2, side="right")
poster.make(file="ccp2004_poster.eps")
|