1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
|
"""Common algorithms."""
import sys
__all__ = ["liangbarsky", "cohensutherland", "clipline", "point_on_line"]
def cohensutherland(left, top, right, bottom, x1, y1, x2, y2):
"""Clips a line to a rectangular area.
This implements the Cohen-Sutherland line clipping algorithm. left,
top, right and bottom denote the clipping area, into which the line
defined by x1, y1 (start point) and x2, y2 (end point) will be
clipped.
If the line does not intersect with the rectangular clipping area,
four None values will be returned as tuple. Otherwise a tuple of the
clipped line points will be returned in the form (cx1, cy1, cx2, cy2).
"""
LEFT, RIGHT, LOWER, UPPER = 1, 2, 4, 8
def _getclip(xa, ya):
p = 0
if xa < left:
p = LEFT
elif xa > right:
p = RIGHT
if ya < top:
p |= LOWER
elif ya > bottom:
p |= UPPER
return p
k1 = _getclip(x1, y1)
k2 = _getclip(x2, y2)
while (k1 | k2) != 0:
if (k1 & k2) != 0:
return None, None, None, None
opt = k1 or k2
if opt & UPPER:
x = x1 + (x2 - x1) * (1.0 * (bottom - y1)) / (y2 - y1)
y = bottom
elif opt & LOWER:
x = x1 + (x2 - x1) * (1.0 * (top - y1)) / (y2 - y1)
y = top
elif opt & RIGHT:
y = y1 + (y2 - y1) * (1.0 * (right - x1)) / (x2 - x1)
x = right
elif opt & LEFT:
y = y1 + (y2 - y1) * (1.0 * (left - x1)) / (x2 - x1)
x = left
else:
# this should not happen
raise RuntimeError("invalid clipping state")
if opt == k1:
# x1, y1 = int(x), int(y)
x1, y1 = x, y
k1 = _getclip(x1, y1)
else:
# x2, y2 = int(x), int(y)
x2, y2 = x, y
k2 = _getclip(x2, y2)
return x1, y1, x2, y2
def liangbarsky(left, top, right, bottom, x1, y1, x2, y2):
"""Clips a line to a rectangular area.
This implements the Liang-Barsky line clipping algorithm. left,
top, right and bottom denote the clipping area, into which the line
defined by x1, y1 (start point) and x2, y2 (end point) will be
clipped.
If the line does not intersect with the rectangular clipping area,
four None values will be returned as tuple. Otherwise a tuple of the
clipped line points will be returned in the form (cx1, cy1, cx2, cy2).
"""
dx = x2 - x1 * 1.0
dy = y2 - y1 * 1.0
dt0, dt1 = 0.0, 1.0
xx1 = x1
yy1 = y1
checks = ((-dx, x1 - left),
(dx, right - x1),
(-dy, y1 - top),
(dy, bottom - y1))
for p, q in checks:
if p == 0 and q < 0:
return None, None, None, None
if p != 0:
dt = q / (p * 1.0)
if p < 0:
if dt > dt1:
return None, None, None, None
dt0 = max(dt0, dt)
else:
if dt < dt0:
return None, None, None, None
dt1 = min(dt1, dt)
if dt0 > 0:
x1 += dt0 * dx
y1 += dt0 * dy
if dt1 < 1:
x2 = xx1 + dt1 * dx
y2 = yy1 + dt1 * dy
return x1, y1, x2, y2
clipline = lambda l, t, r, b, x1, y1, x2, y2, method = liangbarsky: \
method(l, t, r, b, x1, y1, x2, y2)
def point_on_line(p1, p2, point):
"""Checks, if point is on the line segment [p1, p2]."""
x1, y1 = p1
x2, y2 = p2
px, py = point
det = (py - y1) * (x2 - x1) - (px - x1) * (y2 - y1)
if abs(det) > sys.float_info.epsilon:
return False
return (min(x1, x2) <= px <= max(x1, x2) and
min(y1, y2) <= py <= max(y1, y2))
|