1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
# -*- coding: utf-8 -*-
import pygame
from math import pi, cos, sin
from classes.simple_vector import Vector2
class Fraction:
def __init__(self, unit_size, scale, color1, color2, border_color1, border_color2, numbers, border_width):
self.size = unit_size * scale
self.center = [self.size // 2, self.size // 2]
self.color1 = color1
self.color2 = color2
self.border_color1 = border_color1
self.border_color2 = border_color2
self.numbers = numbers
self.border_width = border_width
self.canvas = pygame.Surface([self.size, self.size - 1], flags=pygame.SRCALPHA)
self.offset_selected = self.size // 30
self.offset_unselected = self.size // 60
self.set_offset(30, 60)
def set_offset(self, selected, unselected):
if selected > 0:
self.offset_selected = self.size // selected
else:
self.offset_selected = 0
if unselected > 0:
self.offset_unselected = self.size // unselected
else:
self.offset_unselected = 0
self.canvas.fill((0, 0, 0, 0))
if self.offset_selected == 0:
self.draw_fraction_no_offset()
else:
self.draw_fraction()
def get_canvas(self):
return self.canvas
def update_values(self, numbers):
self.numbers = numbers
self.canvas.fill((0, 0, 0, 0))
if self.offset_selected == 0:
self.draw_fraction_no_offset()
else:
self.draw_fraction()
def draw_fraction(self):
if self.numbers == [0, 0]:
pass
elif self.numbers == [1, 1]:
#draw circle
r = self.size // 2 - self.size // 10
m = (self.size - r * 2) // 2
cx = m + r
cy = m + r
pygame.draw.circle(self.canvas, self.color1, (cx, cy), r, 0)
pygame.draw.circle(self.canvas, self.border_color1, (cx, cy), r, 1)
else:
r = self.size // 2 - self.size // 10
m = (self.size - r * 2) // 2
if self.numbers[1] < 48:
step = 5
else:
step = 2
angle = 360.0 / self.numbers[1]
angle_start_f = (self.numbers[0] * angle) / 2.0
for i in range(self.numbers[1]):
if i < self.numbers[0] and self.numbers[0] > 0:
col = self.color1
bd_col = self.border_color1
offset = self.offset_selected
else:
col = self.color2
bd_col = self.border_color2
offset = self.offset_unselected
# Center and radius of pie chart
cx = m + r
cy = m + r
#create vector to push the pieces away from the centre towards middle of the arch
centre_vect = Vector2().from_points([cx, cy],
[cx + (r * cos(((angle*(i+1) - angle / 2.0) -
angle_start_f) * pi / 180.0)),
cy + (r * sin(((angle*(i+1) - angle / 2.0) -
angle_start_f) * pi / 180.0))])
centre_vect.normalize()
#first point
p = [(cx + centre_vect[0] * offset, cy + centre_vect[1] * offset)]
# Get points on arc
for n in range(int(round(angle*i)), int(round(angle*(i+1))), step):
x = cx + int(round(r * cos((n-angle_start_f) * pi / 180) + centre_vect[0] * offset))
y = cy + int(round(r * sin((n-angle_start_f) * pi / 180) + centre_vect[1] * offset))
p.append((x, y))
# final point on arc
n = angle * (i + 1)
x = cx + int(round(r * cos((n-angle_start_f) * pi / 180) + centre_vect[0] * offset))
y = cy + int(round(r * sin((n-angle_start_f) * pi / 180) + centre_vect[1] * offset))
p.append((x, y))
# last point - same as the first one
p.append((cx + centre_vect[0] * offset, cy + centre_vect[1] * offset))
# Draw pie segment
if len(p) > 2:
pygame.draw.polygon(self.canvas, col, p)
pygame.draw.polygon(self.canvas, bd_col, p, self.border_width)
def draw_fraction_no_offset(self):
if self.numbers[1] != 0:
a = 360.0 * self.numbers[0] / self.numbers[1]
nums = [a, 360 - a]
cols = [self.color1, self.color2]
bd_cols = [self.border_color1, self.border_color2]
self.draw_background(nums, cols, bd_cols)
self.draw_lines()
def draw_lines(self):
r = self.size // 2 - self.size // 10
m = (self.size - r * 2) // 2
angle = 360.0 / self.numbers[1]
angle_start_f = (self.numbers[0] * angle) / 2.0
for i in range(self.numbers[1]):
if i < self.numbers[0]:
bd_col = self.border_color1
else:
bd_col = self.border_color2
# Center and radius of pie chart
cx = m + r
cy = m + r
#first point
p = [(cx, cy)]
# second point (on arc)
n = angle * (i + 1)
x = cx + int(round(r * cos((n-angle_start_f) * pi / 180)))
y = cy + int(round(r * sin((n-angle_start_f) * pi / 180)))
p.append((x, y))
if i < self.numbers[1]-1:
pygame.draw.line(self.canvas, bd_col, p[0], p[1], 2)
if i == self.numbers[1]-1 or i == self.numbers[0]-1:
pygame.draw.line(self.canvas, self.border_color1, p[0], p[1], 3)
def draw_background(self, num, cols, bd_cols):
r = self.size // 2 - self.size // 10
m = (self.size - r * 2) // 2
angles = []
angle_start_float = []
for i in range(len(num)):
angles.append(num[i])
if i == 0:
angle_start_float.append(360-num[0] / 2.0)
else:
angle_start_float.append(angle_start_float[-1] + angles[i - 1])
for i in range(len(num)):
if i == 0:
w = 3
else:
w = 2
# Center and radius of pie chart
cx = m + r
cy = m + r
# first point
p = [(cx, cy)]
# Get points on arc
for n in range(int(round(angle_start_float[i])), int(round(angle_start_float[i] + angles[i])), 3):
x = cx + int(round(r * cos(n * pi / 180)))
y = cy + int(round(r * sin(n * pi / 180)))
p.append((x, y))
# final point on arc
n = int(round(angle_start_float[i] + angles[i]))
x = cx + int(round(r * cos(n * pi / 180)))
y = cy + int(round(r * sin(n * pi / 180)))
p.append((x, y))
# last point
p.append((cx, cy))
# Draw pie segment
if len(p) > 2 and angles[i] > 0:
pygame.draw.polygon(self.canvas, cols[i], p)
pygame.draw.lines(self.canvas, bd_cols[i], False, p[1:-1], w)
|