File: laby.py

package info (click to toggle)
pysiogame 4.20.01-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 27,876 kB
  • sloc: python: 48,742; xml: 3,813; sh: 30; makefile: 11
file content (196 lines) | stat: -rw-r--r-- 6,711 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# -*- coding: utf8 -*-
"""
Laby, par Mehdi Cherti 2010(mehdidc): 
    - generation d'un labyrinthe
    - utilisation de l'algorithme astar pour trouver le a_path le plus court(selection de la destination avec la souris)

Laby, 2010 by Mehdi Cherti(mehdidc):
- Generation of a labyrinth
- Use of astar algorithm to find the shortest path(selection of the destination with the mouse) #removed
downloaded from:
    http://www.pythonfrance.com/codes/GENERATION-LABYRINTHE-AVEC-RECHERCHE-CHEMIN-PLUS-COURT-AVEC_51293.aspx
    
Rebuild and translated by Ireneusz Imiolek
"""

import pygame
from  random import randint, choice


class def_const:
    def __getattr__(self, attr):
        return Const.__dict__[attr]

    def __setattr__(self, attr, value):
        if attr in self.__dict__.keys():
            raise Exception("Impossible to redefine the constant")
        else:
            self.__dict__[attr] = value

    def __str__(self):
        return self.__dict.__str__()


const = def_const()
""" definitions des constantes """

# colours
const.white = (255, 255, 255)
const.pink = (255, 0, 255)
const.black = (0, 0, 0)
const.yellow = (255, 255, 0)

# directions
const.right = 0
const.left = 1
const.up = 2
const.down = 3


class Point:
    def __init__(self, xy):
        self.x = xy[0]
        self.y = xy[1]


"""Laby Cell Class definition"""


class Laby_cell:
    def __init__(self):
        self.state = False
        self.laby_doors = [True, True, True, True]  # Right, Left, Up, Down


""" Laby Class """


class laby:
    def __init__(self, w, h, sx=0, sy=0, scale=30, col=(0, 0, 0), line_width = 3):
        self.w = w
        self.h = h
        self.color = col
        self.line_width = line_width
        self.Laby_cells = []
        self.wc = scale  # const.wc
        self.hc = scale  # const.hc
        self.sx = sx
        self.sy = sy
        self.displayed_once = True

        """ Laby_cells initialization for each Laby_cell, it initializes its position in the labyrinth """
        for v in range(self.w * self.h):
            a = Laby_cell()
            a.x = v % self.w
            a.y = v // self.w
            self.Laby_cells.append(a)

    """ returns the Laby_cell corresponding to the position(x, y) """

    def get_cell(self, x, y):
        return self.Laby_cells[x + y * self.w]

    """ return direction opposite to a direction """

    def notdir(self, dir):
        if dir == const.right: return const.left
        if dir == const.left: return const.right
        if dir == const.up: return const.down
        if dir == const.down: return const.up

    """ generation of the labyrinth """

    def generate_laby(self, x=-1, y=-1):
        if x == -1:
            x = randint(0, self.w - 1)
            y = randint(0, self.h - 1)
        cell_act = self.get_cell(x, y)
        if not cell_act.state:
            cell_act.state = True
            tab = []
            if x + 1 < self.w and not self.get_cell(x + 1, y).state: tab.append((x + 1, y, const.right))
            if x - 1 >= 0 and not self.get_cell(x - 1, y).state: tab.append((x - 1, y, const.left))
            if y - 1 >= 0 and not self.get_cell(x, y - 1).state: tab.append((x, y - 1, const.up))
            if y + 1 < self.h and not self.get_cell(x, y + 1).state: tab.append((x, y + 1, const.down))
            if tab:
                while tab:
                    C = choice(tab)
                    if not self.get_cell(C[0], C[1]).state:
                        cell = self.get_cell(C[0], C[1])
                        cell_act.laby_doors[C[2]] = False
                        cell.laby_doors[self.notdir(C[2])] = False
                        self.generate_laby(C[0], C[1])
                    tab.remove(C)
                return True
            else:
                return False

    """ display the labyrinth """

    def show(self, buffer):
        W, H = self.wc, self.hc
        sx, sy = self.sx, self.sy
        for y in range(self.h - 1):
            for x in range(self.w - 1):
                c = self.get_cell(x, y)
                if c.laby_doors[const.right]:
                    pygame.draw.line(buffer, self.color, (sx + (x + 1) * W, sy + y * H),
                                     (sx + (x + 1) * W, sy + (y + 1) * H), self.line_width)
                if c.laby_doors[const.down]:
                    pygame.draw.line(buffer, self.color, (sx + (x) * W, sy + (y + 1) * H),
                                     (sx + (x + 1) * W, sy + (y + 1) * H), self.line_width)
        x = self.w - 1
        for y in range(self.h - 1):
            c = self.get_cell(x, y)
            if c.laby_doors[const.down]:
                pygame.draw.line(buffer, self.color, (sx + x * W, sy + (y + 1) * H),
                                 (sx + (x + 1) * W, sy + (y + 1) * H), self.line_width)
        y = self.h - 1
        for x in range(self.w - 1):
            c = self.get_cell(x, y)
            if c.laby_doors[const.right]:
                pygame.draw.line(buffer, self.color, (sx + (x + 1) * W, sy + (y) * H),
                                 (sx + (x + 1) * W, sy + (y + 1) * H), self.line_width)

    """ create the labyrinth grid table twice as big as the original laby"""

    def labi_to_array(self):
        W, H = self.wc, self.hc
        sx, sy = self.sx, self.sy
        labi_grid = [[0 for x in range(0, self.w * 2 - 1)] for y in range(0, self.h * 2 - 1)]
        for y in range(self.h - 1):
            for x in range(self.w - 1):
                c = self.get_cell(x, y)
                if c.laby_doors[const.right]:
                    gx = x * 2 + 1
                    gy = y * 2
                    labi_grid[gy][gx] = 1
                    if y > 0:
                        labi_grid[gy - 1][gx] = 1
                    if y < self.h - 1:
                        labi_grid[gy + 1][gx] = 1
                if c.laby_doors[const.down]:
                    gx = x * 2
                    gy = y * 2 + 1
                    labi_grid[gy][gx] = 1
                    if x > 0:
                        labi_grid[gy][gx - 1] = 1
                    if x < self.w - 1:
                        labi_grid[gy][gx + 1] = 1
        x = self.w - 1
        for y in range(self.h - 1):
            c = self.get_cell(x, y)
            if c.laby_doors[const.down]:
                gx = x * 2
                gy = y * 2 + 1
                labi_grid[gy][gx] = 1
                labi_grid[gy][gx - 1] = 1
        y = self.h - 1
        for x in range(self.w - 1):
            c = self.get_cell(x, y)
            if c.laby_doors[const.right]:
                gx = x * 2 + 1
                gy = y * 2
                labi_grid[gy][gx] = 1
                labi_grid[gy - 1][gx] = 1
        return labi_grid