1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
|
Source: pysparse
Maintainer: Debian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
Uploaders: Anton Gladky <gladk@debian.org>,
Adam C. Powell, IV <hazelsct@debian.org>
Section: python
Priority: optional
Build-Depends: debhelper (>= 9),
dh-python,
quilt,
python-all-dev,
python-numpy,
gfortran,
libblas-dev | libblas.so,
liblapack-dev | liblapack.so,
libsuitesparse-dev,
libsuperlu-dev
Standards-Version: 3.9.8
Vcs-Browser: https://anonscm.debian.org/cgit/debian-science/packages/pysparse.git
Vcs-Git: https://anonscm.debian.org/git/debian-science/packages/pysparse.git
Homepage: http://pysparse.sourceforge.net/
Package: python-sparse
Architecture: any
Depends: python-numpy,
${python:Depends},
${shlibs:Depends},
${misc:Depends}
Suggests: python-sparse-examples
Provides: ${python:Provides}
Description: Sparse linear algebra extension for Python
This provides a set of sparse matrix types for Python, with modules which
implement:
- Iterative methods for solving linear systems of equations
- A set of standard preconditioners
- An interface to a direct solver for sparse linear systems of equations
- The JDSYM eigensolver
.
All of these modules are implemented as C extension modules based on standard
sparse and dense matrix libraries (UMFPACK/AMD, SuperLU, BLAS/LAPACK) for
maximum performance and robustness.
Package: python-sparse-examples
Architecture: all
Depends: ${python:Depends},
python-sparse (>= ${binary:Version}),
${misc:Depends}
Description: Sparse linear algebra extension for Python: documentation
This package provides documents and examples for python-sparse, a set of
sparse matrix types for Python, with modules which implement:
- Iterative methods for solving linear systems of equations
- A set of standard preconditioners
- An interface to a direct solver for sparse linear systems of equations
- The JDSYM eigensolver
.
All of these modules are implemented as C extension modules based on standard
sparse and dense matrix libraries (UMFPACK/AMD, SuperLU, BLAS/LAPACK) for
maximum performance.
|