1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
|
/* ========================================================================== */
/* === umf_config.h ========================================================= */
/* ========================================================================== */
/* -------------------------------------------------------------------------- */
/* UMFPACK Version 4.1 (Apr. 30, 2003), Copyright (c) 2003 by Timothy A. */
/* Davis. All Rights Reserved. See ../README for License. */
/* email: davis@cise.ufl.edu CISE Department, Univ. of Florida. */
/* web: http://www.cise.ufl.edu/research/sparse/umfpack */
/* -------------------------------------------------------------------------- */
/*
This file controls the compile-time configuration of UMFPACK. Modify the
Makefile, the architecture-dependent Make.* file, and this file if
necessary, to control these options. The following flags may be given
as options to your C compiler (as in "cc -DNBLAS", for example). These
flags are normally placed in your CONFIG string, defined in your Make.*.
All of these options, except for the timer, are for accessing the BLAS.
-DNBLAS
BLAS mode. If -DNBLAS is set, then no BLAS will be used. Vanilla
C code will be used instead. This is portable, and easier to
install, but you won't get the best performance.
If -DNBLAS is not set, then externally-available BLAS routines
(dgemm, dger, and dgemv or the equivalent C-BLAS routines) will be
used. This will give you the best performance, but perhaps at the
expense of portability.
The default is to use the BLAS, for both the C-callable libumfpack.a
library and the MATLAB mexFunction. If you have trouble installing
UMFPACK, set -DNBLAS (but then UMFPACK will be slow).
-DCBLAS
If -DCBLAS is set, then the C-BLAS interface to the BLAS is
used. If your vendor-supplied BLAS library does not have a C-BLAS
interface, you can obtain the ATLAS BLAS, available at
http://www.netlib.org/atlas.
This flag is ignored if -DNBLAS is set.
-DLP64
This should be defined if you are compiling in the LP64 model
(32 bit int's, 64 bit long's, and 64 bit pointers). In Solaris,
this is obtained with the flags -xtarget=ultra -xarch=v9 for
the cc compiler (for example).
-DLONGBLAS
If not defined, then the BLAS are not called in the long integer
version of UMFPACK (the umfpack_*l_* routines). The most common
definitions of the BLAS, unfortunately, use int arguments, and
are thus not suitable for use in the LP64 model. Only the Sun
Performance Library, as far as I can tell, has a version of the
BLAS that allows long integer (64-bit) input arguments. This
flag is set automatically in Sun Solaris if you are using the
Sun Performance BLAS. You can set it yourself, too, if your BLAS
routines can take long integer input arguments.
-DNSUNPERF
Applies only to Sun Solaris. If -DNSUNPERF is set, then the Sun
Performance Library BLAS will not be used.
The Sun Performance Library BLAS is used by default when compiling
the C-callable libumfpack.a library on Sun Solaris.
This flag is ignored if -DNBLAS is set.
-DNSCSL
Applies only to SGI IRIX. If -DSCSL is set, then the SGI SCSL
Scientific Library BLAS will not be used.
The SGI SCSL Scientific Library BLAS is used by default when
compiling the C-callable libumfpack.a library on SGI IRIX.
This flag is ignored if -DNBLAS is set.
-DNPOSIX
If -DNPOSIX is set, then your Unix operating system is not POSIX-
compliant, and the POSIX routines sysconf ( ) and times ( )
routines are not used. These routines provide CPU time and
wallclock time information. If -DNPOSIX is set, then the ANSI
C clock ( ) routine is used. If -DNPOSIX is not set, then
sysconf ( ) and times ( ) are used in umfpack_tic and umfpack_toc.
See umfpack_tictoc.c for more information.
The default is to use the POSIX routines, except for Windows,
which is not POSIX-compliant.
-DGETRUSAGE
If -DGETRUSAGE is set, then your system's getrusage ( ) routine
will be used for getting the process CPU time. Otherwise the ANSI
C clock ( ) routine will be used. The default is to use getrusage
( ) on Unix systems, and to use clock on all other architectures.
-DNUTIL
If -DNUTIL is set, then the internal MATLAB utMalloc, utFree, and
utRealloc routines are not used in the UMFPACK mexFunction. The
regular mxMalloc, mxFree, and mxRealloc routines are used instead.
These routines are not documented, but are available for use. For
Windows, -DNUTIL is defined below, because access to the ut*
routines is not available by default.
-DNRECIPROCAL
This option controls a tradeoff between speed and accuracy. Using
-DNRECIPROCAL can lead to more accurate results, but with perhaps
some cost in performance, particularly if floating-point division
is much more costly than floating-point multiplication.
This option determines the method used to scale the pivot column.
If set, or if the absolute value of the pivot is < 1e-12 (or is a
NaN), then the pivot column is divided by the pivot value.
Otherwise, the reciprocal of the pivot value is computed, and the
pivot column is multiplied by (1/pivot). Multiplying by the
reciprocal can be slightly less accurate than dividing by the
pivot, but it is often faster. See umf_scale.c.
This has a small effect on the performance of UMFPACK, at least on
a Pentium 4M. It may have a larger effect on other architectures
where floating-point division is much more costly than floating-
point multiplication. The RS 6000 is one such example.
By default, the method chosen is to multiply by the reciprocal
(sacrificing accuracy for speed), except when compiling UMFPACK
as a built-in routine in MATLAB, or when gcc is being used.
When MATHWORKS is defined, -DNRECIPROCAL is forced on, and the pivot
column is divided by the pivot value. The only way of using the
other method in this case is to edit this file.
If -DNRECIPROCAL is enabled, then the row scaling factors are always
applied by dividing each row by the scale factor, rather than
multiplying by the reciprocal. If -DNRECIPROCAL is not enabled
(the default case), then the scale factors are normally applied by
multiplying by the reciprocal. If, however, the smallest scale
factor is tiny, then the scale factors are applied via division.
You should normally not set these flags yourself:
-DBLAS_BY_VALUE if scalars are passed by value, not reference
-DBLAS_NO_UNDERSCORE if no underscore should be appended
-DBLAS_CHAR_ARG if BLAS options are single char's, not strings
The BLAS options are normally set automatically. If your
architecture cannot be determined (see UMFPACK_ARCHITECTURE, below)
then you may need to set these flags yourself.
The following options are controlled by amd_internal.h:
-DMATLAB_MEX_FILE
This flag is turned on when compiling the umfpack mexFunction for
use in MATLAB. When compiling the MATLAB mexFunction, the MATLAB
BLAS are used (unless -DNBLAS is set). The -DCBLAS, -DNSCSL, and
-DNSUNPERF flags are all ignored. The -DNRECIPROCAL flag is
forced on. Otherwise, [L,U,P,Q,R] = umfpack (A) would return
either L*U = P*(R\A)*Q or L*U = P*R*A*Q. Rather than returning a
flag stating how the scale factors R are to be applied, the umfpack
mexFunction always takes the more accurate route and returns
L*U = P*(R\A)*Q.
-DMATHWORKS
This flag is turned on when compiling umfpack as a built-in routine
in MATLAB. The MATLAB BLAS are used for all architectures (-DNBLAS,
-DCBLAS, -DNSCSL, and -DNSUNPERF flags are all ignored). Internal
routines utMalloc, utFree, utRealloc, utPrintf, utDivideComplex,
and utFdlibm_hypot are used, and the "util.h" file is included.
This avoids the problem discussed in the User Guide regarding memory
allocation in MATLAB. utMalloc returns NULL on failure, instead of
terminating the mexFunction (which is what mxMalloc does). However,
the ut* routines are not documented by The MathWorks, Inc., so I
cannot guarantee that you will always be able to use them.
The -DNRECIPROCAL flag is turned on.
-DNDEBUG
Debugging mode (if NDEBUG is not defined). The default, of course,
is no debugging. Turning on debugging takes some work (see below).
If you do not edit this file, then debugging is turned off anyway,
regardless of whether or not -DNDEBUG is specified in your compiler
options.
*/
/* ========================================================================== */
/* === AMD configuration ==================================================== */
/* ========================================================================== */
/* NDEBUG, PRINTF defined in amd_internal.h */
/* ========================================================================== */
/* === reciprocal option ==================================================== */
/* ========================================================================== */
/* Force the definition NRECIPROCAL when MATHWORKS or MATLAB_MEX_FILE
* are defined. Do not multiply by the reciprocal in those cases. */
#ifndef NRECIPROCAL
#if defined (MATHWORKS) || defined (MATLAB_MEX_FILE)
#define NRECIPROCAL
#endif
#endif
/* ========================================================================== */
/* === Microsoft Windows configuration ====================================== */
/* ========================================================================== */
#ifdef UMF_WINDOWS
/* Windows can't access the ut* routines, and it isn't Unix. */
#define NUTIL
#define NPOSIX
#endif
/* ========================================================================== */
/* === 0-based or 1-based printing ========================================== */
/* ========================================================================== */
#if defined (MATLAB_MEX_FILE) && defined (NDEBUG)
/* In MATLAB, matrices are 1-based to the user, but 0-based internally. */
/* One is added to all row and column indices when printing matrices */
/* for the MATLAB user. The +1 shift is turned off when debugging. */
#define INDEX(i) ((i)+1)
#else
/* In ANSI C, matrices are 0-based and indices are reported as such. */
/* This mode is also used for debug mode, and if MATHWORKS is defined rather */
/* than MATLAB_MEX_FILE. */
#define INDEX(i) (i)
#endif
/* ========================================================================== */
/* === Timer ================================================================ */
/* ========================================================================== */
/*
If you have the getrusage routine (all Unix systems I've test do), then use
that. Otherwise, use the ANSI C clock function. Note that on many
systems, the ANSI clock function wraps around after only 2147 seconds, or
about 36 minutes. BE CAREFUL: if you compare the run time of UMFPACK with
other sparse matrix packages, be sure to use the same timer. See
umfpack_tictoc.c for the timer used internally by UMFPACK. See also
umfpack_timer.c for the timer used in an earlier version of UMFPACK (V4.0).
That timer is still available as a user-callable routine, but it is no
longer used internally by UMFPACK.
*/
/* Sun Solaris, SGI Irix, Linux, Compaq Alpha, and IBM RS 6000 all have */
/* getrusage. It's in BSD unix, so perhaps all unix systems have it. */
#if defined (UMF_SOL2) || defined (UMF_SGI) || defined (UMF_LINUX) \
|| defined (UMF_ALPHA) || defined (UMF_AIX)
#define GETRUSAGE
#endif
/* ========================================================================== */
/* === BLAS ================================================================= */
/* ========================================================================== */
/*
The adventure begins. Figure out how to call the BLAS ...
This works, but it is incredibly ugly. The C-BLAS was supposed to solve
this problem, and make it easier to interface a C program to the BLAS.
Unfortunately, the C-BLAS does not have a "long" integer (64 bit) version.
Various vendors have done their own 64-bit BLAS. Sun has dgemm_64 routines
with "long" integers, SGI has a 64-bit dgemm in their scsl_blas_i8 library
with "long long" integers, and so on.
Different vendors also have different ways of defining a complex number,
some using struct's. That's a bad idea. See umf_version.h for the better
way to do it (the method that was also chosen for the complex C-BLAS,
which is compatible and guaranteed to be portable with ANSI C).
To make matters worse, SGI's SCSL BLAS has a C-BLAS interface which
differs from the ATLAS C-BLAS interface (see immediately below);
although a more recent version of SGI's C-BLAS interface is correct
if SCSL_VOID_ARGS is defined.
*/
/* -------------------------------------------------------------------------- */
/* Determine which BLAS to use. */
/* -------------------------------------------------------------------------- */
#if defined (MATHWORKS)
#define USE_MATLAB_BLAS
#elif defined (NBLAS)
#define USE_NO_BLAS
#elif defined (MATLAB_MEX_FILE)
#define USE_MATLAB_BLAS
#elif defined (CBLAS)
#define USE_C_BLAS
#elif defined (UMF_SOL2) && !defined (NSUNPERF)
#define USE_SUNPERF_BLAS
#elif defined (UMF_SGI) && !defined (NSCSL)
#define USE_SCSL_BLAS
#else
#define USE_FORTRAN_BLAS
#endif
/* -------------------------------------------------------------------------- */
/* int vs. long integer arguments */
/* -------------------------------------------------------------------------- */
/*
Determine if the BLAS exists for the long integer version. It exists if
LONGBLAS is defined in the Makefile, or if using the BLAS from the
Sun Performance Library, or SGI's SCSL Scientific Library.
*/
#if defined (USE_SUNPERF_BLAS) || defined (USE_SCSL_BLAS)
#ifndef LONGBLAS
#define LONGBLAS
#endif
#endif
/* do not use the BLAS if Int's are long and LONGBLAS is not defined */
#if defined (LONG_INTEGER) && !defined (LONGBLAS) && !defined (USE_NO_BLAS)
#define USE_NO_BLAS
#endif
/* -------------------------------------------------------------------------- */
/* Use (void *) arguments for the SGI */
/* -------------------------------------------------------------------------- */
#if defined (UMF_SGI)
/*
Use (void *) pointers for complex types in SCSL.
The ATLAS C-BLAS, and the SGI C-BLAS differ. The former uses (void *)
arguments, the latter uses SCSL_ZOMPLEX_T, which are either scsl_zomplex
or (void *). Using (void *) is simpler, and is selected by defining
SCSL_VOID_ARGS, below. The cc compiler doesn't complain, but gcc is
more picky, and generates a warning without this next statement.
With gcc and the 07/09/98 version of SGI's cblas.h, spurious warnings
about complex BLAS arguments will be reported anyway. This is because this
older version of SGI's cblas.h does not make use of the SCSL_VOID_ARGS
parameter, which is present in the 12/6/01 version of SGI's cblas.h. You
can safely ignore these warnings.
*/
#define SCSL_VOID_ARGS
#endif
/* -------------------------------------------------------------------------- */
/* The BLAS exists, construct appropriate macros */
/* -------------------------------------------------------------------------- */
#if !defined (USE_NO_BLAS) /* { */
/*
If the compile-time flag -DNBLAS is defined, then the BLAS are not used,
portable vanilla C code is used instead, and the remainder of this file
is ignored.
Using the BLAS is much faster, but how C calls the Fortran BLAS is
machine-dependent and thus can cause portability problems. Thus, use
-DNBLAS to ensure portability (at the expense of speed).
Preferences:
*** The best interface to use, regardless of the option you select
below, is the standard C-BLAS interface. Not all BLAS libraries
use this interface. The only problem with this interface is that
it does not extend to the LP64 model. The C-BLAS does not provide
for a 64-bit integer. In addition, SGI's older cblas.h can cause
spurious warnings when using the C-BLAS interface.
1) often the most preferred (but see option (3)): use the
optimized vendor-supplied library (such as the Sun Performance
Library, or IBM's ESSL). This is often the fastest, but might not
be portable and might not always be available. When compiling a
MATLAB mexFunction it might be difficult get the mex compiler
script to recognize the vendor- supplied BLAS. Note that the
freely-available BLAS (option 3) can be faster than the vendor-
specific BLAS. You are encourage to try both option (1) and (3).
2) When compiling the UMFPACK mexFunction to use UMFPACK in MATLAB, use
the BLAS provided by The Mathworks, Inc. This assumes you are using
MATLAB V6 or higher, since the BLAS are not incorporated in V5 or
earlier versions. On my Sun workstation, the MATLAB BLAS gave
slightly worse performance than the Sun Perf. BLAS. The advantage
of using the MATLAB BLAS is that it's available on any computer that
has MATLAB V6 or higher. I have not tried using MATLAB BLAS outside
of a mexFunction in a stand-alone C code, but MATLAB (V6) allows for
this. This is well worth trying if you have MATLAB and don't want
to bother installing the ATLAS BLAS (option 3a, below). The only
glitch to this is that MATLAB does not provide a portable interface
to the BLAS (an underscore is required for some but not all
architectures). For Windows and MATLAB 6.0 or 6.1, you also need
to copy the libmwlapack.dll file into your MATLAB installation
directory; see the User Guide for details.
In the current distribution, the only BLAS that the UMFPACK
mexFunction will use is the internal MATLAB BLAS. It's possible to
use other BLAS, but handling the porting of using the mex compiler
with different BLAS libraries is not trivial.
As of MATLAB 6.5, the BLAS used internally in MATLAB is the ATLAS
BLAS.
3) Use a freely-available high-performance BLAS library:
(a) The BLAS by Kazashige Goto and Robert van de Geijn, at
http://www.cs.utexas.edu/users/flame/goto. This BLAS increased
the performance of UMFPACK by almost 50% as compared to the
ATLAS BLAS (v3.2).
(b) The ATLAS BLAS, available at http://www.netlib.org/atlas,
by R. Clint Whaley, Antoine Petitet, and Jack Dongarra.
This has a standard C interface, and thus the interface to it is
fully portable. Its performance rivals, and sometimes exceeds,
the vendor-supplied BLAS on many computers.
(b) The Fortran RISC BLAS by Michel Dayde', Iain Duff, Antoine
Petitet, and Abderrahim Qrichi Aniba, available via anonymous
ftp to ftp.enseeiht.fr in the pub/numerique/BLAS/RISC directory,
See M. J. Dayde' and I. S. Duff, "The RISC BLAS: A blocked
implementation of level 3 BLAS for RISC processors, ACM Trans.
Math. Software, vol. 25, no. 3., Sept. 1999. This will give
you good performance, but with the same C-to-Fortran portability
problems as option (1).
4) Use UMFPACK's built-in vanilla C code by setting -DNBLAS at compile
time. The key advantage is portability, which is guaranteed if you
have an ANSI C compliant compiler. You also don't need to download
any other package - UMFPACK is stand-alone. No Fortran is used
anywhere in UMFPACK. UMFPACK will be much slower than when using
options (1) through (3), however.
5) least preferred: use the standard Fortran implementation of the
BLAS, also available at Netlib (http://www.netlib.org/blas). This
will be no faster than option (4), and not portable because of
C-to-Fortran calling conventions. Don't bother trying option (5).
The mechanics of how C calls the BLAS on various computers are as follows:
* C-BLAS (from the ATLAS library, for example):
The same interface is used on all computers.
* Defaults for calling the Fortran BLAS:
add underscore, pass scalars by reference, use string arguments.
* The Fortran BLAS on Sun Solaris (when compiling the MATLAB mexFunction
or when using the Fortran RISC BLAS), SGI IRIX, Linux, and Compaq
Alpha: use defaults.
* Sun Solaris (when using the C-callable Sun Performance library):
no underscore, pass scalars by value, use character arguments.
* The Fortran BLAS (ESSL Library) on the IBM RS 6000, and HP Unix:
no underscore, pass scalars by reference, use string arguments.
* The Fortran BLAS on Windows:
no underscore, pass scalars by reference, use string arguments.
If you compile the umfpack mexFunction using umfpack_make, and are
using the lcc compiler bundled with MATLAB, then you must first
copy the umfpack\lcc_lib\libmwlapack.lib file into the
<matlab>\extern\lib\win32\lcc\ directory, where <matlab> is the
directory in which MATLAB is installed. Next, type mex -setup
at the MATLAB prompt, and ask MATLAB to select the lcc compiler.
MATLAB has built-in BLAS, but it cannot be accessed by a program
compiled by lcc without first copying this file.
*/
/* -------------------------------------------------------------------------- */
#ifdef USE_C_BLAS /* { */
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
/* use the C-BLAS (any computer) */
/* -------------------------------------------------------------------------- */
/*
C-BLAS is the default interface, with the following exceptions. Solaris
uses the Sun Performance BLAS for libumfpack.a (the C-callable library).
SGI IRIX uses the SCSL BLAS for libumfpack.a. All architectures use
MATLAB's internal BLAS for the mexFunction on any architecture. These
options are set in the Make.* files. The Make.generic file uses no BLAS
at all.
If you use the ATLAS C-BLAS, then be sure to set the -I flag to
-I/path/ATLAS/include, where /path/ATLAS is the ATLAS installation
directory. See Make.solaris for an example. You do not need to do this
for the SGI, which has a /usr/include/cblas.h.
*/
#include "cblas.h"
#ifdef COMPLEX
#define BLAS_GEMM_ROUTINE cblas_zgemm
#define BLAS_TRSM_ROUTINE cblas_ztrsm
#define BLAS_TRSV_ROUTINE cblas_ztrsv
#define BLAS_GEMV_ROUTINE cblas_zgemv
#define BLAS_GER_ROUTINE cblas_zgeru
#define BLAS_SCAL_ROUTINE cblas_zscal
#define BLAS_COPY_ROUTINE cblas_zcopy
#define BLAS_DECLARE_SCALAR(x) double x [2]
#define BLAS_ASSIGN(x,xr,xi) { x [0] = xr ; x [1] = xi ; }
#else
#define BLAS_GEMM_ROUTINE cblas_dgemm
#define BLAS_TRSM_ROUTINE cblas_dtrsm
#define BLAS_TRSV_ROUTINE cblas_dtrsv
#define BLAS_GEMV_ROUTINE cblas_dgemv
#define BLAS_GER_ROUTINE cblas_dger
#define BLAS_SCAL_ROUTINE cblas_dscal
#define BLAS_COPY_ROUTINE cblas_dcopy
#define BLAS_DECLARE_SCALAR(x) double x
#define BLAS_ASSIGN(x,xr,xi) { x = xr ; }
#endif
#define BLAS_LOWER CblasLower
#define BLAS_UNIT_DIAGONAL CblasUnit
#define BLAS_RIGHT CblasRight
#define BLAS_NO_TRANSPOSE CblasNoTrans
#define BLAS_TRANSPOSE CblasTrans
#define BLAS_COLUMN_MAJOR_ORDER CblasColMajor,
#define BLAS_SCALAR(x) x
#define BLAS_INT_SCALAR(n) n
#define BLAS_ARRAY(a) a
/* -------------------------------------------------------------------------- */
#else /* } USE_C_BLAS { */
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
/* use Fortran (or other architecture-specific) BLAS */
/* -------------------------------------------------------------------------- */
/* No such argument when not using the C-BLAS */
#define BLAS_COLUMN_MAJOR_ORDER
/* Determine which architecture we're on and set options accordingly. */
/* The default, if nothing is defined is to add an underscore, */
/* pass scalars by reference, and use string arguments. */
/* ---------------------------------- */
/* Sun Performance BLAS */
/* ---------------------------------- */
#ifdef USE_SUNPERF_BLAS
#ifdef _SUNPERF_H
/* <sunperf.h> has been included somehow anyway, outside of umf_config.h */
#error "sunperf.h must NOT be #include'd. See umf_config.h for details."
#endif
#define BLAS_BY_VALUE
#define BLAS_NO_UNDERSCORE
#define BLAS_CHAR_ARG
#endif /* USE_SUNPERF_BLAS */
/* ---------------------------------- */
/* SGI SCSL BLAS */
/* ---------------------------------- */
#ifdef USE_SCSL_BLAS
#if defined (LP64)
#include <scsl_blas_i8.h>
#else
#include <scsl_blas.h>
#endif
#define BLAS_BY_VALUE
#define BLAS_NO_UNDERSCORE
#endif /* USE_SCSL_BLAS */
/* ---------------------------------- */
/* IBM AIX, Windows, and HP Fortran BLAS */
/* ---------------------------------- */
#if defined (UMF_AIX) || defined (UMF_WINDOWS) || defined (UMF_HP)
#define BLAS_NO_UNDERSCORE
#endif
/* -------------------------------------------------------------------------- */
/* BLAS names */
/* -------------------------------------------------------------------------- */
#if defined (LP64) && defined (USE_SUNPERF_BLAS) && defined (LONG_INTEGER)
/* 64-bit sunperf BLAS, for Sun Solaris only */
#ifdef COMPLEX
#define BLAS_GEMM_ROUTINE zgemm_64
#define BLAS_TRSM_ROUTINE ztrsm_64
#define BLAS_TRSV_ROUTINE ztrsv_64
#define BLAS_GEMV_ROUTINE zgemv_64
#define BLAS_GER_ROUTINE zgeru_64
#define BLAS_SCAL_ROUTINE zscal_64
#define BLAS_COPY_ROUTINE zcopy_64
#else
#define BLAS_GEMM_ROUTINE dgemm_64
#define BLAS_TRSM_ROUTINE dtrsm_64
#define BLAS_TRSV_ROUTINE dtrsv_64
#define BLAS_GEMV_ROUTINE dgemv_64
#define BLAS_GER_ROUTINE dger_64
#define BLAS_SCAL_ROUTINE dscal_64
#define BLAS_COPY_ROUTINE dcopy_64
#endif /* COMPLEX */
#else
#ifdef COMPLEX
/* naming convention (use underscore, or not) */
#ifdef BLAS_NO_UNDERSCORE
#define BLAS_GEMM_ROUTINE zgemm
#define BLAS_TRSM_ROUTINE ztrsm
#define BLAS_TRSV_ROUTINE ztrsv
#define BLAS_GEMV_ROUTINE zgemv
#define BLAS_GER_ROUTINE zgeru
#define BLAS_SCAL_ROUTINE zscal
#define BLAS_COPY_ROUTINE zcopy
#else
/* default: add underscore */
#define BLAS_GEMM_ROUTINE zgemm_
#define BLAS_TRSM_ROUTINE ztrsm_
#define BLAS_TRSV_ROUTINE ztrsv_
#define BLAS_GEMV_ROUTINE zgemv_
#define BLAS_GER_ROUTINE zgeru_
#define BLAS_SCAL_ROUTINE zscal_
#define BLAS_COPY_ROUTINE zcopy_
#endif
#else
/* naming convention (use underscore, or not) */
#ifdef BLAS_NO_UNDERSCORE
#define BLAS_GEMM_ROUTINE dgemm
#define BLAS_TRSM_ROUTINE dtrsm
#define BLAS_TRSV_ROUTINE dtrsv
#define BLAS_GEMV_ROUTINE dgemv
#define BLAS_GER_ROUTINE dger
#define BLAS_SCAL_ROUTINE dscal
#define BLAS_COPY_ROUTINE dcopy
#else
/* default: add underscore */
#define BLAS_GEMM_ROUTINE dgemm_
#define BLAS_TRSM_ROUTINE dtrsm_
#define BLAS_TRSV_ROUTINE dtrsv_
#define BLAS_GEMV_ROUTINE dgemv_
#define BLAS_GER_ROUTINE dger_
#define BLAS_SCAL_ROUTINE dscal_
#define BLAS_COPY_ROUTINE dcopy_
#endif
#endif /* COMPLEX */
#endif /* LP64 && USE_SUNPERF_BLAS */
/* -------------------------------------------------------------------------- */
/* BLAS real or complex floating-point scalars */
/* -------------------------------------------------------------------------- */
#ifdef COMPLEX
/*
The SunPerf BLAS expects to see a doublecomplex scalar, but it
also will accept an array of size 2. See the manual, normally at
file:///opt/SUNWspro/WS6U1/lib/locale/C/html/manuals/perflib/user_guide
/plug_using_perflib.html . This manual is inconsistent with the man pages
for zgemm, zgemv, and zgeru and also inconsistent with the <sunperf.h>
include file. Use this instead, for SunPerf (only works if you do NOT
include sunperf.h). Fortunately, this file (umf_config.h) is not included
in any user code that calls UMFPACK. Thus, the caller may include
sunperf.h in his or her own code, and that is safely ignored here.
SGI's SCSL BLAS has yet a different kind of struct, but we can use a
double array of size 2 instead (since SCSL_VOID_ARGS is defined).
Most BLAS expect complex scalars as pointers to double arrays of size 2.
*/
#define BLAS_DECLARE_SCALAR(x) double x [2]
#define BLAS_ASSIGN(x,xr,xi) { x [0] = xr ; x [1] = xi ; }
#define BLAS_SCALAR(x) x
#else
#define BLAS_DECLARE_SCALAR(x) double x
#define BLAS_ASSIGN(x,xr,xi) { x = xr ; }
#ifdef BLAS_BY_VALUE
#define BLAS_SCALAR(x) x
#else
#define BLAS_SCALAR(x) &(x)
#endif
#endif /* COMPLEX */
/* -------------------------------------------------------------------------- */
/* BLAS integer scalars */
/* -------------------------------------------------------------------------- */
/*
Fortran requires integers to be passed by reference.
The SCSL BLAS requires long long arguments in LP64 mode.
*/
#if defined (USE_SCSL_BLAS) && defined (LP64)
#define BLAS_INT_SCALAR(n) ((long long) n)
#else
#ifdef BLAS_BY_VALUE
#define BLAS_INT_SCALAR(n) n
#else
#define BLAS_INT_SCALAR(n) &(n)
#endif
#endif
/* -------------------------------------------------------------------------- */
/* BLAS strings */
/* -------------------------------------------------------------------------- */
/*
The Sun Performance BLAS wants a character instead of a string.
*/
#ifdef BLAS_CHAR_ARG
#define BLAS_NO_TRANSPOSE 'N'
#define BLAS_TRANSPOSE 'T'
#define BLAS_LEFT 'L'
#define BLAS_RIGHT 'R'
#define BLAS_LOWER 'L'
#define BLAS_UNIT_DIAGONAL 'U'
#else
#define BLAS_NO_TRANSPOSE "N"
#define BLAS_TRANSPOSE "T"
#define BLAS_LEFT "L"
#define BLAS_RIGHT "R"
#define BLAS_LOWER "L"
#define BLAS_UNIT_DIAGONAL "U"
#endif
/* -------------------------------------------------------------------------- */
/* BLAS arrays */
/* -------------------------------------------------------------------------- */
/*
The complex SunPerf BLAS expects to see a doublecomplex array of size s.
This is broken (see above, regarding complex scalars in sunperf.h).
For SunPerf BLAS, just pass a pointer to the array, and ignore sunperf.h.
With sunperf.h, you would need:
#define BLAS_ARRAY(a) ((doublecomplex *)(a))
SGI's SCSL BLAS has yet a different kind of struct, but we can use a
double array of size 2 instead (since SCSL_VOID_ARGS is defined).
The real versions all use just a (double *) pointer.
In all cases, no typecast is required. This will break if <sunperf.h> is
included.
If you have read this far, I hope you see now why (void *) a much better
choice for complex BLAS prototypes, and why double x [2] is better than
an architecture dependent struct { double real ; double imag ; }
type definition.
*/
#define BLAS_ARRAY(a) (a)
/* -------------------------------------------------------------------------- */
#endif /* USE_C_BLAS } */
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
/* BLAS macros, for all interfaces */
/* -------------------------------------------------------------------------- */
/*
All architecture dependent issues have now been taken into consideration,
and folded into the macros BLAS_DECLARE_SCALAR, BLAS_ASSIGN, BLAS_*_ROUTINE,
BLAS_COLUMN_MAJOR_ORDER, BLAS_NO_TRANSPOSE, BLAS_TRANSPOSE, BLAS_SCALAR,
BLAS_INT_SCALAR, BLAS_ARRAY, and Int.
You will note that there is not a *** single *** name, declaration, or
argument to the BLAS which is not somehow different in one or more versions
of the BLAS!
*/
/* C = C - A*B', where:
* A is m-by-k with leading dimension ldac
* B is k-by-n with leading dimension ldb
* C is m-by-n with leading dimension ldac */
#define BLAS_GEMM(m,n,k,A,B,ldb,C,ldac) \
{ \
BLAS_DECLARE_SCALAR (alpha) ; \
BLAS_DECLARE_SCALAR (beta) ; \
BLAS_ASSIGN (alpha, -1.0, 0.0) ; \
BLAS_ASSIGN (beta, 1.0, 0.0) ; \
(void) BLAS_GEMM_ROUTINE (BLAS_COLUMN_MAJOR_ORDER \
BLAS_NO_TRANSPOSE, BLAS_TRANSPOSE, \
BLAS_INT_SCALAR (m), BLAS_INT_SCALAR (n), BLAS_INT_SCALAR (k), \
BLAS_SCALAR (alpha), \
BLAS_ARRAY (A), BLAS_INT_SCALAR (ldac), \
BLAS_ARRAY (B), BLAS_INT_SCALAR (ldb), BLAS_SCALAR (beta), \
BLAS_ARRAY (C), BLAS_INT_SCALAR (ldac)) ; \
}
/* A = A - x*y', where:
* A is m-by-n with leading dimension d
x is a column vector with stride 1
y is a column vector with stride 1 */
#define BLAS_GER(m,n,x,y,A,d) \
{ \
Int one = 1 ; \
BLAS_DECLARE_SCALAR (alpha) ; \
BLAS_ASSIGN (alpha, -1.0, 0.0) ; \
(void) BLAS_GER_ROUTINE (BLAS_COLUMN_MAJOR_ORDER \
BLAS_INT_SCALAR (m), BLAS_INT_SCALAR (n), \
BLAS_SCALAR (alpha), \
BLAS_ARRAY (x), BLAS_INT_SCALAR (one), \
BLAS_ARRAY (y), BLAS_INT_SCALAR (one), \
BLAS_ARRAY (A), BLAS_INT_SCALAR (d)) ; \
}
/* y = y - A*x, where A is m-by-n with leading dimension d,
x is a column vector with stride 1
y is a column vector with stride 1 */
#define BLAS_GEMV(m,n,A,x,y,d) \
{ \
Int one = 1 ; \
BLAS_DECLARE_SCALAR (alpha) ; \
BLAS_DECLARE_SCALAR (beta) ; \
BLAS_ASSIGN (alpha, -1.0, 0.0) ; \
BLAS_ASSIGN (beta, 1.0, 0.0) ; \
(void) BLAS_GEMV_ROUTINE (BLAS_COLUMN_MAJOR_ORDER \
BLAS_NO_TRANSPOSE, \
BLAS_INT_SCALAR (m), BLAS_INT_SCALAR (n), \
BLAS_SCALAR (alpha), \
BLAS_ARRAY (A), BLAS_INT_SCALAR (d), \
BLAS_ARRAY (x), BLAS_INT_SCALAR (one), BLAS_SCALAR (beta), \
BLAS_ARRAY (y), BLAS_INT_SCALAR (one)) ; \
}
/* solve Lx=b, where:
* B is a column vector (m-by-1) with leading dimension d
* A is m-by-m with leading dimension d */
#define BLAS_TRSV(m,A,b,d) \
{ \
Int one = 1 ; \
(void) BLAS_TRSV_ROUTINE (BLAS_COLUMN_MAJOR_ORDER \
BLAS_LOWER, BLAS_NO_TRANSPOSE, BLAS_UNIT_DIAGONAL, \
BLAS_INT_SCALAR (m), \
BLAS_ARRAY (A), BLAS_INT_SCALAR (d), \
BLAS_ARRAY (b), BLAS_INT_SCALAR (one)) ; \
}
/* solve XL'=B where:
* B is m-by-n with leading dimension ldb
* A is n-by-n with leading dimension lda */
#define BLAS_TRSM_RIGHT(m,n,A,lda,B,ldb) \
{ \
BLAS_DECLARE_SCALAR (alpha) ; \
BLAS_ASSIGN (alpha, 1.0, 0.0) ; \
(void) BLAS_TRSM_ROUTINE (BLAS_COLUMN_MAJOR_ORDER \
BLAS_RIGHT, BLAS_LOWER, BLAS_TRANSPOSE, BLAS_UNIT_DIAGONAL, \
BLAS_INT_SCALAR (m), BLAS_INT_SCALAR (n), \
BLAS_SCALAR (alpha), \
BLAS_ARRAY (A), BLAS_INT_SCALAR (lda), \
BLAS_ARRAY (B), BLAS_INT_SCALAR (ldb)) ; \
}
/* x = s*x, where x is a stride-1 vector of length n */
#define BLAS_SCAL(n,s,x) \
{ \
Int one = 1 ; \
BLAS_DECLARE_SCALAR (alpha) ; \
BLAS_ASSIGN (alpha, REAL_COMPONENT (s), IMAG_COMPONENT (s)) ; \
(void) BLAS_SCAL_ROUTINE ( \
BLAS_INT_SCALAR (n), BLAS_SCALAR (alpha), \
BLAS_ARRAY (x), BLAS_INT_SCALAR (one)) ; \
}
/* x = y, where x and y are a stride-1 vectors of length n */
#define BLAS_COPY(n,x,y) \
{ \
Int one = 1 ; \
(void) BLAS_COPY_ROUTINE ( \
BLAS_INT_SCALAR (n), \
BLAS_ARRAY (x), BLAS_INT_SCALAR (one), \
BLAS_ARRAY (y), BLAS_INT_SCALAR (one)) ; \
}
#endif /* !defined (USE_NO_BLAS) } */
|