1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
/* ========================================================================== */
/* === UMFPACK_report_symbolic ============================================== */
/* ========================================================================== */
/* -------------------------------------------------------------------------- */
/* UMFPACK Version 4.1 (Apr. 30, 2003), Copyright (c) 2003 by Timothy A. */
/* Davis. All Rights Reserved. See ../README for License. */
/* email: davis@cise.ufl.edu CISE Department, Univ. of Florida. */
/* web: http://www.cise.ufl.edu/research/sparse/umfpack */
/* -------------------------------------------------------------------------- */
/*
User-callable. Prints the Symbolic object. See umfpack_report_symbolic.h
for details. Does not print new Cdeg, Rdeg, Esize, and the Diagonal_map.
Dynamic memory usage: Allocates a size MAX (n_row,n_col)*sizeof(Int)
workspace via a single call to UMF_malloc and then frees all of it via
UMF_free on return. The workspace is not allocated if an early error
return occurs before the workspace is needed.
*/
#include "umf_internal.h"
#include "umf_valid_symbolic.h"
#include "umf_report_perm.h"
#include "umf_malloc.h"
#include "umf_free.h"
GLOBAL Int UMFPACK_report_symbolic
(
void *SymbolicHandle,
const double Control [UMFPACK_CONTROL]
)
{
Int n_row, n_col, nz, nchains, nfr, maxnrows, maxncols, prl,
k, chain, frontid, frontid1, frontid2, kk, *Chain_start, *W,
*Chain_maxrows, *Chain_maxcols, *Front_npivcol, *Front_1strow,
*Front_leftmostdesc, *Front_parent, done, status1, status2 ;
SymbolicType *Symbolic ;
prl = GET_CONTROL (UMFPACK_PRL, UMFPACK_DEFAULT_PRL) ;
if (prl <= 2)
{
return (UMFPACK_OK) ;
}
PRINTF (("Symbolic object: ")) ;
Symbolic = (SymbolicType *) SymbolicHandle ;
if (!UMF_valid_symbolic (Symbolic))
{
PRINTF (("ERROR: invalid\n")) ;
return (UMFPACK_ERROR_invalid_Symbolic_object) ;
}
n_row = Symbolic->n_row ;
n_col = Symbolic->n_col ;
nz = Symbolic->nz ;
nchains = Symbolic->nchains ;
nfr = Symbolic->nfr ;
maxnrows = Symbolic->maxnrows ;
maxncols = Symbolic->maxncols ;
Chain_start = Symbolic->Chain_start ;
Chain_maxrows = Symbolic->Chain_maxrows ;
Chain_maxcols = Symbolic->Chain_maxcols ;
Front_npivcol = Symbolic->Front_npivcol ;
Front_1strow = Symbolic->Front_1strow ;
Front_leftmostdesc = Symbolic->Front_leftmostdesc ;
Front_parent = Symbolic->Front_parent ;
if (prl >= 4)
{
PRINTF (("\n matrix to be factorized:\n")) ;
PRINTF (("\tn_row: "ID" n_col: "ID"\n", n_row, n_col)) ;
PRINTF (("\tnumber of entries: "ID"\n", nz)) ;
PRINTF ((" block size used for dense matrix kernels: "ID"\n",
Symbolic->nb)) ;
PRINTF ((" strategy used: ")) ;
/* strategy cannot be auto */
if (Symbolic->strategy == UMFPACK_STRATEGY_SYMMETRIC)
{
PRINTF (("symmetric")) ;
}
else if (Symbolic->strategy == UMFPACK_STRATEGY_UNSYMMETRIC)
{
PRINTF (("unsymmetric")) ;
}
else if (Symbolic->strategy == UMFPACK_STRATEGY_2BY2)
{
PRINTF (("symmetric 2-by-2")) ;
}
PRINTF (("\n")) ;
PRINTF ((" ordering used: ")) ;
if (Symbolic->ordering == UMFPACK_ORDERING_COLAMD)
{
PRINTF (("colamd on A\n")) ;
}
else if (Symbolic->ordering == UMFPACK_ORDERING_AMD)
{
PRINTF (("amd on A+A'\n")) ;
}
else if (Symbolic->ordering == UMFPACK_ORDERING_GIVEN)
{
PRINTF (("provided by user")) ;
}
PRINTF (("\n")) ;
PRINTF ((" performn column etree postorder: ")) ;
if (Symbolic->fixQ)
{
PRINTF (("no\n")) ;
}
else
{
PRINTF (("yes\n")) ;
}
PRINTF ((" prefer diagonal pivoting (attempt P=Q): ")) ;
if (Symbolic->prefer_diagonal)
{
PRINTF (("yes\n")) ;
}
else
{
PRINTF (("no\n")) ;
}
PRINTF ((" variable-size part of Numeric object:\n")) ;
PRINTF (("\tminimum initial size (Units): %.20g (MBytes): %.1f\n",
Symbolic->dnum_mem_init_usage,
MBYTES (Symbolic->dnum_mem_init_usage))) ;
PRINTF (("\testimated peak size (Units): %.20g (MBytes): %.1f\n",
Symbolic->num_mem_usage_est,
MBYTES (Symbolic->num_mem_usage_est))) ;
PRINTF (("\testimated final size (Units): %.20g (MBytes): %.1f\n",
Symbolic->num_mem_size_est,
MBYTES (Symbolic->num_mem_size_est))) ;
PRINTF ((" symbolic factorization memory usage (Units):"
" %.20g (MBytes): %.1f\n",
Symbolic->peak_sym_usage,
MBYTES (Symbolic->peak_sym_usage))) ;
PRINTF ((" frontal matrices / supercolumns:\n")) ;
PRINTF (("\tnumber of frontal chains: "ID"\n", nchains)) ;
PRINTF (("\tnumber of frontal matrices: "ID"\n", nfr)) ;
PRINTF (("\tlargest frontal matrix row dimension: "ID"\n", maxnrows)) ;
PRINTF (("\tlargest frontal matrix column dimension: "ID"\n",maxncols));
}
k = 0 ;
done = FALSE ;
for (chain = 0 ; chain < nchains ; chain++)
{
frontid1 = Chain_start [chain] ;
frontid2 = Chain_start [chain+1] - 1 ;
PRINTF4 (("\n Frontal chain: "ID". Frontal matrices "ID" to "ID"\n",
INDEX (chain), INDEX (frontid1), INDEX (frontid2))) ;
PRINTF4 (("\tLargest frontal matrix in Frontal chain: "ID"-by-"ID"\n",
Chain_maxrows [chain], Chain_maxcols [chain])) ;
for (frontid = frontid1 ; frontid <= frontid2 ; frontid++)
{
kk = Front_npivcol [frontid] ;
PRINTF4 (("\tFront: "ID" pivot cols: "ID" (pivot columns "ID" to "
ID")\n", INDEX (frontid), kk, INDEX (k), INDEX (k+kk-1))) ;
PRINTF4 (("\t pivot row candidates: "ID" to "ID"\n",
INDEX (Front_1strow [Front_leftmostdesc [frontid]]),
INDEX (Front_1strow [frontid+1]-1))) ;
PRINTF4 (("\t leftmost descendant: "ID"\n",
INDEX (Front_leftmostdesc [frontid]))) ;
PRINTF4 (("\t 1st new candidate row : "ID"\n",
INDEX (Front_1strow [frontid]))) ;
PRINTF4 (("\t parent:")) ;
if (Front_parent [frontid] == EMPTY)
{
PRINTF4 ((" (none)\n")) ;
}
else
{
PRINTF4 ((" "ID"\n", INDEX (Front_parent [frontid]))) ;
}
done = (frontid == 20 && frontid < nfr-1 && prl == 4) ;
if (done)
{
PRINTF4 (("\t...\n")) ;
break ;
}
k += kk ;
}
if (Front_npivcol [nfr] != 0)
{
PRINTF4 (("\tFront: "ID" placeholder for "ID" empty columns\n",
INDEX (nfr), Front_npivcol [nfr])) ;
}
if (done)
{
break ;
}
}
W = (Int *) UMF_malloc (MAX (n_row, n_col), sizeof (Int)) ;
if (!W)
{
PRINTF (("ERROR: out of memory to check Symbolic object\n\n")) ;
return (UMFPACK_ERROR_out_of_memory) ;
}
PRINTF4 (("\nInitial column permutation, Q1: ")) ;
status1 = UMF_report_perm (n_col, Symbolic->Cperm_init, W, prl, 0) ;
PRINTF4 (("\nInitial row permutation, P1: ")) ;
status2 = UMF_report_perm (n_row, Symbolic->Rperm_init, W, prl, 0) ;
(void) UMF_free ((void *) W) ;
if (status1 != UMFPACK_OK || status2 != UMFPACK_OK)
{
return (UMFPACK_ERROR_invalid_Symbolic_object) ;
}
PRINTF4 ((" Symbolic object: ")) ;
PRINTF (("OK\n\n")) ;
return (UMFPACK_OK) ;
}
|